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AN UMBRAL CALCULUS FOR POLYNOMIALS

CHARACTERIZING U(n) TENSOR PRODUCTS

BY

Stephen C. MILNE (∗)

This talk reports on work to appear in [1] that has been done jointly
with L.C. BIEDENHARN and R.A. GUSTAFSON.

In this lecture we continue the study of the connection between the
invariant polynomials

(1)
µG

(n)
q ≡ µG

(n)
q

(
(xij + ∆1)

)
≡ µG

(n)
q (∆1, . . . ,∆n;x12, x23, . . . , xn−1,n, xn,1).

characterizing U(n) tensor operators 〈p, q, . . . , q, 0, . . . , 0〉, and the classical
theory of symmetric functions as presented in [9], that was established in
[5]. The polynomial µG

(n)
q (X) arise naturally in the application of symme-

try groups to mathematical physics. One such problem, with applications
to spectroscopy at all levels, is the construction of a suitable basis for the
set of all bounded operators mapping the set of all unitary irreducible
representation spaces of the group into itself. The precise problems that
give rise to µG

(n)
q (X) are motivated in more detail and put into a broader

mathematical setting in [2–4].
The above irrep label 〈p, q, . . . , q, 0, . . . , 0〉 consists of one p, µ q’s, and

n− µ− 1 0’s. Furthermore, q determines p since ∆1 + · · ·+ ∆n = p+ µq
and we are given q, ∆1 + · · ·+ ∆n and µ.

Recently in [5–7] an alternate method for explicitly writing down

µG
(n)
q (X) in polynomial form has been given. These methods provide a

direct connection between the classical theory of symmetric functions as
presented in [9], and the symmetries satisfied by a family of U(n) invariant
polynomials even more general then µG

(n)
q (X). In [5] it is shown that after

the change of variables

(2) ∆i = γi − δi xi,i+1 = δi − δi+1,
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µG
(n)
q (,∆i, ; , xi,i+1, ) becomes an integral linear combination of prod-

ucts of Schur functions Sα(, γi, ) · Sβ(, δi, ) in the variables {γ1, . . . , γn}
and {δ1, . . . , δn}, respectively. (See equation (6) for a definition of
Sλ(x1, . . . , xn).) That is, it is directly proved that µG

(n)
q (,∆i, ; , xi,i+1, )

is a bisymmetric polynomial in the variables {γ1, . . . , γn} and {δ1, . . . , δn}
with integer coefficients. This motivated the study in [5] of the yet more
general bisymmetric polynomials

(3) m
µ G

(n)
q (γ; δ) ≡ m

µ G
(n)
q (γ1, . . . , γn; δ1, . . . , δm)

which are a common generalization of (2.2b) of [2] and equation (2.17) of
[10] with no numerator parameters. These polynomials are given by

Definition 4. — Given that m
µ G

(n)
0 (γ; δ) ≡ 1, we uniquely determine

m
µ G

(n)
q (γ; δ) by means of

(5) m
µ G

(n)
q (, γi, ; , δi, ) =

∑
S⊂In
‖S‖=µ+1

(−1)µ+1+Σ(S)
∏
i<j

i∈S, j∈Sc

(γi − γj)−1

×
∏
i<j

i∈Sc, j∈S

(γi − γj)−1
n∏
i=1
i∈S

m∏
l=1

(γi − δl) · mµ G
(n)
q−1(, γi − χ(i ∈ S), ; , δi, ),

where S ⊂ In is a (µ + 1)-element subset of {1, 2, . . . , n}, Σ(S) denotes
the sum of the elements in S, and χ(A) is 1 if statement A is true and 0,
otherwise.

At this point we need to review some basic facts about the Schur
functions Sλ. Let λ = (λ1, λ2, . . . , λr, . . . ) be a partition, i.e., a (finite
or infinite) sequence of nonnegative integers in decreasing order, λ1 ≥
λ2 ≥ · · · ≥ λr · · · such that only finitely many of the λi are nonzero.
The number of nonzero λi, denoted by l(λ), is called the length of λ. If∑
λi = n, then λ is called a partition of weight n, denoted by |λ| = n.

Given a partition λ = (λ1, . . . , λn) of length ≤ n, the Schur fonctions Sλ
are defined by

(6) Sλ(x1, . . . , xn) =
det
(
x
λj+n−j
i

)
1≤i,j≤n

det
(
xn−ji

)
1≤i,j≤n

.

The determinant in the numerator of (6) is divisible in Z[x1, . . . , xn] by
each of the differences (xi−xj), 1 ≤ i < j ≤ n, and hence by their product,
which is the Vandermonde determinant∏

1≤i<j≤n

(xi − xj) = det
(
xn−ji

)
1≤i,j≤n(7a)

≡ Vn(x1, . . . , xn).(7b)
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Thus, the quotient in (6) is a symmetric polynomial in x1, . . . , xn with
coefficient in Z. For example, S(n) = hn and S(1n) = en where hn and en
are, respectively, the homogeneous and elementary symmetric functions of
x1, . . . , xn.

If Z = m1 + · · ·+mn, with mi monomials, then

(8) Sλ(Z) ≡ Sλ(m1 + · · ·+mn) ≡ Sλ(x1, . . . , xn)
∣∣∣
xi = mi

.

On the other hand, Sλ
(
−(Z)

)
is defined symbolically by

(9) Sλ
(
−(Z)

)
≡ Sλ

(
−(m1 + · · ·+mn)

)
≡ (−1)|λ|Sλ′(Z),

where |µ| = λ1+· · ·+λn is the sum of the parts of λ and λ′ is the conjugate
partition to λ. That is, λ′ = (λ′1, λ

′
2, . . . , λ

′
(λ1)), with λ′i = ‖{j | λj ≥ i}‖.

For example (5, 2, 1) is the conjugate partition of (3, 2, 1, 1, 1). Note
that Sλ

(
−(m1 + · · · + mn)

)
is not equal to Sλ(x1, . . . , xn)|xi=−mi . The

definitions given by (8) and (9) are implicit in [9 ; see Remark (3.10) of
p. 26].

If ρ = (ρ1, . . . , ρk), where ρi are integers, then denote by (X)ρ the
monomial xρ1

1 . . . xρkk where X = {x1, . . . , xk}. Let the permutations
w ∈ Sk act on subscripts. For example, w(X)ρ = xρ1

w(1) . . . x
ρk
w(k). Finally,

let δk be the partition (k− 1, k− 2, . . . , 0) and ml the partition consisting
of l parts equal to m.

Fix µ and assume that m − n ≡ ν is a constant. Denote the sets of
variables {γ1, . . . , γµ+1}, {γµ+2, . . . , γn}, {γ1, . . . , γn}, and {δ1, . . . , δm}
by A, B, E and F , respectively. We then have from [5] the following
fundamental

Theorem 10. — Let mµ G
(n)
q (E;F ) be defined as in (5). We then have

(11) m
µ G

(n)
q (E;F ) =

(−1)(
µ+1

2 )

Vn(E)

∑
λ=(λ1,...,λµ+1)

λ1≤m

Sλ(−F )

·

{∑
w∈Sn

ε(w) · w

[
(A)m

µ+1+δµ+1−(λµ+1,...,λ1)(B)δn−(µ+1)

· mµ G
(n)
q−1(γ1 − 1, . . . , γµ+1 − 1, B;F )

]}
,

where, without loss of generalitly, w acts only on γ1, . . . , γµ+1 when

applied to m
µ G

(n)
q−1, and ε(w) is the sign of the permutation w.
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Starting with (11) and making direct use of the new symmetries
discovered in [5], it is shown in [1] that the bisymmetric polynomials
m
µ G

(n)
q (E;F ) are an integral linear commbination of Schur functions

Sλ(E − F ) in the symbol E − F , where E − F denotes the difference
of the two sets of variables E and F . Making use of properties of
skew Schur functions Sλ/µ and Sλ(E − F ) one puts together an umbral
calculus for mµ G

(n)
q (E;F ). That is, working entirely with polynomials, one

uniquely determines m
µ G

(n)
q from m

µ G
(n)
q−1 and combinatorial rules (such

as the Littlewood-Richardson rule [9]) involving Ferrers diagrams (i.e.
partitions). The deepest part of this umbral calculus is a summation
theorem, involving many different aspects of the theory of Schur functions,
which essentially reduces the double sum in (11) to the single term in
which λ is the empty partition and w is the identity permutation. Here,
we recall a general theorem form [1] which illustrates how the structure
of mµ G

(n)
q (E;F ) “stabilizes” as ν increases while m− n = ν remains fixed,

state the umbral claculus for mµ G
(n)
q (E;F ), and just give the final formulas

for m
µ G

(n)
1 (E;F ) and m

µ G
(n)
2 (E;F ) which are a direct consequence of the

umbral calculus and work in [5].
Before giving these formulas we need some more notation. Let λ, ρ be

partitions. The skew Schur function Sλ/ρ is defined by

(12) Sλ/ρ(E) =
∑
ν⊂λ

cλρν · Sν(E),

where ν ⊂ λ means νi ≤ λi for all i ≥ 1, and the integers cλρν are the
Littlewood-Richardson rule coefficients determined by

(13) Sρ(E) · Sν(E) =
∑
ν

cλρνSλ(E).

Note that Sλ/0 = Sλ, where 0 denotes the zero partition. Also, cλρν = 0
unless |λ| = |ρ|+ |ν|, so that Sλ/ρ is homogeneous of degree |λ| − |ρ|, and
is zero if |λ| < |ρ|. In fact, Sλ/ρ = 0 unless ρ ⊂ λ.

Given the sets of variables E and F , let E + F be the set union
{γ1, . . . , γn, δ1, . . . , δm}. There is then the following classical result

(14) Sλ(E + F ) =
∑
ρ⊂λ

Sλ/ρ(E)Sρ(F ).

It is immediate from (9) and (14) that

Sλ(E − F ) =
∑
ρ⊂λ

Sρ/λ(E)Sρ(−F )(15a)

=
∑
ρ⊂λ

(−1)|ρ|Sρ/λ(E) · Sρ′(F ),(15b)
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where ρ′ is the conjugate partition to ρ. The above classical formulas can
be found in Chapter I of [9].

We now state a fundamental result of [1].

Theorem 16. — Fix µ ≥ 0 and k = m − n. There are integers aλ,q,
λ a partition, q a non-negative integer such that

(17) m
µ G

(n)
q (E;F ) =

∑
λ

aλ,qSλ(E − F ),

where |λ| ≤ (µ+ 1)(µ+ 1 + k)q and λ ⊂ [(µ+ 1 + k)q](µ+1)q.
If n ≥ (µ + 1)q and m ≥ (m + 1 + k)q, then aλ,q is independent of n.

More generally, if Sλ(E − F ) 6= 0, then aλ,q is independent of n.

A similar “stabilization” theorem involving Sα(E) · Sβ(F ) instead of
Sλ(E − F ) was proved in [5]. Just as in [5] it follows from (17) that the
n = (µ + 1)q and m = (µ + 1 + m − n)q case of (17) gives the correct
formula for m+l

µ G
(n+l)
q (E;F ) for all integers l, when the sets E and F

contain (n+ l) and (m+ l) variables, respectively.
Before stating the umbral calculus for mµ G

(n)
q (E;F ) we need :

Definition 18. — Let α, β and γ be the three partitions α =
(α1, α2, . . . , αn), β = (β1, β2, . . . , βn), γ = (γ1, γ2, . . . , γn). The sum α+ β
and direct sum α⊕ γ are defined by

(19a) α+ β = (α1 + β1, α2 + β2, . . . , αn + βn)

and

(19b) α⊕ γ = (α1, α2, . . . , αn, γ1, γ2, . . . , γm).

Note that α+ β is a partition while α⊕ γ may not be. In general α⊕ γ is
just a (n+m)-tuple.

Definition 20. — Let φ ≡ (φ1, φ2, . . . , φn) be an n-tuple of non-
negative integers that is not necessarily a partition. If all the coordinates
of (φ+ δn) = (φ1 + n− 1, φ2 + n− 2, . . . , φn−1 + 1, φn) are distinct, then
there is a unique permutation σφ ∈ Sn that orders the parts of (φ+ δn) in
decreasing order. Denote the resulting partition (with distinct parts) by
σφ(φ+ δn). In addition, let (φ)σφ be the partition

(21) (φ)σφ ≡ σφ(φ+ δn)− δn.

Now, given any n-tuple φ = (φ1, φ2, . . . , φn), we determine Sφ(E − F ) by
means of

(22a) Sφ(E − F ), if the parts of (φ+ δn) are not distinct.
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Otherwise,

(22b) Sφ(E − F ) = ε(σφ) · S(φ)σφ(E − F ),

where (φ)σφ is the partition given by (21) and ε(σφ) is the sign of the
permutation σφ. (Note that if φ is a partition, then the parts of (φ+ δn)
are distinct, δφ is the identity permutation, and the right-side of (22b) is
simply (Sφ(E − F ).)

Theorem 23. — One has

(24) Sλ(X + Y ) =
∑
π, α⊂λ

cλπαSα(Y )Sπ(X),

where cλπα are the L–R coefficients in (13), and X and Y are two (signed)
sums of monomials.

Theorem 25 (A. Lascoux). — One has

(26) Sπ(−1 + γ1, . . . ,−1 + γµ+1) =
∑
ν⊂π

dπνSν(A),

where

(27) dπν = (−1)|π|−|ν| det
[(

πi + µ+ 1− i
νj + µ+ 1− j

)]
1≤i, j≤µ+1

,

and
A = {γ1, γ2, . . . , γµ+1}.

THEOREM 23 appears in [9 ; see eq. (5.9) on p. 41] and THEOREM 25 is
due to A. LASCOUX [8] and can be found in [9 ; see ex. 10, p. 30].

The first step of the umbral calculus is to compute

(28) m
µ G

(n)
q−1(γ1 − 1, γ2 − 1, . . . , γµ+1 − 1, B;F ).

This is accomplished by means of the q − 1 case of THEOREM 16, and
THEOREMS 23 and 25. The second (and deepest) part of the umbral
calculus is to replace Sν(A) · Sα(B − F ) in the sum giving (28) by

(29) S(((µ+1+m−n)µ+1+ν)⊕α)(E − F ).

where (29) is determined by the φ =
(
((µ+ 1 +m− n)µ+1 + ν)⊕ α

)
case

of Definition 20. The resulting sum is equal to m
µ G

(n)
q (E;F ). That is, we

have
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Theorem 30 (umbral calculus). — Let m
µ G

(n)
q−1(E;F ) be given by

the q − 1 case of (17). For technical reasons assume that the following
inequalities hold : (µ + 1)q ≤ n, m ≥ µ + 1, m − n = k is constant,
l(ν) ≤ µ+ 1, and l(α) ≤ n− (µ+ 1). We then have

(31) m
µ G

(n)
q (E;F ) = (−1)(

µ+1
2 )∑

λ

aλ,q−1

·

{ ∑
π, α⊂λ
ν⊂π

cλπα · dπν · S(((µ+1+m−n)µ+1+ν)⊕α
)(E − F )

}
,

where |λ| ≤ (µ+ 1)(µ+ 1 +k)(q−1) and λ ⊂ [(µ+ 1 +k)(q−1)](µ+1)(q−1)

and where S(
((µ+1+m−n)µ+1+ν)⊕α

)(E − F ) is determined by the φ =

(((µ + 1 + m − n)µ+1 + ν) ⊕ α) case of Definition 20, cλπα are the L–R
coefficients in (13), and the dπν are defined by (27).

THEOREM 1.22 of [5] expressed m
µ G

(n)
1 (E;F ) as a sum of products of

Schur functions Sα(F )·Sβ(F ). Using (15b) to rewrite this sum immediately
gives

(32) m
µ G

(n)
1 (E;F ) = (−1)(

µ+1
2 )S(µ+1+m−n)µ+1(E − F ),

where (µ+ 1 +m−n)µ+1 denotes the partition consisting of (µ+ 1) parts
equal to (µ+ 1 +m− n).

In [5] it took three pages to write 2
1G

(n)
2 (E;F ) as a sum of products of

Schur functions. Starting with (32) and making use of THEOREM 30 it was
shown in [1] that

(33) 2
1G

(n)
2 (E;F ) = {S22(D)}2 + {−[2S4,3(D) + 2S23,1(D)

+ 3S3,22(D) + 3S32,1(D) + S4,3,1(D) + S3,2,12(D)]
+ [S4,2(D) + S22,12(D) + 3S23(D) + 3S32(D) + 3S3,2,1(D)]
+ [2S3,2(D) + 2S22,1(D)] + S22(D)},

where D denotes the set difference E − F .
Further applications of THEOREMS 16 and 30, as well as detailed proofs,

can be found in [1].
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