ON A DECOMPOSITION OF SQUARE MATRICES OVER A RING WITH IDENTITY

Heinz Lüneburg

Let R be a not necessarily commutative ring with 1 and let P be an $(n \times n)$-matrix over R. Then P is called a permutation matrix if, and only if, the following conditions are satisfied:
(1) $P_{i j} \in\{0,1\}$ for all $i, j \in\{0,1, \ldots, n-1\}$.
(2) Each row of P contains exactly one 1.
(3) Each column of P contains exactly one 1.

Denote by S_{n} the symmetric group on the set $\{0,1, \ldots, n-1\}$. If $\pi \in S_{n}$ then we define $P(\pi)$ by

$$
P(\pi)_{i j}:= \begin{cases}1 & \text { if } \pi(j)=i \\ 0 & \text { else }\end{cases}
$$

Then $P(\pi)$ is a permutation matrix and all permutations matrices are obtained in this way, as is well-known.

The set $\operatorname{Mat}_{n}(K)$ of all $(n \times n)$-matrices over the field K forms a vector space of dimension n^{2} over K and it belongs to the folklore of permutation matrices that

$$
\operatorname{dim}\left(\operatorname{span}\left(\left\{P(\pi): \pi \in S_{n}\right\}\right)\right)=(n-1)^{2}+1
$$

Linear Algebra tells us that there exists a basis of the span of permutation matrices consisting entirely of permutation matrices. Searching for such a basis yields a much more general theorem.

Theorem 1. Let R be a not necessarily commutative ring with 1 and let n by a positive integer. Consider the set $\operatorname{Mat}_{n+1}(R)$ of all $((n+1) \times(n+1))$-matrices over R as a left R-module. Define the submodules V_{1}, V_{2}, V_{3} of $\operatorname{Mat}_{n+1}(R)$ as follows:
(1) V_{1} consists of all $a \in \operatorname{Mat}_{n+1}(R)$ such that $a_{n i}=a_{\text {in }}=0$ for $0 \leq i \leq n-1$ and $a_{n n}=\sum_{j=0}^{n-1} a_{n-1, j}$.
(2) Let a be an n - and b be an $(n-1)$-tuple over R. Define the matrices $C(a)$ and $D(b)$ by

$$
\left(\begin{array}{cccccc}
0 & a_{n} & \ldots & a_{3} & a_{2} & a_{1} \\
a_{1} & 0 & a_{n} & \ldots & a_{3} & a_{2} \\
a_{2} & a_{1} & 0 & a_{n} & \ldots & a_{3} \\
\vdots & & \ddots & \ddots & \ddots & \vdots \\
a_{n-1} & \ldots & a_{2} & a_{1} & 0 & a_{n} \\
a_{n} & \ldots & a_{3} & a_{2} & a_{1} & 0
\end{array}\right)
$$

and

$$
\left(\begin{array}{cccccc}
X & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & b_{n-1} & \cdots & b_{2} & b_{1} \\
0 & b_{1} & 0 & b_{n-1} & \cdots & b_{2} \\
\vdots & & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & b_{2} & b_{1} & 0 & b_{n-1} \\
0 & b_{n-1} & \cdots & b_{2} & b_{1} & 0
\end{array}\right)
$$

respectively, where X is the sum of the b_{i} 's. Then V_{2} consists of all matrices of the form $C(a)+D(b)$.
(3) V_{3} is the set of all $a \in \operatorname{Mat}_{n+1}(R)$ with $a_{i j}=0$ for all (i, j) different from ($\left.n, 0\right)$ and (n, n).

Then $\operatorname{Mat}_{n+1}(R)$ is the direct sum of V_{1}, V_{2}, V_{3}. Moreover, V_{1} is, as an R-module, isomorphic to $\operatorname{Mat}_{n}(R)$.

The proof is left as an exercise to the reader.
Theorem 2. Same assumptions and notations as in Theorem 1. Define the permutations $\alpha, \beta \in S_{n+1}$ by $\alpha:=(0,1,2, \ldots, n)$ and $\beta:=(1,2, \ldots, n)$ and set $B(i):=P\left(\alpha^{i}\right)$ for $i=1,2, \ldots, n$ and $B(n+i):=P\left(\beta^{i}\right)$ for $i=1,2, \ldots, n-1$. Then $\{B(i): 1 \leq i \leq$ $2 n-1\}$ is a basis for V_{2}.

Proof. Straightforward.
As a consequence of Theorems 1 and 2 we get the following theorem.
Theorem 3. Denote by $\operatorname{const}_{n+1}(R)$ the set of all $a \in \operatorname{Mat}_{n+1}(R)$ such that there exists an $r \in R$ with $\sum_{k=0}^{n} a_{k j}=r=\sum_{l=0}^{n} a_{i l}$ for all i and j. Then $\operatorname{const}_{n+1}(R)$ is a direct summand of $\operatorname{Mat}_{n+1}(R)$ having a basis consisting of $n^{2}+1$ permutation matrices.

Theorems 1 and 2 give a recursion for a basis of $\operatorname{const}_{n+1}(R)$ as well as for a basis of a complement of $\operatorname{const}_{n+1}(R)$. As an example, we list the 17 permutations whose permutation matrices form a basis of $\operatorname{const}_{5}(R)$. The /'s indicate the steps in the recursion. Moreover, we list a set of 8 matrices forming a basis of a complement of const $_{5}(R)$.

$$
\begin{aligned}
& (0) /(0,1) /(0,1,2),(0,2,1),(1,2) /(0,1,2,3),(0,2)(1,3) \\
& (0,3,2,1),(1,2,3),(1,3,2), \quad / \quad(0,1,2,3,4),(0,2,4,1,3),(0,3,1,4,2), \\
& (0,4,3,2,1),(1,2,3,4),(1,3)(2,4),(1,4,3,2)
\end{aligned}
$$

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	0	0	1	0	0	0	0		0	0	1	0
0																			
0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
0																			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1

The recursion for the basis of $\operatorname{const}_{n+1}(R)$ clearly shows that $\operatorname{const}_{n+1}(R)$ has a basis consisting of $n^{2}+1$ permutation matrices.

Fachbereich Mathematik der Universität Kaiserslautern, Pfaffenbergstrasse 95, D-6750 KAISERSLAUTERN

