AN UMBRAL CALCULUS FOR POLYNOMIALS CHARACTERIZING $U(n)$ TENSOR PRODUCTS

BY

Stephen C. MILNE (*)

This talk reports on work to appear in [1] that has been done jointly with L.C. Biedenharn and R.A. Gustafson.

In this lecture we continue the study of the connection between the invariant polynomials

$$
\begin{align*}
{ }_{\mu} G_{q}^{(n)} & \equiv{ }_{\mu} G_{q}^{(n)}\left(\left(x_{i j}+\Delta_{1}\right)\right) \tag{1}\\
& \equiv{ }_{\mu} G_{q}^{(n)}\left(\Delta_{1}, \ldots, \Delta_{n} ; x_{12}, x_{23}, \ldots, x_{n-1, n}, x_{n, 1}\right)
\end{align*}
$$

characterizing $U(n)$ tensor operators $\langle p, q, \ldots, q, 0, \ldots, 0\rangle$, and the classical theory of symmetric functions as presented in [9], that was established in [5]. The polynomial ${ }_{\mu} G_{q}^{(n)}(X)$ arise naturally in the application of symmetry groups to mathematical physics. One such problem, with applications to spectroscopy at all levels, is the construction of a suitable basis for the set of all bounded operators mapping the set of all unitary irreducible representation spaces of the group into itself. The precise problems that give rise to ${ }_{\mu} G_{q}^{(n)}(X)$ are motivated in more detail and put into a broader mathematical setting in [2-4].

The above irrep label $\langle p, q, \ldots, q, 0, \ldots, 0\rangle$ consists of one $p, \mu q$'s, and $n-\mu-10$'s. Furthermore, q determines p since $\Delta_{1}+\cdots+\Delta_{n}=p+\mu q$ and we are given $q, \Delta_{1}+\cdots+\Delta_{n}$ and μ.

Recently in [5-7] an alternate method for explicitly writing down ${ }_{\mu} G_{q}^{(n)}(X)$ in polynomial form has been given. These methods provide a direct connection between the classical theory of symmetric functions as presented in [9], and the symmetries satisfied by a family of $U(n)$ invariant polynomials even more general then ${ }_{\mu} G_{q}^{(n)}(X)$. In [5] it is shown that after the change of variables

$$
\begin{equation*}
\Delta_{i}=\gamma_{i}-\delta_{i} \quad x_{i, i+1}=\delta_{i}-\delta_{i+1}, \tag{2}
\end{equation*}
$$

(*) Partially supported by a Sloan Foundation Fellowship and NSF grant MCS-8102032
${ }_{\mu} G_{q}^{(n)}\left(, \Delta_{i}, ;, x_{i, i+1},\right)$ becomes an integral linear combination of products of Schur functions $S_{\alpha}\left(, \gamma_{i},\right) \cdot S_{\beta}\left(, \delta_{i},\right)$ in the variables $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ and $\left\{\delta_{1}, \ldots, \delta_{n}\right\}$, respectively. (See equation (6) for a definition of $\left.S_{\lambda}\left(x_{1}, \ldots, x_{n}\right).\right)$ That is, it is directly proved that ${ }_{\mu} G_{q}^{(n)}\left(, \Delta_{i}, ;, x_{i, i+1},\right)$ is a bisymmetric polynomial in the variables $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ and $\left\{\delta_{1}, \ldots, \delta_{n}\right\}$ with integer coefficients. This motivated the study in [5] of the yet more general bisymmetric polynomials

$$
\begin{equation*}
{ }_{\mu}^{m} G_{q}^{(n)}(\gamma ; \delta) \equiv{ }_{\mu}^{m} G_{q}^{(n)}\left(\gamma_{1}, \ldots, \gamma_{n} ; \delta_{1}, \ldots, \delta_{m}\right) \tag{3}
\end{equation*}
$$

which are a common generalization of (2.2b) of [2] and equation (2.17) of [10] with no numerator parameters. These polynomials are given by

Definition 4. - Given that ${ }_{\mu}^{m} G_{0}^{(n)}(\gamma ; \delta) \equiv 1$, we uniquely determine ${ }_{\mu}^{m} G_{q}^{(n)}(\gamma ; \delta)$ by means of

$$
\begin{align*}
& \quad{ }_{\mu}^{m} G_{q}^{(n)}\left(, \gamma_{i}, ;, \delta_{i},\right)=\sum_{\substack{S \subset I_{n} \\
\|S\|=\mu+1}}(-1)^{\mu+1+\Sigma(S)} \prod_{\substack{i<j \\
i \in S, j \in S^{c}}}\left(\gamma_{i}-\gamma_{j}\right)^{-1} \tag{5}\\
& \times \prod_{\substack{i<j \\
i \in S^{c}, j \in S}}\left(\gamma_{i}-\gamma_{j}\right)^{-1} \prod_{\substack{i=1 \\
i \in S}}^{n} \prod_{l=1}^{m}\left(\gamma_{i}-\delta_{l}\right) \cdot{ }_{\mu}^{m} G_{q-1}^{(n)}\left(, \gamma_{i}-\chi(i \in S), ;, \delta_{i},\right),
\end{align*}
$$

where $S \subset I_{n}$ is a $(\mu+1)$-element subset of $\{1,2, \ldots, n\}, \Sigma(S)$ denotes the sum of the elements in S, and $\chi(A)$ is 1 if statement A is true and 0 , otherwise.

At this point we need to review some basic facts about the Schur functions S_{λ}. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}, \ldots\right)$ be a partition, i.e., a (finite or infinite) sequence of nonnegative integers in decreasing order, $\lambda_{1} \geq$ $\lambda_{2} \geq \cdots \geq \lambda_{r} \cdots$ such that only finitely many of the λ_{i} are nonzero. The number of nonzero λ_{i}, denoted by $l(\lambda)$, is called the length of λ. If $\sum \lambda_{i}=n$, then λ is called a partition of weight n, denoted by $|\lambda|=n$. Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of length $\leq n$, the Schur fonctions S_{λ} are defined by

$$
\begin{equation*}
S_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\frac{\operatorname{det}\left(x_{i}^{\lambda_{j}+n-j}\right)_{1 \leq i, j \leq n}}{\operatorname{det}\left(x_{i}^{n-j}\right)_{1 \leq i, j \leq n}} \tag{6}
\end{equation*}
$$

The determinant in the numerator of (6) is divisible in $\mathbf{Z}\left[x_{1}, \ldots, x_{n}\right]$ by each of the differences $\left(x_{i}-x_{j}\right), 1 \leq i<j \leq n$, and hence by their product, which is the Vandermonde determinant

$$
\begin{align*}
\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right) & =\operatorname{det}\left(x_{i}^{n-j}\right)_{1 \leq i, j \leq n} \tag{7a}\\
& \equiv V_{n}\left(x_{1}, \ldots, x_{n}\right) . \tag{7b}
\end{align*}
$$

Thus, the quotient in (6) is a symmetric polynomial in x_{1}, \ldots, x_{n} with coefficient in Z. For example, $S_{(n)}=h_{n}$ and $S_{\left(1^{n}\right)}=e_{n}$ where h_{n} and e_{n} are, respectively, the homogeneous and elementary symmetric functions of x_{1}, \ldots, x_{n}.

If $Z=m_{1}+\cdots+m_{n}$, with m_{i} monomials, then

$$
\begin{equation*}
\left.S_{\lambda}(Z) \equiv S_{\lambda}\left(m_{1}+\cdots+m_{n}\right) \equiv S_{\lambda}\left(x_{1}, \ldots, x_{n}\right)\right|_{x_{i}=m_{i}} \tag{8}
\end{equation*}
$$

On the other hand, $S_{\lambda}(-(Z))$ is defined symbolically by

$$
\begin{equation*}
S_{\lambda}(-(Z)) \equiv S_{\lambda}\left(-\left(m_{1}+\cdots+m_{n}\right)\right) \equiv(-1)^{|\lambda|} S_{\lambda^{\prime}}(Z) \tag{9}
\end{equation*}
$$

where $|\mu|=\lambda_{1}+\cdots+\lambda_{n}$ is the sum of the parts of λ and λ^{\prime} is the conjugate partition to λ. That is, $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots, \lambda_{\left(\lambda_{1}\right)}^{\prime}\right)$, with $\lambda_{i}^{\prime}=\left\|\left\{j \mid \lambda_{j} \geq i\right\}\right\|$. For example $(5,2,1)$ is the conjugate partition of $(3,2,1,1,1)$. Note that $S_{\lambda}\left(-\left(m_{1}+\cdots+m_{n}\right)\right)$ is not equal to $\left.S_{\lambda}\left(x_{1}, \ldots, x_{n}\right)\right|_{x_{i}=-m_{i}}$. The definitions given by (8) and (9) are implicit in [9; see Remark (3.10) of p. 26].

If $\rho=\left(\rho_{1}, \ldots, \rho_{k}\right)$, where ρ_{i} are integers, then denote by $(X)^{\rho}$ the monomial $x_{1}^{\rho_{1}} \ldots x_{k}^{\rho_{k}}$ where $X=\left\{x_{1}, \ldots, x_{k}\right\}$. Let the permutations $w \in S_{k}$ act on subscripts. For example, $w(X)^{\rho}=x_{w(1)}^{\rho_{1}} \ldots x_{w(k)}^{\rho_{k}}$. Finally, let δ_{k} be the partition $(k-1, k-2, \ldots, 0)$ and m^{l} the partition consisting of l parts equal to m.

Fix μ and assume that $m-n \equiv \nu$ is a constant. Denote the sets of variables $\left\{\gamma_{1}, \ldots, \gamma_{\mu+1}\right\},\left\{\gamma_{\mu+2}, \ldots, \gamma_{n}\right\},\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$, and $\left\{\delta_{1}, \ldots, \delta_{m}\right\}$ by A, B, E and F, respectively. We then have from [5] the following fundamental

Theorem 10. - Let ${ }_{\mu}^{m} G_{q}^{(n)}(E ; F)$ be defined as in (5). We then have

$$
\begin{align*}
& { }_{\mu}^{m} G_{q}^{(n)}(E ; F)=\frac{\left.(-1)^{\left({ }^{\mu+1} 2\right.}{ }_{2}\right)}{V_{n}(E)} \sum_{\substack{\lambda=\left(\begin{array}{c}
\left(\lambda_{1}, \ldots, \lambda_{\mu+1}\right) \\
\lambda_{1} \leq m
\end{array}\right.}} S_{\lambda}(-F) \tag{11}\\
& \cdot\left\{\sum _ { w \in S _ { n } } \epsilon (w) \cdot w \left[(A)^{m^{\mu+1}+\delta_{\mu+1}-\left(\lambda_{\mu+1}, \ldots, \lambda_{1}\right)}(B)^{\delta_{n-(\mu+1)}}\right.\right. \\
& \left.\left.\cdot{ }_{\mu}^{m} G_{q-1}^{(n)}\left(\gamma_{1}-1, \ldots, \gamma_{\mu+1}-1, B ; F\right)\right]\right\},
\end{align*}
$$

where, without loss of generalitly, w acts only on $\gamma_{1}, \ldots, \gamma_{\mu+1}$ when applied to ${ }_{\mu}^{m} G_{q-1}^{(n)}$, and $\epsilon(w)$ is the sign of the permutation w.

Starting with (11) and making direct use of the new symmetries discovered in [5], it is shown in [1] that the bisymmetric polynomials ${ }_{\mu}^{m} G_{q}^{(n)}(E ; F)$ are an integral linear commbination of Schur functions $S_{\lambda}(E-F)$ in the symbol $E-F$, where $E-F$ denotes the difference of the two sets of variables E and F. Making use of properties of skew Schur functions $S_{\lambda / \mu}$ and $S_{\lambda}(E-F)$ one puts together an umbral calculus for ${ }_{\mu}^{m} G_{q}^{(n)}(E ; F)$. That is, working entirely with polynomials, one uniquely determines ${ }_{\mu}^{m} G_{q}^{(n)}$ from ${ }_{\mu}^{m} G_{q-1}^{(n)}$ and combinatorial rules (such as the Littlewood-Richardson rule [9]) involving Ferrers diagrams (i.e. partitions). The deepest part of this umbral calculus is a summation theorem, involving many different aspects of the theory of Schur functions, which essentially reduces the double sum in (11) to the single term in which λ is the empty partition and w is the identity permutation. Here, we recall a general theorem form [1] which illustrates how the structure of ${ }_{\mu}^{m} G_{q}^{(n)}(E ; F)$ "stabilizes" as ν increases while $m-n=\nu$ remains fixed, state the umbral claculus for ${ }_{\mu}^{m} G_{q}^{(n)}(E ; F)$, and just give the final formulas for ${ }_{\mu}^{m} G_{1}^{(n)}(E ; F)$ and ${ }_{\mu}^{m} G_{2}^{(n)}(E ; F)$ which are a direct consequence of the umbral calculus and work in [5].

Before giving these formulas we need some more notation. Let λ, ρ be partitions. The skew Schur function $S_{\lambda / \rho}$ is defined by

$$
\begin{equation*}
S_{\lambda / \rho}(E)=\sum_{\nu \subset \lambda} c_{\rho \nu}^{\lambda} \cdot S_{\nu}(E), \tag{12}
\end{equation*}
$$

where $\nu \subset \lambda$ means $\nu_{i} \leq \lambda_{i}$ for all $i \geq 1$, and the integers $c_{\rho \nu}^{\lambda}$ are the Littlewood-Richardson rule coefficients determined by

$$
\begin{equation*}
S_{\rho}(E) \cdot S_{\nu}(E)=\sum_{\nu} c_{\rho \nu}^{\lambda} S_{\lambda}(E) \tag{13}
\end{equation*}
$$

Note that $S_{\lambda / 0}=S_{\lambda}$, where 0 denotes the zero partition. Also, $c_{\rho \nu}^{\lambda}=0$ unless $|\lambda|=|\rho|+|\nu|$, so that $S_{\lambda / \rho}$ is homogeneous of degree $|\lambda|-|\rho|$, and is zero if $|\lambda|<|\rho|$. In fact, $S_{\lambda / \rho}=0$ unless $\rho \subset \lambda$.

Given the sets of variables E and F, let $E+F$ be the set union $\left\{\gamma_{1}, \ldots, \gamma_{n}, \delta_{1}, \ldots, \delta_{m}\right\}$. There is then the following classical result

$$
\begin{equation*}
S_{\lambda}(E+F)=\sum_{\rho \subset \lambda} S_{\lambda / \rho}(E) S_{\rho}(F) . \tag{14}
\end{equation*}
$$

It is immediate from (9) and (14) that

$$
\begin{align*}
S_{\lambda}(E-F) & =\sum_{\rho \subset \lambda} S_{\rho / \lambda}(E) S_{\rho}(-F) \tag{15a}\\
& =\sum_{\rho \subset \lambda}(-1)^{|\rho|} S_{\rho / \lambda}(E) \cdot S_{\rho^{\prime}}(F), \tag{15b}
\end{align*}
$$

where ρ^{\prime} is the conjugate partition to ρ. The above classical formulas can be found in Chapter I of [9].

We now state a fundamental result of [1].
Theorem 16. - Fix $\mu \geq 0$ and $k=m-n$. There are integers $a_{\lambda, q}$, λ a partition, q a non-negative integer such that

$$
\begin{equation*}
{ }_{\mu}^{m} G_{q}^{(n)}(E ; F)=\sum_{\lambda} a_{\lambda, q} S_{\lambda}(E-F), \tag{17}
\end{equation*}
$$

where $|\lambda| \leq(\mu+1)(\mu+1+k) q$ and $\lambda \subset[(\mu+1+k) q]^{(\mu+1) q}$.
If $n \geq(\mu+1) q$ and $m \geq(m+1+k) q$, then $a_{\lambda, q}$ is independent of n. More generally, if $S_{\lambda}(E-F) \neq 0$, then $a_{\lambda, q}$ is independent of n.

A similar "stabilization" theorem involving $S_{\alpha}(E) \cdot S_{\beta}(F)$ instead of $S_{\lambda}(E-F)$ was proved in [5]. Just as in [5] it follows from (17) that the $n=(\mu+1) q$ and $m=(\mu+1+m-n) q$ case of (17) gives the correct formula for ${ }_{\mu}^{m+l} G_{q}^{(n+l)}(E ; F)$ for all integers l, when the sets E and F contain $(n+l)$ and ($m+l$) variables, respectively.

Before stating the umbral calculus for ${ }_{\mu}^{m} G_{q}^{(n)}(E ; F)$ we need :
Definition 18. - Let α, β and γ be the three partitions $\alpha=$ $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right), \gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$. The sum $\alpha+\beta$ and direct sum $\alpha \oplus \gamma$ are defined by

$$
\begin{equation*}
\alpha+\beta=\left(\alpha_{1}+\beta_{1}, \alpha_{2}+\beta_{2}, \ldots, \alpha_{n}+\beta_{n}\right) \tag{19a}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha \oplus \gamma=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}\right) \tag{19b}
\end{equation*}
$$

Note that $\alpha+\beta$ is a partition while $\alpha \oplus \gamma$ may not be. In general $\alpha \oplus \gamma$ is just a $(n+m)$-tuple.

Definition 20. - Let $\phi \equiv\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)$ be an n-tuple of nonnegative integers that is not necessarily a partition. If all the coordinates of $\left(\phi+\delta_{n}\right)=\left(\phi_{1}+n-1, \phi_{2}+n-2, \ldots, \phi_{n-1}+1, \phi_{n}\right)$ are distinct, then there is a unique permutation $\sigma_{\phi} \in \mathcal{S}_{n}$ that orders the parts of $\left(\phi+\delta_{n}\right)$ in decreasing order. Denote the resulting partition (with distinct parts) by $\sigma_{\phi}\left(\phi+\delta_{n}\right)$. In addition, let $(\phi)_{\sigma_{\phi}}$ be the partition

$$
\begin{equation*}
(\phi)_{\sigma_{\phi}} \equiv \sigma_{\phi}\left(\phi+\delta_{n}\right)-\delta_{n} . \tag{21}
\end{equation*}
$$

Now, given any n-tuple $\phi=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)$, we determine $S_{\phi}(E-F)$ by means of

$$
\begin{equation*}
S_{\phi}(E-F), \quad \text { if the parts of }\left(\phi+\delta_{n}\right) \text { are not distinct. } \tag{22a}
\end{equation*}
$$

Otherwise,

$$
\begin{equation*}
S_{\phi}(E-F)=\epsilon\left(\sigma_{\phi}\right) \cdot S_{(\phi)_{\sigma \phi}}(E-F), \tag{22b}
\end{equation*}
$$

where $(\phi)_{\sigma_{\phi}}$ is the partition given by (21) and $\epsilon\left(\sigma_{\phi}\right)$ is the sign of the permutation σ_{ϕ}. (Note that if ϕ is a partition, then the parts of $\left(\phi+\delta_{n}\right)$ are distinct, δ_{ϕ} is the identity permutation, and the right-side of (22b) is simply $\left(S_{\phi}(E-F)\right.$.)

Theorem 23. - One has

$$
\begin{equation*}
S_{\lambda}(X+Y)=\sum_{\pi, \alpha \subset \lambda} c_{\pi \alpha}^{\lambda} S_{\alpha}(Y) S_{\pi}(X) \tag{24}
\end{equation*}
$$

where $c_{\pi \alpha}^{\lambda}$ are the $\mathrm{L}-\mathrm{R}$ coefficients in (13), and X and Y are two (signed) sums of monomials.

Theorem 25 (A. Lascoux). - One has

$$
\begin{equation*}
S_{\pi}\left(-1+\gamma_{1}, \ldots,-1+\gamma_{\mu+1}\right)=\sum_{\nu \subset \pi} d_{\pi \nu} S_{\nu}(A), \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{\pi \nu}=(-1)^{|\pi|-|\nu|} \operatorname{det}\left[\binom{\pi_{i}+\mu+1-i}{\nu_{j}+\mu+1-j}\right]_{1 \leq i, j \leq \mu+1} \tag{27}
\end{equation*}
$$

and

$$
A=\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{\mu+1}\right\}
$$

Theorem 23 appears in [9 ; see eq. (5.9) on p. 41] and Theorem 25 is due to A. Lascoux [8] and can be found in [9 ; see ex. 10, p. 30].

The first step of the umbral calculus is to compute

$$
\begin{equation*}
{ }_{\mu}^{m} G_{q-1}^{(n)}\left(\gamma_{1}-1, \gamma_{2}-1, \ldots, \gamma_{\mu+1}-1, B ; F\right) . \tag{28}
\end{equation*}
$$

This is accomplished by means of the $q-1$ case of Theorem 16 , and Theorems 23 and 25. The second (and deepest) part of the umbral calculus is to replace $S_{\nu}(A) \cdot S_{\alpha}(B-F)$ in the sum giving (28) by

$$
\begin{equation*}
S_{\left(\left((\mu+1+m-n)^{\mu+1}+\nu\right) \oplus \alpha\right)}(E-F) . \tag{29}
\end{equation*}
$$

where (29) is determined by the $\phi=\left(\left((\mu+1+m-n)^{\mu+1}+\nu\right) \oplus \alpha\right)$ case of Definition 20. The resulting sum is equal to ${ }_{\mu}^{m} G_{q}^{(n)}(E ; F)$. That is, we have

Theorem 30 (umbral calculus). - Let ${ }_{\mu}^{m} G_{q-1}^{(n)}(E ; F)$ be given by the $q-1$ case of (17). For technical reasons assume that the following inequalities hold : $(\mu+1) q \leq n, m \geq \mu+1, m-n=k$ is constant, $l(\nu) \leq \mu+1$, and $l(\alpha) \leq n-(\mu+1)$. We then have

$$
\begin{align*}
{ }_{\mu}^{m} G_{q}^{(n)} & (E ; F)=(-1)^{\left({ }_{2}^{\mu+1}\right)} \sum_{\lambda} a_{\lambda, q-1} \tag{31}\\
& \cdot\left\{\sum_{\substack{\pi, \alpha \subset \lambda \\
\nu \subset \pi}} c_{\pi \alpha}^{\lambda} \cdot d_{\pi \nu} \cdot S_{\left(\left((\mu+1+m-n)^{\mu+1}+\nu\right) \oplus \alpha\right)}(E-F)\right\},
\end{align*}
$$

where $|\lambda| \leq(\mu+1)(\mu+1+k)(q-1)$ and $\lambda \subset[(\mu+1+k)(q-1)]^{(\mu+1)(q-1)}$ and where $S_{\left(\left((\mu+1+m-n)^{\mu+1}+\nu\right) \oplus \alpha\right)}(E-F)$ is determined by the $\phi=$ $\left(\left((\mu+1+m-n)^{\mu+1}+\nu\right) \oplus \alpha\right)$ case of Definition 20, $c_{\pi \alpha}^{\lambda}$ are the L-R coefficients in (13), and the $d_{\pi \nu}$ are defined by (27).

Theorem 1.22 of [5] expressed ${ }_{\mu}^{m} G_{1}^{(n)}(E ; F)$ as a sum of products of Schur functions $S_{\alpha}(F) \cdot S_{\beta}(F)$. Using (15b) to rewrite this sum immediately gives

$$
\begin{equation*}
{ }_{\mu}^{m} G_{1}^{(n)}(E ; F)=(-1)^{\left(\mu_{2}^{+1}\right)} S_{(\mu+1+m-n)^{\mu+1}}(E-F) \tag{32}
\end{equation*}
$$

where $(\mu+1+m-n)^{\mu+1}$ denotes the partition consisting of $(\mu+1)$ parts equal to $(\mu+1+m-n)$.

In [5] it took three pages to write ${ }_{1}^{2} G_{2}^{(n)}(E ; F)$ as a sum of products of Schur functions. Starting with (32) and making use of Theorem 30 it was shown in [1] that

$$
\begin{align*}
& { }_{1}^{2} G_{2}^{(n)} \tag{33}\\
& \quad(E ; F)=\left\{S_{2^{2}}(D)\right\}^{2}+\left\{-\left[2 S_{4,3}(D)+2 S_{2^{3}, 1}(D)\right.\right. \\
& \left.\quad+3 S_{3,2^{2}}(D)+3 S_{3^{2}, 1}(D)+S_{4,3,1}(D)+S_{3,2,1^{2}}(D)\right] \\
& \quad+\left[S_{4,2}(D)+S_{2^{2}, 1^{2}}(D)+3 S_{2^{3}}(D)+3 S_{3^{2}}(D)+3 S_{3,2,1}(D)\right] \\
& \left.\quad+\left[2 S_{3,2}(D)+2 S_{2^{2}, 1}(D)\right]+S_{2^{2}}(D)\right\},
\end{align*}
$$

where D denotes the set difference $E-F$.
Further applications of Theorems 16 and 30, as well as detailed proofs, can be found in [1].

REFERENCES

[1] Biedenharn (L.C.), Gustafson (R.A.) and Milne (S.C.). - An umbral calculus for polynomials characterizing $U(n)$ tensor operators, Advances in Math., t. 51, 1984, p. 36-90.
[2] Biedenharn (L.C.), Holman III (W.) and Milne (S.C.). - The invariant polynomials characterizing $\mathrm{U}(\mathrm{n})$ tensoroperator $s\langle p, q, \ldots, q, 0, \ldots, 0\rangle$ having maximal null space, Advances in Appl. Math., t. 1, 198o, p. 390-472.
[3] Biedenharn (L.C.) and Louck (J.D.). - Angular Momentum in Quantum Physics : Theory and Applications. - Reading, Addison-Wesley (Encyclopedia of Math. Appl., 8), 1981.
[4] Biedenharn (L.C.) and Louck (J.D.). - The Racah-Wigner Algebra in Quantum Theory. - Reading, Addison-Wesley (Encyclopedia of Math. Appl., 9), 1981 .
[5] Gustafson (R.A.) and Milne (S.C.). - Schur functions and the invariant characterizing $U(n)$ tensor operators, Advances in Appl. Math., t. 4, 1983, p. 422-478.
[6] Gustafson (R.A.) and Milne (S.C.). - Schur functions, Good's identity, and hypergeometric series well-poised in $S U(n)$ tensor operators, Advances in Math., t. 48, 1983, p. 177-188.
[7] Gustafson (R.A.) and Milne (S.C.). - A new symmetry for Biedenharn's G-functions and classical hypergeometric series, Advances in Math., in press.
[8] Lascoux (A.). - Classes de Chern d'un produit tensoriel, C.R. Acad. Sci. Paris, t. 268A, 1978, p. 385-387.
[9] Macdonald (I.G.). - Symmetric Functions and Hall Polynomials. - Oxford Univ. Press, 1979.
[10] Milne (S.). - Hypergeometric series well-poised in $S U(n)$ and a generalization of Biedenharn's G-functions, Advances in Math., t. 36, 198o, p. 169-211.

Stephen C. Milne,
Department of Mathematics, Texan A \& M University, College Station, Texas 77843, U.S.A.
now at :
Department of Mathematics, Ohio State University Columbus, Ohio, U.S.A.

