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John Stembridge [St] has recently solved the important problem of finding a “Little-
wood-Richardson rule” for Q-functions. His proof is very natural combinatorially, but
lengthy, if all the background is included. It uses extensive material from Worley’s
thesis [W] and Sagan’s similar theory of shifted tableaux [Sa]. To include this result
in a forthcoming book (coauthored by John Humphreys), and in order to keep the
volume of material under control, a second proof was sought for it and for an analogous
product theorem in the Z/2 × N-graded algebra of projective representations of An
and Sn [H, HH].

Given below is a similar, less tableau-theoretic, proof of the usual Littlewood-
Richardson rule for Schur functions. The best of the earlier proofs have considerable
combinatorial explanatory power. The proof below explains only why the product of
two Schur functions is what it is.

More precisely, one might say that an algorithmically defined bijection (a.d.b.)
Aα → Bα, between sets indexed by a parameter α which runs over an infinite set, is
a definition in which the image of an element in Aα is determined using successive
applications of a least one algorithm, and where, to produce that image, the number
of needed applications of the algorithm is unbounded as we vary the element over
Aα for all α. Earlier proofs apparently use a.d.b.’s; the proof below does not. This
remark is included to point readers, who attempt to compare this with earlier proofs,
in the correct direction.

Our notation will be largely from [Ma], with the ring Λ of symmetric functions
having the inner product 〈 , 〉 for which the Schur functions sλ give an orthonormal
basis, as λ ranges over all partitions. For f in Λ, the operator f⊥ on Λ is defined by
〈f⊥(g), h〉 = 〈g, fh〉. The Schur function can be given by

(1) sn1,...,n` = Bn1 . . . Bn`

where Bn is the operator Σi(−1)ihn+ie
⊥
i (see [Z; p. 69]). A proof of (1), which is

more basic than quoting the Jacobi-Trudi identity, can be had by defining elements
sBλ by the right hand side of (1). Obviously

(2) sBλ − hλ ∈ Span{hµ : µ < λ}.

By an induction on length, one gets

h⊥a+i(s
B
a,b,...) =

{
sBb,..., if i = 0;
0, if i > 0.
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Thus, for µ ≤ λ (partitioning the same integer),

〈hµ, sBλ 〉 = · · ·h⊥µ2
h⊥µ1

(sBλ ) = δµ,λ.

Using (2), this yields, for all ν and λ,

(3) 〈sBν , sBλ 〉 = δν,λ.

Thus sBλ = sλ by (2) and (3).
Equation (1) may be used to extend the definition of sn1,...,n` to any sequence

{ni} of integers. These elements coincide with Murnaghan’s “non-standard symbols”
[Mu; p. 761], and with the t = 0 specialization of the extension of Hall-Littlewood
polynomials [Ma; p. 109]. Each is either zero or ±sλ for a partition λ, by the identity

(4) s...,c,d,... = −s...,d−1,c+1,....

A natural proof of (4) using the B-operators is to show by straightforward calculation
that

(5) BcBd = −Bd−1Bc+1.

The elements s...,c,c+1,... and sn1,...,n` when n` < 0, are both zero.
We shall use λ̃ for the conjugate of a partition λ, and also f̃ for the image of f

under the involution of Λ which interchanges hn and en. Thus for λ = (n1, . . . , n`)
we have

sλ̃ = s̃λ = B̃n1 . . . B̃n` ,

where B̃n is the operator
∑
i(−1)ien+ih

⊥
i . Equation (5) holds also for the operators

B̃n.

Definition. For a partition λ and a sequence (t1, . . . , tk) of non-negative integers,
let MUR(λ; t1, . . . , tk) be the set of all matrices of 0’s and 1’s whose row sums are the
parts of λ, whose column sums are t1, . . . , tk, and such that∑

rightmost j entries of row i ≥
∑

rightmost j entries of row (i+ 1)

for 0 < j ≤ k and 1 ≤ i < length(λ).

Proposition 1. For any partition λ and sequences m1, . . . ,mk, we have

s̃⊥λ (sm1,...,mk) =
∑

t1,...,tk

# MUR(λ; t1, . . . , tk)sm1−t1,...,mk−tk .

Proof. The equations

e⊥i (hn) =
{
hn−i, if i = 0, 1;
0, if i > 1;

e⊥i (xy) =
∑
j

e⊥j (x)e⊥i−j(y);
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and ∑
i

(−1)ieihk−i = δ0,k

immediately give
[h⊥i (y)]⊥(u) =

∑
`

(−1)`e`y⊥(hi−`u).

This follows by induction on i, applying 〈 , u〉, for arbitrary u, to both sides. It leads
immediately to

(6) [B̃n(y)]⊥(z) =
∑
p,q

(−1)peqy⊥[hpe⊥n+p+q(z)].

Now proceed by induction on ` to prove

(7) s̃⊥n1,...,n`
(hmx) =

∑
δi=0,1

hm−Σδi s̃
⊥
n1−δ1,...,n`−δ`(x).

This is trivial for ` = 1. The inductive step is

s̃⊥n1,...,n`
(hmx) = [B̃n1(s̃n2,...,n`)]

⊥(hmx)

=
∑
p,q

(−1)peq s̃⊥n2,...,n`
[hpe⊥n1+p+q(hmx)]

=
∑
p,q

(−1)peq s̃⊥n2,...,n`
[hphme⊥n1+p+q(x) + hphm−1e

⊥
n1+p+q−1(x)]

=
∑
p,q

(−1)peq
∑
δi=0,1

i≥2

{hm−(δ2+···+δq)s̃
⊥
n2−δ2,...,n`−δ`(hpe

⊥
n1+p+q(x))

+ hm−1−(δ2+···+δq)s̃
⊥
n2−δ2,...,n`−δ`(hpe

⊥
n1+p+q(x))}

=
∑

δ2,...,δ`

{hm−(δ2+···+δq)[B̃n1(s̃n2+δ2,...,n`−δ`)]
⊥(x)

+ hm−1(1+δ2+···+δq)[B̃n1−1(s̃n2−δ2,...,n`−δ`)]
⊥(x)},

as required.
Finally, we can prove the proposition by induction on k. For k = 1, take x = 1 in

(7). For the inductive step, with λ = (n1, . . . , n`),

s̃⊥λ (sm1,...,mk) = s̃⊥λ

(∑
i

(−1)ihm1+ie
⊥
i (sm2,...,mk)

)
=
∑
i

(−1)1
∑

δ1,...,δ`

hm1+i−(δ1+···+δ`)s̃
⊥
n1−δ1,...,n`−δ`e

⊥
i (sm2,...,mk)

=
∑

δ1,...,δ`
np−δp≥np+1−δp+1

Bm1−(δ1+···+δ`)
∑

sm2−t2,...,mk−tk ,
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where the second summation is over all E′ in MUR(n1 − δ, . . . , n` − δ`; t2, . . . , tk) for
all t2, . . . , tk. The restriction np − δp ≥ np+1 − δp+1 for all p follows by the remark
after (5). Now letting t1 =

∑
δi and

E =

 δ1
... E′

δ`

 ,

the sum becomes
∑
t1,...,tk

∑
E∈MUR(λ;t1,...,tk) sm1−t1,...,mk−tk , as required.

Definition. Let LAT(λ; t1, . . . , tk) be the set of sentences S = (w1, . . . , wk), where wi
is a weakly decreasing sequence of positive integers of length ti, such that the concate-
nated word w1w2 . . . wk satisfies the lattice permutation condition of the Littlewood-
Richardson rule [Ma; p. 68] and has content (or weight) λ. Define

LATk(λ) =
⋃

t1,...,tk

LAT(λ; t1, . . . , tk).

Proposition 2. # MUR(λ; t1, . . . , tk) = # LAT(λ̃; t1, . . . , tk).

Proof. Let TAB(λ; t1, . . . , tk) be the set of (column strict) tableaux of shape λ and
content (t1, . . . , tk). We have

# MUR(λ; t1, . . . , tk)
i)
= #TAB(λ̃; tk, . . . , t1)

ii)
= #TAB(λ̃; t1, . . . , tk)

iii)
= # MUR(λ; tk, . . . , t1)

iv)
= # LAT(λ̃; t1, . . . , tk),

as required. In i) and iii), a bijection is defined by having an i in the jth column of a
tableau if and only if there is a 1 in place (j, k− i+1) of the corresponding matrix. In
iv), a bijection is defined by replacing the 1′s in the ith row of a matrix by 1, 2, . . . , ni
(= ith of part λ) from right to left, and then reading the columns downwards (omitting
zeros) to obtain the words of sentence (the first word from rightmost column, etc.).
A bijection for ii) exists, since the number of tableaux of given shape does not vary
if we permute the content sequence (that is, the Schur function is symmetric).

Remark. The bijections for i), iii), and iv) are entirely elementary. No a.d.b’s are used
there, nor in the proof [Ma; (5.12)] that sλ has coefficients # TAB(λ; ).

Definition. Given S = (w1, . . . , wk) ∈ LATk(λ) and a partition (m1, . . . ,mk), we
say that, with respect to (m1, . . . ,mk):

i) S has a bottom line violation iff length(wk) > mk;
ii) S has a (d+ 1, i)-shape violation (for d ≥ 0 and 1 ≤ i < k) iff

mi+1 − length(wi+1) = mi − length(w1) + d+ 1;

iii) S has a (d− 1, i)-column violation (for d ≥ 1 and 1 ≤ i < k) iff both

m1 − length(wi) = mi+1 − length(wi+1) + d− 1
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and when words wi, wi+1 are inserted from the right on lines i, i + 1 of the Young
diagram of (m1, . . . ,mk), there exists a vertical pair

[
x

y

]
with x ≥ y.

Remark. When the words of S are all inserted on their respective lines as in iii),
one obtains a skew tableau iff there are no violations. In this case, we say that S
is (m1, . . . ,mk)-innocent. Since sµ/λ = s⊥λ (sµ), the following is therefore exactly the
usual statement of the Littlewood-Richardson rule.

Theorem. For all partitions λ and (m1, . . . ,mk),

s̃⊥λ (sm1,...,mk) =
∑

S∈LATk(λ̃)

S is (m1,...,mk)−innocent

sm1−length(w1),...,mk−length(wk).

Proof. The two previous propositions prove the analogous equation where S ranges
over all of LATk(λ̃). We must now prove that, in this sum, the terms coming from
S which have a violation add up to zero. For such S choose the largest i for which
there is a violation. If it is a bottom line violation or a (1, i)-shape violation, the
term itself is zero, by the remark after (5). The remaining such terms will cancel
in pairs as follows, using (4). Fix d ≥ 1, 1 ≤ i < k and all the words of S except
wi and wi+1. Let A be the content remaining to be used for wiwi+1. Let B be the
submultiset of A of the form {j1, j1 + 1, . . . , jp, jp + 1} for which {j1, . . . , jp} must
occur in wi, and {j1 + 1, . . . , jp + 1} in wi+1 in order that the lattice permutation
condition should hold. We need bijections from the set V (A,B, q, r, d) of S having a
(d−1, i)-column violation to the sets M(A,B, q, r, d) having a (d+1, i)-shape violation;
that is, bijections between sets of two row integer arrays

V (A,B, q, r, d) M(A,B, q, r, d)

. . . . . .
. . . . . .

d−1︷ ︸︸ ︷ r+1︷ ︸︸ ︷ q︷ ︸︸ ︷
. . .

. . .

. . . . . .

d+1︷ ︸︸ ︷ r︷ ︸︸ ︷ q︷ ︸︸ ︷

with weakly increasing rows, with at least one
[
x

y

]
with x ≥ y in V , and with content

A, where B is inserted as mentioned above. Note that fixing r and q fixes the length
of wi and wi+1, but differently for V and M . When p = 0, so that B is empty, a
bijection, shown to me by Ian Goulden, is given below, together with its inverse:

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ y
x ◦ ◦ ◦ ◦ ◦ ◦

↑
rightmost

for which x ≥ y

←→
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

v
u ◦ ◦ ◦ ◦ ◦ ◦

↑
rightmost

for which u ≥ v

↑
here if no
such (u, v)

The general case can be reduced to the case p = 0 as follows. If p > 0, adding and
removing {jp, jp+1} clearly gives mutually inverse maps between M(A,B, q, r, d) and
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M(A′,B′, q, r − 1, d) where

A′ = A \{jp, jp + 1} and B′ = B \{jp, jp + 1}.

The same holds for the sets V (A,B, q, r, d) and V (A′,B′, q, r − 1, d), noting that the
existence of a pair

[
x

y

]
with x ≥ y persists after the addition or removal. This

completes the proof.
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