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Abstract

Motivated by an amazing result of D. Y. Grigoriev and M. Karpinski,
the interpolation problem for k-sparse multivariate polynomials has
received some attention in recent years. In this note we want to show
that essentially all of the results obtained so far hold more generally
for k-sparse sums of characters of abelian monoids, thereby providing
a useful unified approach to this active field of research. As it turns
out the basic ingredients of this approach are the construction of dis-
tinction sets for characters and zero–test sets for k-sparse character
sums.

Contents

0 Introduction 2

1 Character Sums of Cyclic Groups 4

∗Part of this work was prepared during a visit at the Scientific Center Heidelberg, IBM
Germany which is gratefully acknowledged.

1



2 Character Sets which Allow Reduction to Cyclic Groups 7

3 General Case 12

0 Introduction

The basic ideas of the paper [GK87] were the starting point for the papers
[BT88], [CDGK88] and [GKS88], where the question of zero-testing and in-
terpolation of k-sparse multivariate polynomials over fields of characteristic
0 and over finite fields were studied. In this note we want to provide a unified
approach to this active field of research, based on the observation that the
fundamental ideas in these papers are valid in the more general context of
k-sparse sums of characters of abelian monoids.

Let A be an abelian monoid with neutral element 1A and let K be a field.
According to the well known Artin-Dedekind Lemma the set Hom(A, (K, ∗))
of all characters, i.e. monoid homomorphisms with 1A 7→ 1K from A into
the multiplicative monoid (K, ∗) of K is a linearly independent subset of the
K-space of all maps from A into K. For any subset X ⊆ Hom(A, (K, ∗))
of characters and every positive integer k define the set Xk of k-sums of
characters by

Xk := {f : A→ K | ∃ f1, . . . , fk ∈ K,χ1, . . . , χk ∈ X, f =
k∑

κ=1

fκχκ}.

For given X and k we are interested in procedures by which for any such
f =

∑
χ fχχ in Xk its support

supp(f) := {χ ∈ X | fχ 6= 0}

and its coefficients fχ can be determined from as few as possible evaluations
of f. A first step to solve this interpolation problem is, of course, the study
of (small) subsets T of A which allow to distinguish any non-trivial k-sum of
characters from X from the zero map, that is, subsets T ⊆ A such that for
any f ∈ Xk \ {0} there exists some a ∈ T with f(a) 6= 0. We will refer to
such subsets as zero-test sets for Xk. Obviously, any such zero-test set for
Xk must contain at least k elements unless #X < k, compare the proof of
Lemma 1.1. However, as we will see later on, only in the most simple case
of cyclic groups zero-test sets of this cardinality can be guaranteed.
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The relation between zero-test sets and subsets ofA which may be suitable
for interpolation, that is, which allow to distinguish any two different k-sums
of characters, is simple and obvious.

Lemma 0.1 A subset T ⊆ A has the property that the associated restriction
map KA → KT : f 7→ f |T is injective on Xk ⊆ KA if and only if T is a
zero-test set for X2k.

Hence, in principle, for any zero-test set T for X2k it should be possible to
compute for any map f =

∑
χ∈X fχχ in Xk its support and its coefficients

from its restriction f |T . Again, this holds indeed for the particularly simple
minimal zero-test sets one has in cyclic groups. In general there does not
seem to exist a universally applicable interpolation algorithm which for any
field K, any monoid A, any set X ⊆ Hom(A, (K, ∗)) of K-valued characters
of A, and any zero-test set T ⊆ A for X2k allows to reconstruct the support
and the coefficients of f for any f ∈ Xk systematically from its restriction to
T , except, of course, the trivial, but surely not efficient algorithm, which for
all possible choices of χ1, ..., χk ∈ X and f1, ..., fk ∈ K compares f(a) with∑k

κ=1 fκχκ(a) for all a ∈ T . Therefore it appears to be worthwhile to discuss
in some detail what can be done in this direction.

The examples we have in mind are in particular the cases where A equals
Un for some submonoid U of the monoid (K, ∗) and X is a subset of all maps

χα = χ(α1,···,αn) : Un → K

where
χα((x1, . . . , xn)) := xα1

1 · . . . · xαnn
for α1, ..., αn ∈ IN0 := {0, 1, ...} and x1, ..., xn ∈ U .

In the case of K := Q (or any other infinite field) and U := K the
characters from X := {χα, α ∈ INn

0} correspond to the monomials in n
indeterminates as k-sum characters correspond to k-sparse polynomials. In
case U is finite it has turned out to be particular interesting to study the
above problems for such monomial characters of type χα whose local degrees
α1, ..., αn, are bounded by a natural number q, that is we choose

X = X(q, n) := {χα | α ∈ qn},

where q is defined to be q := {0, . . . , q − 1}.
The overall outline of our note is as follows: In the first section we will

assume A to be a cyclic group. In this almost trivial case minimal zero-test
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sets and optimal interpolation procedures can be constructed quite easily in
a rather natural and a straightforward manner. Once this is established we
will show in the second section that for surprisingly many other choices of A
and X our problem can be reduced to the cyclic case.

In various cases this can be done simply by exhibiting a cyclic submonoid,
(i.e. a submonoid wich is a cyclic group) A′ of A which distinguishes the
charachters in the given set X (i.e. with χ|A′ 6= ψ|A′ for any two different
characters χ and ψ in X).

In other cases where this simple procedure cannot be applied a more
subtle approach can be used instead which consists in the construction of
a whole family of cyclic submonoids such that for any k characters from X
there exists at least one member in this family which distinguishes these k
characters. It is remarkable that all but one of the cases studied in [BT88],
[CDGK88] and [GKS88] fall in either one of these two categories.

In section 3 we will discuss methods which apply to ‘properly’ non-cyclic
cases. A method based on a simple idea, developed in [CDGK88], by which
zero-test sets for a product of monoids can be constructed from zero-test
sets of the factors, is presented. In addition a quite general and efficient
interpolation algorithm is given, of course needing more evaluations than
in the cyclic case, but not needing to find roots of a polynomial as it is
necessary in the case of cyclic groups. Instead, it presupposes the knowledge
of a finite super set Y of supp(f), say of cardinality q, in which case it needs
one inversion of a q × q-matrix and many inversions of k × k-matrices.

Finally, in the last section, we will use all these results to discuss in some
detail how for a given submonoid U of the multiplicative monoid (K, ∗) and
for variable n, q, k ∈ IN the minimal cardinality of zero-test sets in Un for
k-sums of characters from the set X = X(q, n) varies with n, q and k. As it
will turn out there seems to exist some kind of ‘phase transition’ depending
on the size first of all of q, but also of n and k, relative to the cardinality
of U . This will help to clarify in particular the relation between the results
presented in [BT88], [CDGK88] and [GKS88].

1 Character Sums of Cyclic Groups

In this section we assume A to be a cyclic group, generated by some a ∈ A,
and we assume X to consist of all K-valued characters of A:

X = Hom(A, (K, ∗)).
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Without loss of generality we may assume A to be infinite in which case
evaluation at a defines a bijection

X → K, χ 7→ χ(a)

whose inverse is given by

K → X, c 7→ (χc : A→ K, ai 7→ ci).

The basis observation on which everything in the next two sections is based,
is the following Vandermonde Lemma:

Lemma 1.1 Let A be a cyclic group generated by an element a ∈ A. Then
for X = Hom(A, (K, ∗)) and each natural number k ≤ #A the set

{1, a, a2, . . . , ak−1}

is a minimal zero-test set for Xk.

Proof. Let f =
∑k

κ=1 fκχκ ∈ Xk be a k-sum of characters. We have

f(ai) =
k∑

κ=1

fκχκ(a
i) =

k∑
κ=1

fκχκ(a)i

for all i ∈ IN0. Thus we obtain the following matrix equation

(χκ(a)i)0≤i<k,1≤κ≤k · (fκ)1≤κ≤k = (f(ai))0≤i<k.

The k-square matrix (χκ(a)i)0≤i<k,1≤κ≤k is a non-singular Vandermonde ma-
trix since the χκ(a) are pairwise different.

Note that our proof shows as well how to compute the coefficients of
any f ∈ Xk from the values f(1), f(a), f(a2), . . . , f(ak−1) once its support is
known.

To find the support of f from its values on the zero-test set {1, a, a2, . . . , a2k−1}
for X2k we can use the following result, rather special cases of which occur
in [BT88] and [CDGK88] and decoding of BCH-codes, see [LN83].

Theorem 1 Let A be a cyclic group generated by an element a ∈ A and
let f be a sum of atmost k characters from X = Hom(A, (K, ∗)). Then the
following holds:

5



i) The rank of the matrix Mk := (f(ai+j))0≤i,j<k coincides with the car-
dinality of supp(f).

ii) If k̃ := #supp(f) (≤ k) and if
e1

e2
...
ek̃

 := Mk̃
−1 ·


−f(ak̃)

−f(ak̃+1)
...

−f(a2k̃−1)


then the equation

X k̃ + e1X
k̃−1 + . . .+ ek̃−1X + ek̃ = 0 (1)

has k̃ different solutions c1, . . . , ck̃ in K. Furthermore one has

supp(f) = {χcκ | 1 ≤ κ ≤ k̃}.

Proof. Let f =
∑

κ∈I fκχκ, where I is any finite superset of the indices
of the support of f . We denote by ei(I) the i-th elementary symmetric
polynomial in #I indeterminates, evaluated at (χα(a))α∈I . Now substituting
χα(a), α ∈ I, for X in the polynomial

p :=
∏
β∈I

(X − χβ(a)) =

#I∑
j=0

(−1)#I−je#I−j(I) ·Xj ∈ K[X] (2)

yields the generalized Newton identities [MS72], p. 244

0 =

#I∑
j=0

(−1)#I−je#I−j(I)χα(a)j, α ∈ I.

Fixing an i ∈ IN0, multiplying the equation corresponding to α by fαχα(a)i

and summing over all α ∈ I results in the following system of equations

0 =

#I∑
j=0

(−1)#I−je#I−j(I)f(ai+j), i ∈ IN.
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As e0(I) = 1 the equations for 0 ≤ i < #I are equivalent to the matrix
equation

(f(ai+j)0≤i,j<#I ·
(

(−1)#I−j e#I−j (I)
)

0≤j<#I
= −(f(ai+#I))0≤i<#I . (3)

The matrix (f(ai+j))0≤i,j<#I equals (χα(ai))DI(χα(ai))t, where the #I-square
matrix DI is the diagonal matrix diag((fα)α∈I), see [LN83], 9.48, 9.49. As
#{χα(a) | α ∈ supp(f)} = k̃, the cardinality of supp(f) equals the rank of
the k-square matrix f(ai+j))0≤i,j<k and this proves i). Furthermore Mk̃ =
(f(ai+j))0≤i,j<k̃ is non-singular and from equation (3) we see that ek̃−j =

(−1)#I−j e#I−j (I) holds for all 1 ≤ j ≤ k̃ and for I = supp(f). Therefore
the polynomial in equation (1) coincides with p and ii) is proved.

If an efficient algorithm for finding the roots of a polynomial over K
which is known to have all its roots in K, then it is easy to derive an efficient
algorithm to interpolate any f ∈ Xk from its values on {1, a, . . . , a2k−1} from
Theorem 1

2 Character Sets which Allow Reduction to

Cyclic Groups

Given an abelian monoid A and a set X ⊆ Hom(A, (K, ∗)) of K-valued
characters of A, we say that X allows reduction to one cyclic group if there
exists an element a ∈ A which distinguishes all characters in X, i.e. χ(a) 6=
ξ(a) for χ 6= ξ. It follows immediately from the Artin-Dedekind Lemma
that in this case a k-sum f of characters from X is trivial if and only if the
restriction of f to the cyclic group generated by a is trivial. Hence the results
of section 1 can be applied. In particular {1, a, . . . , ak−1} is a zero-test for
Xk and the sums f of characters in Xk can be identified from the values of
f on {1, a, . . . , a2k−1}.

Important examples of character sets which allow cyclic reduction are the
following ones:

1. If the submonoid U of (K, ∗) contains a submonoid which is a free
abelian submonoid of rank n, generated, say, by {u1, u2, . . . , un}, (in
particular, this is the case if U contains Q), then the set of all monomial
charcters {χα | α ∈ ZZn} of Un allows reduction to a cyclic group:
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indeed, any two different monomial characters of Un differ necessarily
on a := (u1, . . . , un). This implies in particular many of the results
presented in [GK87] and [BT88], where ui is chosen to be the i-th
prime.

2. Similarly, if U ≤ (K, ∗) contains at least one element, say u, of infinite
order or of order at least qn for some q ∈ IN then all monomial charac-
ters in X := X(q, n) = {χα | α ∈ qn} differ on a := (u, uq, . . . , uq

n−1
)

in view of the uniqueness of q-adic expansion, and this is used in
[CDGK88].

In particular, since any infinite submonoid of (K, ∗) either contains an
element of infinite order or cyclic submonoids of arbitary large order (cf.
Artin) we get the following essentialy trivial, though surprisingly general
theorem.

Theorem 2 If U is an infinite submonoid of the multiplicative monoid (K, ∗)
of a field K and if for natural numbers n and q

X := X(q, n) = {χα | α ∈ qn}

denotes the set of all monomial characters of Un local degree between 0
and q − 1, then for any k ∈ IN there exists a zero-test set of the form
{1, a, . . . , ak−1} for Xk in Un and, in addition, one can identify the sup-
port of any map f ∈ Xk from its values on a corresponding zero-test set for
X2k.

To apply the results from section 1 even in cases which do not simply
allow reduction to a cyclic group we use the following definition: for givien
A and X ⊆ Hom(X, (K, ∗)), as above we define a subset D ⊆ A to be a
k-cover for X if for any subset Y ⊆ X of cardinality at most k there exists
some a ∈ D with χ(a) 6= ψ(a) for all χ, ξ ∈ Y with χ 6= ξ. Obviously, Lemma
1.1 implies :

Lemma 2.1 If D is a k-cover of an abelian monoid A and for a character
set X ⊆ Hom(X, (K, ∗))), then D[k] := {ai | a ∈ D, 1 ≤ i < k} is a zero-test
set for Xk.

In particular, we have the following

Corollary 2.2 If X = Hom(A, (K, ∗)) and if D ⊆ A generates A, then
D[2] = D ∪ {1A} is a zero-test set for X2.

8



To construct k-covers in more general situations we may adopt an idea from
[GKS88]: for X ⊆ Hom(A, (K, ∗)) and a natural number k we define the
collection of h-distinction sets:

D(X, h) := {D ⊆ A| ∀χ, ξ ∈ X, χ 6= ξ, #{d ∈ D | χ(d) = ξ(d)} < h}.

Hence a member D of D(X, h) has the property that for every pair of distinct
characters there are at most h − 1 elements in D where the two characters
are equal. Of course we are not interested in sets D of cardinality smaller
than h, which are trivially in D(X, h), but in those which are large enough
to have subsets being in D(X, 1) as well.

Lemma 2.3 Every h-distinction set D having more than (h−1)·
(
k
2

)
elements

is a k-cover of X.

Proof. Let Y be a subset of X, having at most k elements. The set
∪χ,ξ∈Y,χ6=ξ{d ∈ D | χ(d) = ξ(d)} has atmost (h − 1) ·

(
#Y

2

)
≤ (h − 1) ·

(
k
2

)
elements, therefore there exists an element a in D such that χ(a) 6= ξ(a) for
all distinct χ, ξ ∈ Y .

In [GKS88] D. Grigoriev, M. Karpinski and M. Singer have shown that
the following observation — tranformed here into our more general context
— has striking consequences.

Lemma 2.4 (cf. [GKS88]) . Let A denote an abelian monoid and assume
K to be field, containing a primitive root of unity ω of order e. Assume that
for some positive integer n we have characters χ1, . . . , χn : A→ K, elements
a1, . . . , an ∈ A, and integers εµ,ν ∈ ZZ for all 1 ≤ µ, ν ≤ n such that

χµ(aν) = ωεµ,ν .

Assume furthermore that det(εµ,ν) 6= 0 and that c := (cν,ρ)1≤ν≤n,1≤ρ≤r is an
n × r-matrix for some r ≥ n such that every n × n-submatrix of c has a
non-vanishing determinant. Then if

q := d e

n ·maxµ,ρ(|
∑

1≤ν≤n εµ,νcν,ρ)|)
e

and
X := {χα : A→ R | α ∈ qn},
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where χα denotes
∏

1≤ν≤n χ
αν
ν , is a set of qn different characters, then the set

D := {dρ :=
∏

1≤ν≤n

acν,ρν | 1 ≤ ρ ≤ r}

is in D(X,n).

Proof. For every pair of different characters χα and χβ from X and for all
1 ≤ ρ ≤ r we have

χα(dρ) = ω
∑n
µ=1(

∑n
ν=1 εµ,νcν,ρ)αµ

which equals χβ(dρ) if and only if

n∑
µ=1

(
n∑
ν=1

εµ,νcν,ρ)(αµ − βµ) ≡ 0 modulo e.

Furthermore we have

|
n∑
µ=1

(
n∑
ν=1

εµ,νcν,ρ)(αµ − βµ)| ≤ n ·maxµ,ρ(|
∑

1≤ν≤n

εµ,νcν,ρ|)(q − 1) < e.

Altogether two different characters χα, χβ ∈ X coincide at an element dρ ∈ D
if and only if

n∑
µ=1

(
n∑
ν=1

εµ,νcν,ρ)(αµ − βµ) = 0.

If there were more than n − 1 elements from D where χα and χβ coincide
then the non-singularity of the corresponding n× n-submatrix of c together
with that of det(εµ,ν) would imply α− β = (0, . . . , 0).

In order to apply this lemma we first of all have to construct an integral
matrix c satisfying the requirements from the lemma and having not too large
entries. To do this we present the following lemma from [GKS88], which uses
Cauchy’s determinants in a rather elegant way:

Lemma 2.5 For every two positive integers r and n there exists an integral
n × r-matrix c = (cν,ρ)1≤ν≤n,1≤ρ≤r, the absolute value of each entry bounded
by n + r − 1, such that no subdeterminant of c vanishes. Furthermore, all
entries in the first row are pairwise different.
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Proof. Choose a prime number p with n + r ≤ p < 2(n + r). Then for
1 ≤ ν ≤ n and 1 ≤ ρ ≤ r none of the numbers ν+ ρ− 1 considered in GF (p)
equals 0. Therefore we can consider the matrix( 1

ν + ρ− 1

)
1≤ν,ρ<r

∈ GF (p)n×r.

By Lemma 2.6 below no subdeterminant of this matrix vanishes. Choose
integers cν,ρ with −p−1

2
≤ cν,ρ ≤ p−1

2
such that 1

ν+ρ−1
= cν,ρ in GF (p) , then

the same is true for the matrix c = (cν,ρ).

Lemma 2.6 (Cauchy) . For every natural number n the following identity
in rational functions in commuting indeterminates (x1, . . . , xn), (y1, . . . , yn)
holds:

det
( 1

xi + yj

)
1≤i≤n,1≤j≤n

=

∏
1≤i<j≤n(xj − xi)

∏
1≤i<j≤n(yj − yi)

n
∏

1≤i,j≤n(xi + yj)
.

Proof. The polynomial∏
1≤i,j≤n

(xi + yj) det
( 1

xi + yj

)
1≤i≤n,1≤j≤n

is not the zero-polynomial, because the coefficient of

xn−1
1 xn−2

2 . . . xn−1y
n−1
1 yn−2

2 . . . yn−1

is 1. Considered as polynomial in the y’s it is alternating. Each coefficient of
the monomials in the y’s is itself an alternating polynomial in the x’s. As the
Vandermonde is the alternating non-zero polynomial having smallest degree,
namely

(
n
2

)
, it is a scalar multiple of the Vandermonde determinant involving

the indeterminates (y1, . . . , yn) and the coefficient has to be a Vandermonde
determinant involving (x1, . . . , xn).

The last lemmata together imply the next result.

Theorem 3 If U is a finite (and therefore cyclic!) subgroup order e of the
multiplicative group of a field K, if A = Un is the n-fold direct product of U ,
then for every positive integer k and q satisfying

n · (q − 1) · (n+ (n− 1) ·
(
k

2

)
) < e
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there exists a zero-test set of order at most k · ((n− 1) ·
(
k
2

)
+ 1) for the sums

of characters from X(q, n)k = {χα | α ∈ qn}k.

Proof. W.l.o.g. assume n ≥ 2. Put r := (n − 1) ·
(
k
2

)
+ 1 and choose

c = (cν,ρ)1≤ν≤n,1≤ρ≤r according to Lemma 2.5. Choose a generator ω for U .
Note that χµ(aν) = ωδµ,ν for

aν := (1, . . . , 1, ω, 1, . . . , 1),

ω at the position ν, and the projections χµ = χ(δµ,0,...,δµ,n−1) to the µ-th com-
ponent holds for all 1 ≤ µ, ν ≤ n. An application of Lemma 2.4 guarantees
the set

D := {dρ :=
∏

1≤ν≤n

acν,ρν | 1 ≤ ρ ≤ r}

to be in D(X(q̃, n), n) for q̃ := d e
n·maxµ,ρ(|

∑
1≤ν≤n εµ,νcν,ρ)|)e and therefore in

D(X(q, n), n) in view of

q <
e

n · (n+ (n− 1) ·
(
k
2

)
)

+ 1 =
e

n · (n+ r − 1)
+ 1 ≤

≤ e

n ·maxµ,ρ(|cµ,ρ|)
+ 1 ≤ q̃ + 1,

that is q ≤ q̃. In view of 0 6= |c0,ρ−c0,ρ′| ≤ 2·(n+r−1) = 2·(n+(n−1)·
(
k
2

)
) < e

and therefore dρ 6= dρ′ for 1 ≤ ρ < ρ′ ≤ r the set D has r elements. Hence
(n − 1) ·

(
k
2

)
≤ r = #D and we may apply the Lemmata 2.3 and 2.1 to

conclude that

{(ωκ·c0,ρ , ωκ·c1,ρ , . . . , ωκ·cn−1,ρ) | 1 ≤ ρ ≤ r, 1 ≤ κ < k}

is a zero-test set for X(q, n)k of size at most k · r = k · ((n− 1) ·
(
k
2

)
+ 1)

The main result of the paper [GKS88] is the case where K is the finite
field GF (s) for a some s with s ≥ qk2n2 and U := GF (s) \ {0} in Theorem
3.

3 General Case

If no reduction to a cyclic group is possible, all we can do is to give a method
for a recursive construction of zero-test sets for direct products of abelian
monoids from those of the factors.
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Lemma 3.1 (cf. [CDGK88]) . If A and B are abelian monoids, if for
given X ⊆ Hom(A, (K, ∗)) and Y ⊆ Hom(B, (K, ∗)) we have zero-test
sets A1 = {1A}, A2, . . . , Ak ⊆ A and B1 = {1B}, B2, . . . , Bk ⊆ B for
X1, X2, . . . , Xk and Y1, Y2, . . . , Yk, respectively, then — identifying Hom(A×
B, (K, ∗)) with Hom(A, (K, ∗))×Hom(B, (K, ∗)), as usual — the set⋃

i·j≤k

Ai ×Bj ⊆ A×B

is a zero-test set for (X × Y )k.

Proof. Note that any f ∈ (X × Y )k can be written uniquely in the form

f =
∑
η∈Y

fη · η

for some fη ∈ Xi(η) (η ∈ Y ) and
∑

η∈Y i(η) ≤ k. Obviously the cardinality
j of the Y -support suppY (f) := {η ∈ Y | fη 6= 0} of f is bounded by k and
in case f 6= 0 there must exist some η0 ∈ suppY (f) with i(η0) ≤ k

j
. Choose

a ∈ Ai(η0) with fη0(a) 6= 0. Consequently, f(a,−) is a non-zero j-sum of
characters from Y for which we can find an element b ∈ Bj with f(a, b) 6= 0.

This lemma generalizes immediately to the situation of more than two
factors.

Lemma 3.2 If A(1), . . . , A(n) are abelian monoids, if for given X(ν) ⊆ Hom(A(ν), R)

we have zero-test sets A
(ν)
1 = {1A(ν)}, A(ν)

2 , . . . , A
(ν)
k ⊆ A(ν) for X

(ν)
1 , X

(ν)
2 , . . . , X

(ν)
k ,

respectively for ν = 1, . . . , n, then the set⋃
i1·...·in≤k

A
(1)
i1
× . . .× A(n)

in
⊆ A(1) × . . .× A(n)

is a zero-test set for k-sums from X(1) × . . .×X(n) ⊆ Hom(A(1), R)× . . .×
Hom(A(n), R) = Hom(A(1) × . . .× A(n), R).

Corollary 3.3 Let A be a finitely generated abelian group isomorphic to∏
1≤ν≤nCqν where Cqν is a cyclic group of order qν, qν a prime power or ∞,

generated by aν. Then ⋃
k1·...·kn≤k

kν≤min(k,qν )

T
(1)
k1
× . . .× T (n)

kn
,
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where T
(ν)
kν

:= {1, aν , a2
ν , . . . , a

kν−1
ν } is a zero-test set for all sums of characters

from Xk = {χα | α ∈
∏

1≤ν≤n qν} (∞ := ZZ).

Theorem 4 (cf. [CDGK88]) . Let U be a finite submonoid of order q of
the multiplicative group of a field K for a natural number q, let X be the set
of characters X(n, q) for Un and T be any zerotest set for Xk. If U contains
0, then for every subset S ⊆ {1, ..., n} such that #S ≤ blog2kc the set T
contains an element aS = (aS1 , . . . , a

S
n) with S = {i : aSi = 0}. Hence T has

at least
∑blog2 kc

i=0

(
n
i

)
elements.

Proof. For every subset S ⊆ {1, ..., n} such that #S ≤ blog2kc define a
sum of characters by

fS :=
∏
i∈S

(χq−1
i − 1) ·

∏
i6∈S

χi,

where χi is the projection to the i-th component. These functions have the
following properties:

1. pS is in Xk.

2. pS(a) 6= 0 if and only if {i : ai = 0} = S.

The first property follows from 2#S ≤ 2blog2kc ≤ k, the second from the fact
that the zeros of χq−1

i − 1 are exactly the elements of U \ {0}. Hence, to
distinguish such a polynomial and the zero-polynomial, there has to be an
element aS as claimed in the set A.

In case q = 2 we may combine Corollary 2.2 and the results before to
obtain a minimal zero-test set.

Theorem 5 (cf. [CDGK88]) . Let U be the submonoid {0, 1} of a field
K, let X be the set of characters X(n, 2) for Un. Then

{aS ∈ Un | S ⊆ {1, ..., n}, aSi =

{
1, if i ∈ S;
0, if i 6= S.

is a minimal zero-test set of Xk of cardinality
∑blog2 kc

i=0

(
n
i

)
.
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Proof. It suffices to show that this set really is a zero-test set, but this
follows from Lemma 3.1 using A

(ν)
2 := {0, 1} for all 1 ≤ ν ≤ n.

As we have observed already in the introductions there does not seem
to exist a universally applicable algorithm which would allow to interpolate
k-sums of characters from some character set X from their restrictions to
zero-test sets for X2k. Hence to construct interpolation algorithms one has
to consider more specific situations. One such situation is described in the
following:

Theorem 6 . Assume that for some field K, some monoid A, some finite
set X ⊆ Hom(A, (K, ∗)) of K-valued characters of A of cardinality q, and
some subset D ⊆ A of the same cardinality q with det(χ(a))χ∈X,a∈D 6= 0, the
inverse of the q × q-matrix (χ(a))χ∈X,a∈D is given and that in addition for
any two natural numbers k and n a zero-test set Tn,k ⊆ An of cardinality
t(n, k) for Xn is specified. Then for any k, n ∈ IN one can compute supp(f)
as well as the coefficients of f for any f ∈ (Xn)k from altogether at most
n · (k2 = q) · t(n − 1, k) evaluations of f by an algorithm which needs at
most 2n matrix inversions, each matrix having at most k rows ans colums,
and otherwise only matrix multiplications and methods to find for r ≤ k and
r ≤ l ≤ max(k2, q) the first r linearly indepentent columns in an r× l matrix
of rank r. Moreover, the 2n matrix inversions can be performed on n parallel
processors so that the first n inversions, then the next n

2
, n

4
, . . . inversions

can be done in parallel, leading to altogether to log2(n) basic computational
rounds.

Proof. We define set partitions P l := (P l
1, . . . , P

l
d n

2l
e) of n for 0 ≤ l ≤

dlog2 ne by
P l
ν := {ν · 2l, ν · 2l + 1, . . . , (ν + 1) · 2l − 1},

of course stopping at n − 1 in the last part. Next the sets (suppP lν )0≤ν<d n
2l
e

are determined inductively. In case l = 0 we use n-times Lemma ?? for
T := P 0

ν = {ν} and the supersets Ŷ {ν}, always setting AT to be
∏

ν 6∈T A
(ν)

and making the usual identifications. For the induction step we use at
most d n

2l+1 e-times Lemma ?? for T := P
(l+1)
ν and the supersets Ŷ P l+1

ν :=
suppP l2ν (f)× suppP l2ν+1i

(f).

This is justified as more generally suppose that for disjoint subsets T0 and
T1 of n the corresponding supports suppY T0 (f) and suppY T1 (f) are known,
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then it is clear that we can use Y T0∪T1 ⊇ Ŷ T0∪T1 := suppY T0 (f)× suppY T1 (f)
as a finite superset of suppY T0∪T1 (f).
Finally we arrive at supp(f). An application of lemma ?? for T := n gives
the coefficients of f .

Note that we only required elements dT and zero-test sets ZT for the at
most 2n + 1 sets occuring in the set partitions. The calculations to recover
f require at most 2n + 1 applications of Lemma ??, i.e. in step 0 we have
to invert (in parallel) n Vandermonde matrices, having as many rows and
columns as the cardinality of the given supersets of supp{ν}(f). In the next
dlog2 ne steps at each stage l at most d n

2l
e Vandermonde matrices of size

k2 × k2 have to be inverted. A further inversion of a k × k Vandermonde
matrix gives the coefficients. Note further that the number of evaluation
points can be reduced if one allows adaptive algorithms.

A similar result holds for the more general case of products
∏

1≤ν≤n and
character sets X1, . . . , Xn as long as for every 1 ≤ ν ≤ n a zero-test set for a
(
∏

µ 6=ν Xµ)k is known.
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