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Let R be a not necessarily commutative ring with 1 and let P be an (n×n)-matrix
over R. Then P is called a permutation matrix if, and only if, the following conditions
are satisfied:

(1) Pij ∈ {0, 1} for all i, j ∈ {0, 1, . . . , n− 1}.
(2) Each row of P contains exactly one 1.
(3) Each column of P contains exactly one 1.

Denote by Sn the symmetric group on the set {0, 1, . . . , n− 1}. If π ∈ Sn then we
define P (π) by

P (π)ij :=
{

1 if π(j) = i,
0 else.

Then P (π) is a permutation matrix and all permutations matrices are obtained in
this way, as is well-known.

The set Matn(K) of all (n × n)-matrices over the field K forms a vector space of
dimension n2 over K and it belongs to the folklore of permutation matrices that

dim(span({P (π) : π ∈ Sn})) = (n− 1)2 + 1.

Linear Algebra tells us that there exists a basis of the span of permutation matrices
consisting entirely of permutation matrices. Searching for such a basis yields a much
more general theorem.

Theorem 1. Let R be a not necessarily commutative ring with 1 and let n by a
positive integer. Consider the set Matn+1(R) of all ((n+ 1)× (n+ 1))-matrices over
R as a left R-module. Define the submodules V1, V2, V3 of Matn+1(R) as follows:

(1) V1 consists of all a ∈ Matn+1(R) such that ani = ain = 0 for 0 ≤ i ≤ n− 1 and
ann =

∑n−1
j=0 an−1,j.

(2) Let a be an n- and b be an (n− 1)-tuple over R. Define the matrices C(a) and
D(b) by 

0 an . . . a3 a2 a1

a1 0 an . . . a3 a2

a2 a1 0 an . . . a3
...

. . . . . . . . .
...

an−1 . . . a2 a1 0 an
an . . . a3 a2 a1 0
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and 

X 0 0 . . . 0 0
0 0 bn−1 . . . b2 b1
0 b1 0 bn−1 . . . b2
...

. . . . . . . . .
...

0 . . . b2 b1 0 bn−1

0 bn−1 . . . b2 b1 0


respectively, where X is the sum of the bi’s. Then V2 consists of all matrices of the
form C(a) +D(b).

(3) V3 is the set of all a ∈ Matn+1(R) with aij = 0 for all (i, j) different from (n, 0)
and (n, n).

Then Matn+1(R) is the direct sum of V1, V2, V3. Moreover, V1 is, as an R-module,
isomorphic to Matn(R).

The proof is left as an exercise to the reader.

Theorem 2. Same assumptions and notations as in Theorem 1. Define the permuta-
tions α, β ∈ Sn+1 by α := (0, 1, 2, . . . , n) and β := (1, 2, . . . , n) and set B(i) := P (αi)
for i = 1, 2, . . . , n and B(n+ i) := P (βi) for i = 1, 2, . . . , n− 1. Then {B(i) : 1 ≤ i ≤
2n− 1} is a basis for V2.

Proof. Straightforward.

As a consequence of Theorems 1 and 2 we get the following theorem.

Theorem 3. Denote by constn+1(R) the set of all a ∈ Matn+1(R) such that there
exists an r ∈ R with

∑n
k=0 akj = r =

∑n
l=0 ail for all i and j. Then constn+1(R)

is a direct summand of Matn+1(R) having a basis consisting of n2 + 1 permutation
matrices.

Theorems 1 and 2 give a recursion for a basis of constn+1(R) as well as for a basis
of a complement of constn+1(R). As an example, we list the 17 permutations whose
permutation matrices form a basis of const5(R). The /’s indicate the steps in the
recursion. Moreover, we list a set of 8 matrices forming a basis of a complement of
const5(R).

(0) / (0, 1) / (0, 1, 2), (0, 2, 1), (1, 2) / (0, 1, 2, 3), (0, 2)(1, 3),

(0, 3, 2, 1), (1, 2, 3), (1, 3, 2), / (0, 1, 2, 3, 4), (0, 2, 4, 1, 3), (0, 3, 1, 4, 2),

(0, 4, 3, 2, 1), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2).

0 0 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
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0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

.

The recursion for the basis of constn+1(R) clearly shows that constn+1(R) has a
basis consisting of n2 + 1 permutation matrices.
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