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LINEARIZATION COEFFICIENTS FOR

THE JACOBI POLYNOMIALS

BY

Dominique FOATA AND Doron ZEILBERGER

RÉSUMÉ. — Une formule explicite pour les coefficients de linéarisation des
polynômes de Jacobi a été donnée par RAHMAN, d’où l’on tire, sans calcul, les pro-
priétés de positivité. L’obtention de la formule de RAHMAN par des méthodes combi-
natoires semble malaisée. On peut cependant donner plusieurs interprétations combi-

natoires de l’intégrale du produit de polynômes de Jacobi
∏
i
P

(α,β)
ni (x) et en déduire

une évaluation dans le cas particulier où n1 = n2 + · · ·+ nm.

ABSTRACT. — The explicit non-negative representation of the linearization coef-
ficients of the Jacobi polynomials obtained by RAHMAN seems to be difficult to be
derived by combinatorial methods. However several combinatorial interpretations can

be provided for the integral of the product of Jacobi polynomials
∏
i
P

(α,β)
ni (x) and

furnish an evaluation of this integral in the particular case where n1 = n2 + · · ·+ nm.

1. Introduction. — Standard definition for the Jacobi polynomials
reads :

P (α,β)
n (x) =

n∑
j=0

(
n+ α

n− j

)(
n+ β

j

)(
x− 1

2

)j (
x+ 1

2

)n−j

=
2−n

n!

n∑
j=0

(
n

j

)
(α+ 1 + n− j)j (β + 1 + j)n−j (x− 1)n−j(x+ 1)j .

(See, e.g., [Er], [Sz]). Let n = (n1, . . . , nm) and consider the integral

In =
∫ +1

−1

(1− x)α(1 + x)β
m∏
i=1

P (α,β)
ni (x) dx.

Using the classical evaluation∫ +1

−1

(1− x)α(1 + x)β dx =
Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
,

it is readily seen that
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(1.1) In =
2α+β+1∏

i ni! (α+ β + 2)Σni

Γ(α+ 1)Γ(β + 1)
Γ(α+ β + 2)

Ln,

with
(1.2) Ln =

∑
k

(−1)Σ(ni−ki) (α+ 1)Σ(ni−ki) (β + 1)Σki

×
∏
i

(
ni
ki

)
(α+ 1 + ni − ki)ki (β + 1 + ki)ni−ki .

The linearization problem consists of finding an appropriate representation
for In in such a way that non-negative properties of In are directly
apparent from the representation itself. Along those lines RAHMAN [Ra]
found the following fantastic formula involving the series 9F8 : let s+1 ≤ n,
0 ≤ j ≤ 2n− 2s and let

(1.3) Is+j,n−s,n =
(α+ 1)s+j(α+ 1)n−s(α+ 1)n

(s+ j)! (n− s)!n!
Γ(α+ 1)Γ(β + 1)

2−(α+β+1)Γ(α+ β + 1)

× (s+ j)! (β + 1)s+j
(α+ β)s+j(α+ β + 1)s+j(2s+ 2j + α+ β + 1)

g(s+ j, n− s, n).

Then, for j even

g(s+ j, n− s, n) =
α+ β + 1 + 2s+ 2j

α+ β + 1
(α+ β + 1 + n− s)n−s

× (α+ 1)s+j(β + 1)n(α+ β + 1)2s+j(α+ β + 1)jn!
(α+ 1)s(α+ 1)n−s(β + 1)s+j(α+ β + 2)2n+j s! j!

×
(s− n)j/2(α+ β + n+ 1)j/2(

s− n− α+ β

2

)
j/2

(s+ 1)j/2(α+ 1)j/2

×
(s− n− α)j/2(β + n+ 1)j/2(1/2)j/2(

1
2

+ s− n− α+ β

2

)
j/2

(s+ 1)j/2(α+ 1)j/2

× 9F8

[
α, 1 +

α

2
, α+

1
2
,
α− β

2
α− β + 1

2
,

α

2
,

1
2
,
α+ β

2
+ 1,

α+ β + 1
2

,

α+ β + n+ 1 +
j

2
, s− n+

j

2
,−s− j

2
,− j

2

−β − n− j

2
, α+ n+ 1− s− j

2
, α+ s+ 1 +

j

2
, α+ 1 +

j

2

]
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and a corresponding formula for j odd. Note that in RAHMAN’s paper [Ra,
p. 917, formula (1.7)] the factor (α+β+ 1 +n− s)n−s occurring after the
first fraction above is missing. As proved by RAHMAN [Ra], the foregoing
formula shows that if j, s, n are non-negative integers with s + 1 ≤ n,
0 ≤ j ≤ 2n − 2s, then g(s + j, n − s, n) ≥ 0 whenever α ≥ β > −1 and
α+ β + 1 ≥ 0.

Putting back the value of g(s + j, n − s, n) into (1.3) we deduce the
following formula

Ls+j,n−s,n =
(α+ 1)n(s+ j)! (α+ 1)s+j(β + 1)n(α+ β + 1)2s+j

(α+ β + 1)s+j(α+ 1)s

× (α+ β + 1 + n− s)n−s(α+ β + 1)j n!
s! j!

×
(s− n)j/2(α+ β + n+ 1)j/2(
s− n− α+ β

2

)
j/2

(α+ s+ 1)j/2

×
(s− n− α)j/2(β + n+ 1)j/2(1/2)j/2(

1
2

+ s− n− α+ β

2

)
j/2

(s+ 1)j/2(α+ 1)j/2

× 9F8

[
α, 1 +

α

2
, α+

1
2
,
α− β

2
α− β + 1

2
, α+ β + n+ 1 +

j

2
,

α

2
,

1
2
,
α+ β

2
+ 1,

α+ β + 1
2

,−β − n− j

2
,

s− n+
j

2
,−s− j

2
,− j

2

α+ n+ 1− s− j

2
, α+ s+ 1 +

j

2
, α+ 1 +

j

2

]
,

when j is even. When j is odd, formula (1.8) of RAHMAN [Ra] leads to :

Ls+j,n−s,n =
(α+ 1)n(s+ j)! (α+ 1)s+j(β + 1)n

(α+ β + 1)s+j(α+ 1)s

× (α+ β + 1)2s+j(α+ β + 1 + n− s)n−s(α+ β + 1)jn!
s! j!

×
(s− n)(j+1)/2(α+ β + n+ 1)(j+1)/2(
s− n− α+ β

2

)
(j+1)/2

(α+ s+ 1)(j+1)/2

×
(s− n− α)(j−1)/2(β + n+ 1)(j−1)/2(3/2)(j−1)/2(

1
2

+ s− n− α+ β

2

)
(j−1)/2

(s+ 1)(j−1)j/2(α+ 2)(j−1)/2
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× α− β
α+ β + 1 9F8

[
α+ 1,

α+ 3
2

, α+
1
2
,
α− β

2
+ 1,

α− β + 1
2

,

α+ 1
2

,
3
2
,
α+ β

2
+ 1,

α+ β + 3
2

,

α+ β + n+
3
2

+
j

2
, s− n+

1
2

+
j

2
,

1
2
− s− j

2
,

1− j
2

1− j
2
− β − n, α+ n+

3
2
− s− j

2
, α+ s+

3
2

+
j

2
, α+

3
2

+
j

2

]
.

It seems that a derivation of RAHMAN’s formula by means of combinatorial
methods is out of scope. It would first require an interpretation of the
factor (α)k(1 +α/2)k(α+ 1/2)k/(α/2)k(1/2)k occurring in the series 9F8.
But such a factor already occurs in each classical hypergeometric series
identity involving pFp+1 for p ≥ 3, for instance in the Dougall, Whipple
and Bailey identities (see [Bai, Chap. 4]).

When α = β (the case of ultraspheric polynomials), the factor 9F8

vanishes and RAHMAN’s formula greatly simplifies. For instance, for j even
we get :

if 0 ≤ j ≤ n− s

Ls+j,n−s,n =
(

s+ j

s, j/2, j/2

)
s!
(
j

2

)
!
(

n

s+ j/2

)
(n− s)!

× (α+ 1 + j/2)n−j/2(α+ 1 + s+ j/2)j/2

× (α+ 1 + n− s− j/2)j/2(β + 1)n+j/2

× (α+ β + 1 + s+ j)s(α+ β + 1 + n− s)n−s−j
× (α+ β + 1)j(α+ β + n+ 1)j/2 ;

if n− s ≤ j ≤ 2n− 2s

Ls+j,n−s,n =
(

s+ j

s, j/2, j/2

)
s!
(
j

2

)
!
(

n

s+ j/2

)
(n− s)!

× (α+ 1 + j/2)n−j/2(α+ 1 + s+ j/2)j/2

× (α+ 1 + n− s− j/2)j/2(β + 1)n+j/2

× (α+ β + 1 + s+ j)s(α+ β + 1 + n− s)n−s
× (α+ β + 1)2n−2s−j(α+ β + n+ 1)j/2.

In particular, with j = 0 we get

(1.5) Ls,n−s,n = (α+β+s+1)s(α+β+1+n−s)n−sn! (α+1)n(β+1)n,

a formula that will be extended further in the paper.
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The purpose of this article is to give a combinatorial interpretation to
Ln and to deduce from it several analytic consequences (sections 2 and
3). As mentioned previously, we cannot derive RAHMAN’s formula, but we
can, at least, evaluate an extension of (1.5), that is,

(1.6) Ln = (α+β+n2 +1)n2 · · · (α+β+nm+1)nmn1! (α+1)n1(β+1)n1 ,

when m is arbitrary and n1 = n2 + · · ·+nm. This is presented in section 4.

2. Weighted bipermutations. — Consider formulas (1.1) and (1.2).
The expression Ln will first be proved to be the generating function for
certain combinatorial objects, called weighted bipermutations, as follows.
Let N = N1 + · · ·+Nm be an ordered partition of a set N with |Ni| = ni
(i = 1, 2, . . . ,m). If K is a subset of N , let ki = K ∩ Ni and |Ki| = ki
(i = 1, 2, . . . ,m). Next consider a permutation π of the set N . An element
x of N is said to be π-incestuous, if both x and π(x) belong to the same
component Ni. Denote by Incπ the set of all π-incestuous elements of N .
Finally, define a weighted bipermutation of N = N1 + · · · + Nm as being
a triple (π1, π2,K), where π1 and π2 are permutations of N and K is a
subset of N that satisfies the properties :

K ⊂ Incπ1 and N \K ⊂ Incπ2.

Define the weights of a weighted bipermutation (π1, π2,K) to be :

w(α, β;π1, π2,K) = (α+ 1)cycπ1(β + 1)cycπ2 ;
w′(α, β;π1, π2,K) = (−1)|N\K|(α+ 1)cycπ1(β + 1)cycπ2 ;

where cycπ designates the number of cycles of the permutation π.

Theorem 1. — The polynomial Ln defined in (1.2) is the generating
function for the weighted bipermutations by the weight w′. In other words,

Ln(α, β) := Ln =
∑

w′(α, β;π1, π2,K)

=
∑

(−1)|N\K|(α+ 1)cycπ1(β + 1)cycπ2 .

Proof. — Let (π1, π2,K) be a weighted bipermutation of N = N1+· · ·+
Nm. To the pair (π1,K) we can associate a sequence (π11, . . . , π1m, σ1),
where each π1i is an injection of Ki into Ni (i = 1, 2, . . . ,m) and σ1

is a permutation of the set N \ K =
∑
i(Ni \ Ki). Moreover, cycπ1 =∑

i cycπ1i + cycσ1 and the mapping (π1,K) 7→ (πi1, . . . , πim, σ1) is
bijective. Such a mapping has been described in [Fo-Ze]. Fig. 1 indicates
the construction of such a bijection In the same manner, we associate a

77



D. FOATA AND D. ZEILBERGER

?

6���

-
Q
QQs

?

��	

��	�
�
���

@
@I

@@I

?@@I

���

- �
�
��
��

���
���

K N \K

• • •

K1 • • N1 \K1

• •

• • •

K2 • • N2 \K2

• • • •

K3 • • N3 \K3

π1

?

6���

-
Q
QQs

?

��	

��	

6
�
���

6

@@I

?@@I

���

- �
�
���
�
��

K N \K

• • •

• •

• •

• • •

• •

• • • •

• •

π11, π12, π13 σ1

Fig. 1

sequence (π21, . . . , π2m, σ2) to π2, where each π2i is an injection of Ni \Ki

into Ni (i = 1, 2, . . . ,m) and σ2 is a permutation of K.
Therefore, (α+1)Σ(ni−ki)

∏
i(α+1+ni−ki)ki is the generating function

for permutations π1 by number of cycles satisfying K ⊂ Incπ1. In the
same manner, (β + 1)Σki

∏
i(β + 1 + ki)ni−ki is the generating function

for permutations π2 by number of cycles satisfying N \K ⊂ Incπ2. Thus,
to calculate Ln we can first fix k, then a sequence K = (K1, . . . ,Km)
with |Ki| = ki (i = 1, 2, . . . ,m) and finally sum over all weighted
bipermutations (π1, π2,K).

As an application of this combinatorial interpretation we can state the
following corollary and also obtain another combinatorial interpretation
in terms of pairs of permutations with prescribed incestuous element sets.

Corollary 1. — If |N | = n, then Ln(β, α) = (−1)|N |Ln(α, β). In
particular, when n is odd, Ln(α, α) = 0.

Proof. — Consider the transformation (π1, π2,K) 7→ (π2, π1, N \ K).
Then

w′(β, α;π2, π1, N \K) = (−1)|K|(β + 1)cycπ2(α+ 1)cycπ1

= (−1)|N |(−1)|N\K|(α+ 1)cycπ1(β + 1)cycπ2

= (−1)|N |w′(α, β;π1, π2,K).

Thus Ln(β, α) = (−1)|N |Ln(α, β).
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Corollary 2 (Second combinatorial interpretation). — One has :

Ln =
∑

(−1)|N\K|(α+ 1)cycπ1(β + 1)cycπ2 ,

where the summation is over all triples (π1, π2,K) with π1 and π2 permu-
tations of N , and K a subset of N with the property that K = Incπ1 and
N \K = Incπ2.

Proof. — Let (π1, π2,K) be a weighted bipermutation. If Incπ1∩Incπ2

is non-empty, look at the smallest element ξ in that set. Then define
φ(π1, π2,K) = (π1, π2,K \{ξ}) or (π1, π2,K+{ξ}), depending on whether
ξ is in K or not. In both cases φ(π1, π2,K) is a weighted bipermutation
and

w′φ(α, β;π1, π2,K) = −w′(α, β;π1, π2,K).

Therefore the summation
∑
w′(α, β;π1, π2,K) over all pairs (π1, π2) such

that Incπ1 ∩ Incπ2 = ∅ equals 0. Now as K ⊂ Incπ1 and N \K ⊂ Incπ2,
the condition Incπ1 ∩ Incπ2 = ∅ means that K = Incπ1 and N \ K =
Incπ2.

3. Weighted derangements. — The polynomial Ln can also be
expressed in terms of derangement polynomials as follows. Keep the same
notations as in the beginning of section 2 for N , K, Ni, Ki and define a
K-derangement to be a permutation σ of K such that for every x in K the
elements x and σ(x) belong to different components Ki and Kj (i 6= j).
Set

D(k;α) =
∑

(α+ 1)cycσ,

where σ ranges over all K-derangements.

Theorem 3 (third combinatorial interpretation). — One has :

(3.1) Ln =
∑
K⊂N

(−1)|K\N |D(n− k;α)D(k;β)

×
∏
i

(α+ 1 + ni − ki)ki(β + 1 + ki)ni−ki .

Proof. — Consider a weighted bipermutation (π1, π2,K) with K =
Incπ1 and N \ K = Incπ2. If we use the bijection described in the
proof of THEOREM 1, the pair (π1,K) is transformed into a sequence
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(π11, . . . , π1m, σ1), but this time σ1 is an (N \K)-derangement, as shown
in Fig. 2.

In the same way, (π2, N \K) is transformed into (π21, . . . , π2m, σ2) with
σ2 being a K-derangement. Therefore

Ln =
∑
K⊂N

(−1)|N\K|
∑(∏

i

(α+ 1)cycπ1i(β + 1)cycπ2i

)
× (α+ 1)cycσ1(β + 1)cycσ2 .

As π1i (resp. π2i) is an injection of Ki (resp. Ni \Ki) into Ni and σ1 (resp.
σ2) is an (N \K)-derangement (resp. a K-derangement), the summation
over the π1i’s, the π2i’s and the derangements σ1 and σ2 yields (3.1).

There are several consequences of this interpretation when n1 ≥ n2 +
· · ·+ nm. First, study the case of the strict inequality.

Lemma 1. — If k1 > k2 + · · ·+ km, then D(k, α) = 0.
Proof. — If π is a K-derangement, then π(K1) ⊂ K2 + · · ·+Km. But

|Ki| = k1 > k2 + · · · + km and there do not exist any K-derangements
under this hypothesis.

Lemma 2. — Suppose n1 > n2 + · · · + nm and let 0 ≤ ki ≤ ni for
i = 1, . . . ,m. Then

either k1 > k2 + · · ·+km, or (n1−k1) > (n2−k2) + · · ·+ (nm−km).
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Proof. — If k1 ≤ k2 + · · ·+ km, then n1 − k1 > n2 + · · ·+ nm − k1 >
n2 − k2 + · · ·+ nm − km.

Proposition 1. — If n1 > n2 + · · ·+ nm, then Ln = 0.
Proof. — With the foregoing hypothesis, either k1 > k2 + · · ·+ km or

(n1 − k1) > (n2 − k2) + · · · + (nm − km). Then, either D(k;β) = 0, or
D(n− k;α) = 0. Therefore, (3.1) shows that Ln = 0.

Corollary. — If n1 6= n2, then Ln1,n2 = 0.
This is precisely the orthogonality relation.

4. The evaluation of Ln for n1 = n2 + · · · + nm. — Consider
again the summation (3.1). When n1 = n2 + · · · + nm, the inequality
k1 < k2 + · · · + km implies n1 − k1 > (n2 − k2) + · · · + (nm − km).
Therefore, the factor D(n− k;α) vanishes for such a sequence k. In the
same manner, if k1 > k2 + · · · + km, then D(k;β) = 0. The summation
(3.1) can then be restricted to those sequences k satisfying

(4.1) 0 ≤ k1 = k2 + · · ·+ km ≤ n1 = n2 + · · ·+ nm.

In particular, for m = 2 and n1 = n2 = n we obtain :

(4.2) Ln,n =
n∑
k=0

D(n− k, n− k, α)D(k, k, β)

×
((

n

k

)
(α+ 1 + n− k)k(β + 1 + k)n−k

)2

.

We will have a more precise evaluation further in the paper. For the time
being, let us compare (4.2) with the classical evaluation of the integral :

In,n =
∫ +1

−1

(1− x)α(1 + x)β
(
P (α,β)
n (x)

)2

dx

=
21+α+βΓ(1 + α+ n)Γ(1 + β + n)

n! (1 + α+ β + 2n)Γ(1 + α+ β + n)
.

(See, e.g., [Rai, p. 260 (11)].) By comparison with the definition of Ln,n
(formula (1.2)),

In,n =
21+α+β

n!n! (α+ β + 2)2n

Γ(α+ 1)Γ(β + 1)
Γ(α+ β + 2)

Ln,n,

so that
Ln,n = (α+ β + n+ 1)nn! (α+ 1)n(β + 1)n.(4.3)
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This formula will be a consequence of the next theorem.

Theorem 4. — When n1 = n2 + · · ·+ nm, then

Ln = (α+ β + n2 + 1)n2 · · · (α+ β + nm + 1)nmn1! (α+ 1)n1(β + 1)n1 .

Proof. — As just noticed, the summation (3.1) can be restricted
to the sequences k satisfying (4.1). But if (π1, π2,K) is a triple with
|K1| = |K2 + · · ·+Km|, then |N \K| = |N1 + · · ·+Nm\(K1 + · · ·+Km)| =
|N1 \K1| + · · · + |Nm \Km| = 2|N1 \K1|, so that the sign (−1)|N\K| is
always equal to 1. Therefore,

Ln =
∑

(α+ 1)cycπ1(β + 1)cycπ2 ,

where π1 and π2 are permutations of N and π1(Ki) ⊂ Ni, π1(Ni \Ki) ⊂
N \Ni, π2(Ni \Ki) ⊂ Ni, π2(Ki) ⊂ N \Ni for i = 1, 2, . . . ,m.

Let M1 = K1 +
∑
j≥2(Nj \Kj) and M2 = N1 \K1 +

∑
j≥2Kj . Note

that |M1| = |M2| = |N1|. Our purpose is now to construct a bijection
that will explain the occurrence of each factor in the right-hand side of
the THEOREM 4 formula. The reader is advised to follow the construction
by looking at the geometric representations of the mappings in Fig. 3

(i) For each i = 2, . . . ,m let fi be the mapping of Ni into itself defined
by :

fi
∣∣
Ki

= π1

∣∣
Ki

and fi
∣∣
Ni\Ki

= π2

∣∣
Ni\Ki

.

As π1(Ki) ⊂ Ni and π2(Ni \ Ki) ⊂ Ni, the pair (Ki, fi) is a so-called
Jacobi endofunction (see [Fo-Le]). Denote by a(fi) (resp. b(fi)) the number
of cycles of fi all vertices of which are in Ki (resp. (Ni \Ki) and let the
weight of (Ki, fi) be defined by

w(Ki, fi) = (α+ 1)a(fi)(β + 1)b(fi).

As shown in [Fo-Le, théorème 1]

(4.4)
∑

w(Ki, fi) = (α+ β + ni + 1)ni ,

the summation being over all Jacobi endofunctions on Ni.

(ii) Consider x ∈ N1 \ K1. As π1(N1 \ K1) ⊂ N2 + · · · + Nm and
π1(Ki) ⊂ Ni (i = 2, . . . ,m), sooner or later the iterates πk1 (x) will
hit the set

∑
j≥2(Nj \ Kj). Let k(x) be the smallest integer satisfying

π
k(x)
1 (x) ∈

∑
j≥2(Nj \Kj) and define γ(x) = π

k(x)
1 (x). Clearly

γ : N1 \K1 →
∑
j≥2

(Nj \Kj)

82



JACOBI POLYNOMIALS

@@R

@@R ��*��
���

@@R -

6

-

6

�������)

((((((((

��

K N \K
•

N1 • • •
•

•
N2 • •

N3 • •

π1

C
C
CCW ����
�
�
�
�
���

����9XXX
XXy

Z
Z
Z
Z
ZZ~

�

6

�

XXXXXX

   
   

  

K N \K
•
• • •
•

•
• •

• ?@@•

π2

@@R -
�

-

K N \K
•

N1 • • •
•

•
N2 • •

N3 • ?@@•

f2 and f3

C
C
CCW
C
C
CCW

C
C
CCW

�
�
�
�
�
�
��

�

K N \K
•
• • •
•

•
• •

• •

δ and γ

@@R

@@R
Q
Q
QQsZ
Z
Z
Z
Z
Z
Z}

K N \K
•

N1 • • •
•

•
N2 • •

N3 • ?@@•

σ1

�
�
�
�
��3�
�
�
�
�+

?

�
�
��=
�
�
��>

K N \K
•
• • •
•

•
• •

• •

σ2

Fig. 3

83



D. FOATA AND D. ZEILBERGER

is a bijection. In the same manner, define a bijection δ : K1 →
∑
j≥2Kj

by means of π2.

(iii) With the pair (γ, δ) we can then make up a bijection of N1 onto
the union

∑
j≥2Nj .

(iv) Consider the cycles of π1. All the cycles that intersect M1 but
sometimes leave M1 will be made purely M1 by cancelling all the portions
that leave M1. This gives a permutation σ1 : M1 →M1.

(v) In the same manner, obtain a permutation σ2 : M2 →M2.

Remembering the definitions of a(fi) and b(fi) given in (i) we see that to
each triple (π1, π2,K) there corresponds a sequence

(K2, f2, . . . ,Km, fm, γ, δ, σ1, σ2)
with

cycπ1 = a(f2) + · · ·+ a(fm) + cycσ1 ;
cycπ2 = b(f2) + · · ·+ b(fm) + cycσ2.

Accordingly,
w(α, β;π1, π2,K) = w(K2, f2) · · ·w(Km, fm)(α+ 1)cycσ1(β + 1)cycσ2 .

It can be verified that the correspondence between triples and sequences
defined by (i)–(v) is one-to-one. Hence∑

w(α, β;π1, π2,K)

=
∑

w(K2, f2) · · ·
∑

w(Km, fm)
∑
γ,δ

1
∑
σ1

(α+ 1)cycσ1
∑
σ2

(β+ 1)cycσ2

= (α+ β + n2 + 1)n2 · · · (α+ β + nm + 1)nm n1! (α+ 1)n1(β + 1)n1 .

Remark. — Note that for m = 2 and n1 = n2 = n THEOREM 4 yields
identity (4.3).

5. Concluding remarks. — The problem of the linearization of the
classical orthogonal polynomials has been studied again recently by means
of combinatorial methods. ASKEY and his coauthors [As-Is, As-Is-Ko]
have already obtained several significant results concerning the Hermite,
Laguerre and Meixner polynomials. AZOR, GILLIS and VICTOR [Az-Gi-Vi]
found an elegant set-up for the Hermite polynomials. The two authors
of the present paper [Fo-Ze] have completed the work of ASKEY and his
coauthors as far as the (generalized) Laguerre polynomials are concerned
by exploiting a β-extension of the MacMahon Master Theorem. ZENG

[Ze] has further extended the works of ASKEY and the two authors and
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proved new positivity results concerning the Meixner, Krawtchouk and
Charlier polynomials. GILLIS and his coauthors [Gi-Je-Ze] reproved several
positivity results on the Legendre polynomials. Some of their arguments
have been implicitly used in the present paper. RAHMAN’s formula, as said
in the introduction, should discourage several researchers. Formula (3.1)
seems to indicate that a new algebraic tool has to be found to handle
the product of two derangement polynomials. There is also a linearization
coefficient formula for the ultraspheric polynomials found by HSÜ [Hs],
more compact than RAHMAN’s formula for α = β, but not so easy to be
tackled by combinatorial methods. The only hope for the time being seems
to be the symmetric function approach due to ZENG. He has already got
an explicit formula for a single derangement polynomial that led to the
positivity result for the Krawtchouk polynomials.

Note added in 1994. — The article [Ze] has been updated in the refer-
ence list. Notice that the linearization coefficients for the class of Sheffer
polynomials has been thoroughly studied by Zeng [Ze92]. An interesting
connection between linearization coefficeints for Jacobi polynomials and
permutation pair counting has been derived in [Ze91]. The Rahman for-
mula remains untamed in the combinatorial environment.

[Ze91] ZENG (Jiang). — Counting a pair of permutations and the linearization co-
efficients for Jacobi polynomials, Actes de l’Atelier de Combinatoire franco-
québecois, Publ. LACIM, no. 10, Université du Québec à Montréal, .

[Ze92] ZENG (Jiang). — Weighted derangements and Sheffer polynomials, Proc. London
Math. Soc., t. 65, , p. 1–22.
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