ON A DECOMPOSITION OF SQUARE MATRICES OVER A RING WITH IDENTITY

Heinz Lüneburg

Let R be a not necessarily commutative ring with 1 and let P be an $(n \times n)$ -matrix over R. Then P is called a *permutation matrix* if, and only if, the following conditions are satisfied:

(1) $P_{ij} \in \{0, 1\}$ for all $i, j \in \{0, 1, \dots, n-1\}$.

(2) Each row of P contains exactly one 1.

(3) Each column of P contains exactly one 1.

Denote by S_n the symmetric group on the set $\{0, 1, \ldots, n-1\}$. If $\pi \in S_n$ then we define $P(\pi)$ by

$$P(\pi)_{ij} := \begin{cases} 1 & \text{if } \pi(j) = i, \\ 0 & \text{else.} \end{cases}$$

Then $P(\pi)$ is a permutation matrix and all permutations matrices are obtained in this way, as is well-known.

The set $Mat_n(K)$ of all $(n \times n)$ -matrices over the field K forms a vector space of dimension n^2 over K and it belongs to the folklore of permutation matrices that

$$\dim(\operatorname{span}(\{P(\pi) : \pi \in S_n\})) = (n-1)^2 + 1.$$

Linear Algebra tells us that there exists a basis of the span of permutation matrices consisting entirely of permutation matrices. Searching for such a basis yields a much more general theorem.

Theorem 1. Let R be a not necessarily commutative ring with 1 and let n by a positive integer. Consider the set $Mat_{n+1}(R)$ of all $((n+1) \times (n+1))$ -matrices over R as a left R-module. Define the submodules V_1 , V_2 , V_3 of $Mat_{n+1}(R)$ as follows:

(1) V_1 consists of all $a \in Mat_{n+1}(R)$ such that $a_{ni} = a_{in} = 0$ for $0 \le i \le n-1$ and $a_{nn} = \sum_{j=0}^{n-1} a_{n-1,j}$.

(2) Let a be an n- and b be an (n-1)-tuple over R. Define the matrices C(a) and D(b) by

$\begin{pmatrix} 0 \end{pmatrix}$	a_n		a_3	a_2	a_1	
a_1	0	a_n	• • •	a_3	a_2	
a_2	a_1	0	a_n		a_3	
÷		۰.	۰.	۰.	÷	
a_{n-1}		a_2	a_1	0	a_n	
$\setminus a_n$	• • •	a_3	a_2	a_1	0)
			1			

and

X	0	0		0	0	
0	0	b_{n-1}		b_2	b_1	
0	$egin{array}{c} 0 \ 0 \ b_1 \end{array}$	0	b_{n-1}		b_2	
:		·	·	۰.	$\vdots \\ b_{n-1} \\ 0$	
0		b_2	b_1	0	b_{n-1}	
$\setminus 0$	b_{n-1}		b_2	b_1	0)

respectively, where X is the sum of the b_i 's. Then V_2 consists of all matrices of the form C(a) + D(b).

(3) V_3 is the set of all $a \in Mat_{n+1}(R)$ with $a_{ij} = 0$ for all (i, j) different from (n, 0) and (n, n).

Then $\operatorname{Mat}_{n+1}(R)$ is the direct sum of V_1 , V_2 , V_3 . Moreover, V_1 is, as an R-module, isomorphic to $\operatorname{Mat}_n(R)$.

The proof is left as an exercise to the reader.

Theorem 2. Same assumptions and notations as in Theorem 1. Define the permutations $\alpha, \beta \in S_{n+1}$ by $\alpha := (0, 1, 2, ..., n)$ and $\beta := (1, 2, ..., n)$ and set $B(i) := P(\alpha^i)$ for i = 1, 2, ..., n and $B(n+i) := P(\beta^i)$ for i = 1, 2, ..., n-1. Then $\{B(i) : 1 \le i \le 2n-1\}$ is a basis for V_2 .

Proof. Straightforward.

As a consequence of Theorems 1 and 2 we get the following theorem.

Theorem 3. Denote by $\operatorname{const}_{n+1}(R)$ the set of all $a \in \operatorname{Mat}_{n+1}(R)$ such that there exists an $r \in R$ with $\sum_{k=0}^{n} a_{kj} = r = \sum_{l=0}^{n} a_{il}$ for all i and j. Then $\operatorname{const}_{n+1}(R)$ is a direct summand of $\operatorname{Mat}_{n+1}(R)$ having a basis consisting of $n^2 + 1$ permutation matrices.

Theorems 1 and 2 give a recursion for a basis of $\operatorname{const}_{n+1}(R)$ as well as for a basis of a complement of $\operatorname{const}_{n+1}(R)$. As an example, we list the 17 permutations whose permutation matrices form a basis of $\operatorname{const}_5(R)$. The /'s indicate the steps in the recursion. Moreover, we list a set of 8 matrices forming a basis of a complement of $\operatorname{const}_5(R)$.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	()	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	()	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	()	0	0	0.
1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	()	0	0	0
0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	()	0	0	1

The recursion for the basis of $const_{n+1}(R)$ clearly shows that $const_{n+1}(R)$ has a basis consisting of $n^2 + 1$ permutation matrices.

Fachbereich Mathematik der Universität Kaiserslautern, Pfaffenbergstrasse 95, D-6750 Kaiserslautern