On zero-testing and interpolation of sparse character sums (preliminary version)

Andreas Dress *
Fakultät für Mathematik
Universität Bielefeld
Johannes Grabmeier
IBM Deutschland GmbH
Wissenschaftliches Zentrum Heidelberg

Abstract

Motivated by an amazing result of D. Y. Grigoriev and M. Karpinski, the interpolation problem for k-sparse multivariate polynomials has received some attention in recent years. In this note we want to show that essentially all of the results obtained so far hold more generally for k-sparse sums of characters of abelian monoids, thereby providing a useful unified approach to this active field of research. As it turns out the basic ingredients of this approach are the construction of distinction sets for characters and zero-test sets for k-sparse character sums.

Contents

0 Introduction 2
1 Character Sums of Cyclic Groups 4

[^0]
3 General Case

0 Introduction

The basic ideas of the paper [GK87] were the starting point for the papers [BT88], [CDGK88] and [GKS88], where the question of zero-testing and interpolation of k-sparse multivariate polynomials over fields of characteristic 0 and over finite fields were studied. In this note we want to provide a unified approach to this active field of research, based on the observation that the fundamental ideas in these papers are valid in the more general context of k-sparse sums of characters of abelian monoids.

Let A be an abelian monoid with neutral element 1_{A} and let K be a field. According to the well known Artin-Dedekind Lemma the set $\operatorname{Hom}(A,(K, *))$ of all characters, i.e. monoid homomorphisms with $1_{A} \mapsto 1_{K}$ from A into the multiplicative monoid $(K, *)$ of K is a linearly independent subset of the K-space of all maps from A into K. For any subset $X \subseteq \operatorname{Hom}(A,(K, *))$ of characters and every positive integer k define the set X_{k} of k-sums of characters by

$$
X_{k}:=\left\{f: A \rightarrow K \mid \exists f_{1}, \ldots, f_{k} \in K, \chi_{1}, \ldots, \chi_{k} \in X, f=\sum_{\kappa=1}^{k} f_{\kappa} \chi_{\kappa}\right\} .
$$

For given X and k we are interested in procedures by which for any such $f=\sum_{\chi} f_{\chi} \chi$ in X_{k} its support

$$
\operatorname{supp}(f):=\left\{\chi \in X \mid f_{\chi} \neq 0\right\}
$$

and its coefficients f_{χ} can be determined from as few as possible evaluations of f. A first step to solve this interpolation problem is, of course, the study of (small) subsets T of A which allow to distinguish any non-trivial k-sum of characters from X from the zero map, that is, subsets $T \subseteq A$ such that for any $f \in X_{k} \backslash\{0\}$ there exists some $a \in T$ with $f(a) \neq 0$. We will refer to such subsets as zero-test sets for X_{k}. Obviously, any such zero-test set for X_{k} must contain at least k elements unless $\# X<k$, compare the proof of Lemma 1.1. However, as we will see later on, only in the most simple case of cyclic groups zero-test sets of this cardinality can be guaranteed.

The relation between zero-test sets and subsets of A which may be suitable for interpolation, that is, which allow to distinguish any two different k-sums of characters, is simple and obvious.

Lemma $0.1 A$ subset $T \subseteq A$ has the property that the associated restriction map $K^{A} \rightarrow K^{T}:\left.f \mapsto f\right|_{T}$ is injective on $X_{k} \subseteq K^{A}$ if and only if T is a zero-test set for $X_{2 k}$.

Hence, in principle, for any zero-test set T for $X_{2 k}$ it should be possible to compute for any map $f=\sum_{\chi \in X} f_{\chi} \chi$ in X_{k} its support and its coefficients from its restriction $\left.f\right|_{T}$. Again, this holds indeed for the particularly simple minimal zero-test sets one has in cyclic groups. In general there does not seem to exist a universally applicable interpolation algorithm which for any field K, any monoid A, any set $X \subseteq \operatorname{Hom}(A,(K, *))$ of K-valued characters of A, and any zero-test set $T \subseteq A$ for $X_{2 k}$ allows to reconstruct the support and the coefficients of f for any $f \in X_{k}$ systematically from its restriction to T, except, of course, the trivial, but surely not efficient algorithm, which for all possible choices of $\chi_{1}, \ldots, \chi_{k} \in X$ and $f_{1}, \ldots, f_{k} \in K$ compares $f(a)$ with $\sum_{\kappa=1}^{k} f_{\kappa} \chi_{\kappa}(a)$ for all $a \in T$. Therefore it appears to be worthwhile to discuss in some detail what can be done in this direction.

The examples we have in mind are in particular the cases where A equals U^{n} for some submonoid U of the monoid $(K, *)$ and X is a subset of all maps

$$
\chi^{\alpha}=\chi^{\left(\alpha_{1}, \cdots, \alpha_{n}\right)}: U^{n} \rightarrow K
$$

where

$$
\chi^{\alpha}\left(\left(x_{1}, \ldots, x_{n}\right)\right):=x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{n}^{\alpha_{n}}
$$

for $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{N}_{0}:=\{0,1, \ldots\}$ and $x_{1}, \ldots, x_{n} \in U$.
In the case of $K:=\mathbb{Q}$ (or any other infinite field) and $U:=K$ the characters from $X:=\left\{\chi^{\alpha}, \alpha \in \mathbb{N}_{0}^{n}\right\}$ correspond to the monomials in n indeterminates as k-sum characters correspond to k-sparse polynomials. In case U is finite it has turned out to be particular interesting to study the above problems for such monomial characters of type χ^{α} whose local degrees $\alpha_{1}, \ldots, \alpha_{n}$, are bounded by a natural number q, that is we choose

$$
X=X(q, n):=\left\{\chi^{\alpha} \mid \alpha \in \mathbf{q}^{n}\right\}
$$

where \mathbf{q} is defined to be $\mathbf{q}:=\{0, \ldots, q-1\}$.
The overall outline of our note is as follows: In the first section we will assume A to be a cyclic group. In this almost trivial case minimal zero-test
sets and optimal interpolation procedures can be constructed quite easily in a rather natural and a straightforward manner. Once this is established we will show in the second section that for surprisingly many other choices of A and X our problem can be reduced to the cyclic case.

In various cases this can be done simply by exhibiting a cyclic submonoid, (i.e. a submonoid wich is a cyclic group) A^{\prime} of A which distinguishes the charachters in the given set X (i.e. with $\left.\chi\right|_{A^{\prime}} \neq\left.\psi\right|_{A^{\prime}}$ for any two different characters χ and ψ in X).

In other cases where this simple procedure cannot be applied a more subtle approach can be used instead which consists in the construction of a whole family of cyclic submonoids such that for any k characters from X there exists at least one member in this family which distinguishes these k characters. It is remarkable that all but one of the cases studied in [BT88], [CDGK88] and [GKS88] fall in either one of these two categories.

In section 3 we will discuss methods which apply to 'properly' non-cyclic cases. A method based on a simple idea, developed in [CDGK88], by which zero-test sets for a product of monoids can be constructed from zero-test sets of the factors, is presented. In addition a quite general and efficient interpolation algorithm is given, of course needing more evaluations than in the cyclic case, but not needing to find roots of a polynomial as it is necessary in the case of cyclic groups. Instead, it presupposes the knowledge of a finite super set Y of $\operatorname{supp}(f)$, say of cardinality q, in which case it needs one inversion of a $q \times q$-matrix and many inversions of $k \times k$-matrices.

Finally, in the last section, we will use all these results to discuss in some detail how for a given submonoid U of the multiplicative monoid $(K, *)$ and for variable $n, q, k \in \mathbb{N}$ the minimal cardinality of zero-test sets in U^{n} for k-sums of characters from the set $X=X(q, n)$ varies with n, q and k. As it will turn out there seems to exist some kind of 'phase transition' depending on the size first of all of q, but also of n and k, relative to the cardinality of U. This will help to clarify in particular the relation between the results presented in [BT88], [CDGK88] and [GKS88].

1 Character Sums of Cyclic Groups

In this section we assume A to be a cyclic group, generated by some $a \in A$, and we assume X to consist of all K-valued characters of A :

$$
X=\operatorname{Hom}(A,(K, *)) .
$$

Without loss of generality we may assume A to be infinite in which case evaluation at a defines a bijection

$$
X \rightarrow K, \quad \chi \mapsto \chi(a)
$$

whose inverse is given by

$$
K \rightarrow X, \quad c \mapsto\left(\chi_{c}: A \rightarrow K, a^{i} \mapsto c^{i}\right) .
$$

The basis observation on which everything in the next two sections is based, is the following Vandermonde Lemma:

Lemma 1.1 Let A be a cyclic group generated by an element $a \in A$. Then for $X=\operatorname{Hom}(A,(K, *))$ and each natural number $k \leq \# A$ the set

$$
\left\{1, a, a^{2}, \ldots, a^{k-1}\right\}
$$

is a minimal zero-test set for X_{k}.
Proof. Let $f=\sum_{\kappa=1}^{k} f_{\kappa} \chi_{\kappa} \in X_{k}$ be a k-sum of characters. We have

$$
f\left(a^{i}\right)=\sum_{\kappa=1}^{k} f_{\kappa} \chi_{\kappa}\left(a^{i}\right)=\sum_{\kappa=1}^{k} f_{\kappa} \chi_{\kappa}(a)^{i}
$$

for all $i \in \mathbb{N}_{0}$. Thus we obtain the following matrix equation

$$
\left(\chi_{\kappa}(a)^{i}\right)_{0 \leq i<k, 1 \leq \kappa \leq k} \cdot\left(f_{\kappa}\right)_{1 \leq \kappa \leq k}=\left(f\left(a^{i}\right)\right)_{0 \leq i<k} .
$$

The k-square matrix $\left(\chi_{\kappa}(a)^{i}\right)_{0 \leq i<k, 1 \leq \kappa \leq k}$ is a non-singular Vandermonde matrix since the $\chi_{\kappa}(a)$ are pairwise different.

Note that our proof shows as well how to compute the coefficients of any $f \in X_{k}$ from the values $f(1), f(a), f\left(a^{2}\right), \ldots, f\left(a^{k-1}\right)$ once its support is known.

To find the support of f from its values on the zero-test set $\left\{1, a, a^{2}, \ldots, a^{2 k-1}\right\}$ for $X_{2 k}$ we can use the following result, rather special cases of which occur in [BT88] and [CDGK88] and decoding of BCH-codes, see [LN83].

Theorem 1 Let A be a cyclic group generated by an element $a \in A$ and let f be a sum of atmost k characters from $X=\operatorname{Hom}(A,(K, *))$. Then the following holds:
i) The rank of the matrix $M_{k}:=\left(f\left(a^{i+j}\right)\right)_{0 \leq i, j<k}$ coincides with the cardinality of $\operatorname{supp}(f)$.
ii) If $\tilde{k}:=\# \operatorname{supp}(f)(\leq k)$ and if

$$
\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{\tilde{k}}
\end{array}\right):=M_{\tilde{k}}^{-1} \cdot\left(\begin{array}{c}
-f\left(a^{\tilde{k}}\right) \\
-f\left(a^{\tilde{k}+1}\right) \\
\vdots \\
-f\left(a^{2 \tilde{k}-1}\right)
\end{array}\right)
$$

then the equation

$$
\begin{equation*}
X^{\tilde{k}}+e_{1} X^{\tilde{k}-1}+\ldots+e_{\tilde{k}-1} X+e_{\tilde{k}}=0 \tag{1}
\end{equation*}
$$

has \tilde{k} different solutions $c_{1}, \ldots, c_{\tilde{k}}$ in K. Furthermore one has

$$
\operatorname{supp}(f)=\left\{\chi_{c_{\kappa}} \mid 1 \leq \kappa \leq \tilde{k}\right\} .
$$

Proof. Let $f=\sum_{\kappa \in I} f_{\kappa} \chi_{\kappa}$, where I is any finite superset of the indices of the support of f. We denote by $e_{i}(I)$ the i-th elementary symmetric polynomial in $\# I$ indeterminates, evaluated at $\left(\chi_{\alpha}(a)\right)_{\alpha \in I}$. Now substituting $\chi_{\alpha}(a), \alpha \in I$, for X in the polynomial

$$
\begin{equation*}
p:=\prod_{\beta \in I}\left(X-\chi_{\beta}(a)\right)=\sum_{j=0}^{\# I}(-1)^{\# I-j} e_{\# I-j}(I) \cdot X^{j} \in K[X] \tag{2}
\end{equation*}
$$

yields the generalized Newton identities [MS72], p. 244

$$
0=\sum_{j=0}^{\# I}(-1)^{\# I-j} e_{\# I-j}(I) \chi_{\alpha}(a)^{j}, \quad \alpha \in I
$$

Fixing an $i \in \mathbb{N}_{0}$, multiplying the equation corresponding to α by $f_{\alpha} \chi_{\alpha}(a)^{i}$ and summing over all $\alpha \in I$ results in the following system of equations

$$
0=\sum_{j=0}^{\# I}(-1)^{\# I-j} e_{\# I-j}(I) f\left(a^{i+j}\right), \quad i \in \mathbb{N} .
$$

As $e_{0}(I)=1$ the equations for $0 \leq i<\# I$ are equivalent to the matrix equation

$$
\begin{equation*}
\left(f\left(a^{i+j}\right)_{0 \leq i, j<\# I} \cdot\left((-1)^{\# I-j} e_{\# I-j}(I)\right)_{0 \leq j<\# I}=-\left(f\left(a^{i+\# I}\right)\right)_{0 \leq i<\# I} .\right. \tag{3}
\end{equation*}
$$

The matrix $\left(f\left(a^{i+j}\right)\right)_{0 \leq i, j<\# I}$ equals $\left(\chi_{\alpha}\left(a^{i}\right)\right) D_{I}\left(\chi_{\alpha}\left(a^{i}\right)\right)^{t}$, where the $\# I$-square matrix D_{I} is the diagonal matrix $\operatorname{diag}\left(\left(f_{\alpha}\right)_{\alpha \in I}\right)$, see [LN83], 9.48, 9.49. As $\#\left\{\chi_{\alpha}(a) \mid \alpha \in \operatorname{supp}(f)\right\}=\tilde{k}$, the cardinality of $\operatorname{supp}(f)$ equals the rank of the k-square matrix $\left.f\left(a^{i+j}\right)\right)_{0 \leq i, j<k}$ and this proves i). Furthermore $M_{\tilde{k}}=$ $\left(f\left(a^{i+j}\right)\right)_{0 \leq i, j<\tilde{k}}$ is non-singular and from equation (3) we see that $e_{\tilde{k}-j}=$ $(-1)^{\# I-j} e_{\# I-j}(I)$ holds for all $1 \leq j \leq \tilde{k}$ and for $I=\operatorname{supp}(f)$. Therefore the polynomial in equation (1) coincides with p and ii) is proved.

If an efficient algorithm for finding the roots of a polynomial over K which is known to have all its roots in K, then it is easy to derive an efficient algorithm to interpolate any $f \in X_{k}$ from its values on $\left\{1, a, \ldots, a^{2 k-1}\right\}$ from Theorem 1

2 Character Sets which Allow Reduction to Cyclic Groups

Given an abelian monoid A and a set $X \subseteq \operatorname{Hom}(A,(K, *))$ of K-valued characters of A, we say that X allows reduction to one cyclic group if there exists an element $a \in A$ which distinguishes all characters in X, i.e. $\chi(a) \neq$ $\xi(a)$ for $\chi \neq \xi$. It follows immediately from the Artin-Dedekind Lemma that in this case a k-sum f of characters from X is trivial if and only if the restriction of f to the cyclic group generated by a is trivial. Hence the results of section 1 can be applied. In particular $\left\{1, a, \ldots, a^{k-1}\right\}$ is a zero-test for X_{k} and the sums f of characters in X_{k} can be identified from the values of f on $\left\{1, a, \ldots, a^{2 k-1}\right\}$.

Important examples of character sets which allow cyclic reduction are the following ones:

1. If the submonoid U of $(K, *)$ contains a submonoid which is a free abelian submonoid of rank n, generated, say, by $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$, (in particular, this is the case if U contains \mathbb{Q}), then the set of all monomial charcters $\left\{\chi^{\alpha} \mid \alpha \in \mathbb{Z}^{n}\right\}$ of U^{n} allows reduction to a cyclic group:
indeed, any two different monomial characters of U^{n} differ necessarily on $a:=\left(u_{1}, \ldots, u_{n}\right)$. This implies in particular many of the results presented in [GK87] and [BT88], where u_{i} is chosen to be the i-th prime.
2. Similarly, if $U \leq(K, *)$ contains at least one element, say u, of infinite order or of order at least q^{n} for some $q \in \mathbb{N}$ then all monomial characters in $X:=X(q, n)=\left\{\chi^{\alpha} \mid \alpha \in \mathbf{q}^{n}\right\}$ differ on $a:=\left(u, u^{q}, \ldots, u^{q^{n-1}}\right)$ in view of the uniqueness of q-adic expansion, and this is used in [CDGK88].

In particular, since any infinite submonoid of $(K, *)$ either contains an element of infinite order or cyclic submonoids of arbitary large order (cf. Artin) we get the following essentialy trivial, though surprisingly general theorem.

Theorem 2 If U is an infinite submonoid of the multiplicative monoid $(K, *)$ of a field K and if for natural numbers n and q

$$
X:=X(q, n)=\left\{\chi^{\alpha} \mid \alpha \in \mathbf{q}^{n}\right\}
$$

denotes the set of all monomial characters of U^{n} local degree between 0 and $q-1$, then for any $k \in \mathbb{N}$ there exists a zero-test set of the form $\left\{1, a, \ldots, a^{k-1}\right\}$ for X^{k} in U^{n} and, in addition, one can identify the support of any map $f \in X_{k}$ from its values on a corresponding zero-test set for $X_{2 k}$.

To apply the results from section 1 even in cases which do not simply allow reduction to a cyclic group we use the following definition: for givien A and $X \subseteq \operatorname{Hom}(X,(K, *))$, as above we define a subset $D \subseteq A$ to be a k-cover for X if for any subset $Y \subseteq X$ of cardinality at most k there exists some $a \in D$ with $\chi(a) \neq \psi(a)$ for all $\chi, \xi \in Y$ with $\chi \neq \xi$. Obviously, Lemma 1.1 implies :

Lemma 2.1 If D is a k-cover of an abelian monoid A and for a character set $X \subseteq \operatorname{Hom}(X,(K, *))$), then $D^{[k]}:=\left\{a^{i} \mid a \in D, 1 \leq i<k\right\}$ is a zero-test set for X_{k}.

In particular, we have the following
Corollary 2.2 If $X=\operatorname{Hom}(A,(K, *))$ and if $D \subseteq A$ generates A, then $D^{[2]}=D \cup\left\{1_{A}\right\}$ is a zero-test set for X_{2}.

To construct k-covers in more general situations we may adopt an idea from [GKS88]: for $X \subseteq \operatorname{Hom}(A,(K, *))$ and a natural number k we define the collection of h-distinction sets:

$$
\mathcal{D}(X, h):=\{D \subseteq A \mid \forall \chi, \xi \in X, \chi \neq \xi, \#\{d \in D \mid \chi(d)=\xi(d)\}<h\} .
$$

Hence a member D of $\mathcal{D}(X, h)$ has the property that for every pair of distinct characters there are at most $h-1$ elements in D where the two characters are equal. Of course we are not interested in sets D of cardinality smaller than h, which are trivially in $\mathcal{D}(X, h)$, but in those which are large enough to have subsets being in $\mathcal{D}(X, 1)$ as well.

Lemma 2.3 Every h-distinction set D having more than $(h-1) \cdot\binom{k}{2}$ elements is a k-cover of X.

Proof. Let Y be a subset of X, having at most k elements. The set $\cup_{\chi, \xi \in Y, \chi \neq \xi}\{d \in D \mid \chi(d)=\xi(d)\}$ has atmost $(h-1) \cdot\binom{\# Y}{2} \leq(h-1) \cdot\binom{k}{2}$ elements, therefore there exists an element a in D such that $\chi(a) \neq \xi(a)$ for all distinct $\chi, \xi \in Y$.

In [GKS88] D. Grigoriev, M. Karpinski and M. Singer have shown that the following observation - tranformed here into our more general context - has striking consequences.

Lemma 2.4 (cf. [GKS88]) . Let A denote an abelian monoid and assume K to be field, containing a primitive root of unity ω of order e. Assume that for some positive integer n we have characters $\chi_{1}, \ldots, \chi_{n}: A \rightarrow K$, elements $a_{1}, \ldots, a_{n} \in A$, and integers $\epsilon_{\mu, \nu} \in \mathbb{Z}$ for all $1 \leq \mu, \nu \leq n$ such that

$$
\chi_{\mu}\left(a_{\nu}\right)=\omega^{\epsilon_{\mu, \nu}} .
$$

Assume furthermore that $\operatorname{det}\left(\epsilon_{\mu, \nu}\right) \neq 0$ and that $c:=\left(c_{\nu, \rho}\right)_{1 \leq \nu \leq n, 1 \leq \rho \leq r}$ is an $n \times r$-matrix for some $r \geq n$ such that every $n \times n$-submatrix of c has a non-vanishing determinant. Then if

$$
q:=\left\lceil\frac{e}{\left.n \cdot \max _{\mu, \rho}\left(\mid \sum_{1 \leq \nu \leq n} \epsilon_{\mu, \nu} c_{\nu, \rho}\right) \mid\right)}\right\rceil
$$

and

$$
X:=\left\{\chi^{\alpha}: A \rightarrow R \mid \alpha \in \mathbf{q}^{\mathbf{n}}\right\}
$$

where χ^{α} denotes $\prod_{1 \leq \nu \leq n} \chi_{\nu}^{\alpha_{\nu}}$, is a set of q^{n} different characters, then the set

$$
D:=\left\{d_{\rho}:=\prod_{1 \leq \nu \leq n} a_{\nu}^{c_{\nu, \rho}} \mid 1 \leq \rho \leq r\right\}
$$

is in $\mathcal{D}(X, n)$.
Proof. For every pair of different characters χ^{α} and χ^{β} from X and for all $1 \leq \rho \leq r$ we have

$$
\chi^{\alpha}\left(d_{\rho}\right)=\omega^{\sum_{\mu=1}^{n}\left(\sum_{\nu=1}^{n} \epsilon_{\mu, \nu} c_{\nu, \rho}\right) \alpha_{\mu}}
$$

which equals $\chi^{\beta}\left(d_{\rho}\right)$ if and only if

$$
\sum_{\mu=1}^{n}\left(\sum_{\nu=1}^{n} \epsilon_{\mu, \nu} c_{\nu, \rho}\right)\left(\alpha_{\mu}-\beta_{\mu}\right) \equiv 0 \text { modulo } e
$$

Furthermore we have

$$
\left|\sum_{\mu=1}^{n}\left(\sum_{\nu=1}^{n} \epsilon_{\mu, \nu} c_{\nu, \rho}\right)\left(\alpha_{\mu}-\beta_{\mu}\right)\right| \leq n \cdot \max _{\mu, \rho}\left(\left|\sum_{1 \leq \nu \leq n} \epsilon_{\mu, \nu} c_{\nu, \rho}\right|\right)(q-1)<e .
$$

Altogether two different characters $\chi^{\alpha}, \chi^{\beta} \in X$ coincide at an element $d_{\rho} \in D$ if and only if

$$
\sum_{\mu=1}^{n}\left(\sum_{\nu=1}^{n} \epsilon_{\mu, \nu} c_{\nu, \rho}\right)\left(\alpha_{\mu}-\beta_{\mu}\right)=0
$$

If there were more than $n-1$ elements from D where χ^{α} and χ^{β} coincide then the non-singularity of the corresponding $n \times n$-submatrix of c together with that of $\operatorname{det}\left(\epsilon_{\mu, \nu}\right)$ would imply $\alpha-\beta=(0, \ldots, 0)$.

In order to apply this lemma we first of all have to construct an integral matrix c satisfying the requirements from the lemma and having not too large entries. To do this we present the following lemma from [GKS88], which uses Cauchy's determinants in a rather elegant way:

Lemma 2.5 For every two positive integers r and n there exists an integral $n \times r$-matrix $c=\left(c_{\nu, \rho}\right)_{1 \leq \nu \leq n, 1 \leq \rho \leq r}$, the absolute value of each entry bounded by $n+r-1$, such that no subdeterminant of c vanishes. Furthermore, all entries in the first row are pairwise different.

Proof. Choose a prime number p with $n+r \leq p<2(n+r)$. Then for $1 \leq \nu \leq n$ and $1 \leq \rho \leq r$ none of the numbers $\nu+\rho-1$ considered in $G F(p)$ equals 0 . Therefore we can consider the matrix

$$
\left(\frac{1}{\nu+\rho-1}\right)_{1 \leq \nu, \rho<r} \in G F(p)^{n \times r} .
$$

By Lemma 2.6 below no subdeterminant of this matrix vanishes. Choose integers $c_{\nu, \rho}$ with $-\frac{p-1}{2} \leq c_{\nu, \rho} \leq \frac{p-1}{2}$ such that $\frac{1}{\nu+\rho-1}=c_{\nu, \rho}$ in $G F(p)$, then the same is true for the matrix $c=\left(c_{\nu, \rho}\right)$.

Lemma 2.6 (Cauchy) . For every natural number n the following identity in rational functions in commuting indeterminates $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)$ holds:

$$
\operatorname{det}\left(\frac{1}{x_{i}+y_{j}}\right)_{1 \leq i \leq n, 1 \leq j \leq n}=\frac{\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right) \prod_{1 \leq i<j \leq n}\left(y_{j}-y_{i}\right)}{n \prod_{1 \leq i, j \leq n}\left(x_{i}+y_{j}\right)} .
$$

Proof. The polynomial

$$
\prod_{1 \leq i, j \leq n}\left(x_{i}+y_{j}\right) \operatorname{det}\left(\frac{1}{x_{i}+y_{j}}\right)_{1 \leq i \leq n, 1 \leq j \leq n}
$$

is not the zero-polynomial, because the coefficient of

$$
x_{1}^{n-1} x_{2}^{n-2} \ldots x_{n-1} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1}
$$

is 1 . Considered as polynomial in the y 's it is alternating. Each coefficient of the monomials in the y 's is itself an alternating polynomial in the x 's. As the Vandermonde is the alternating non-zero polynomial having smallest degree, namely $\binom{n}{2}$, it is a scalar multiple of the Vandermonde determinant involving the indeterminates $\left(y_{1}, \ldots, y_{n}\right)$ and the coefficient has to be a Vandermonde determinant involving $\left(x_{1}, \ldots, x_{n}\right)$.

The last lemmata together imply the next result.
Theorem 3 If U is a finite (and therefore cyclic!) subgroup order e of the multiplicative group of a field K, if $A=U^{n}$ is the n-fold direct product of U, then for every positive integer k and q satisfying

$$
n \cdot(q-1) \cdot\left(n+(n-1) \cdot\binom{k}{2}\right)<e
$$

there exists a zero-test set of order at most $k \cdot\left((n-1) \cdot\binom{k}{2}+1\right)$ for the sums of characters from $X(q, n)_{k}=\left\{\chi^{\alpha} \mid \alpha \in \mathbf{q}^{\mathbf{n}}\right\}_{k}$.
Proof. W.l.o.g. assume $n \geq 2$. Put $r:=(n-1) \cdot\binom{k}{2}+1$ and choose $c=\left(c_{\nu, \rho}\right)_{1 \leq \nu \leq n, 1 \leq \rho \leq r}$ according to Lemma 2.5. Choose a generator ω for U. Note that $\chi_{\mu}\left(a_{\nu}\right)=\omega^{\delta_{\mu, \nu}}$ for

$$
a_{\nu}:=(1, \ldots, 1, \omega, 1, \ldots, 1),
$$

ω at the position ν, and the projections $\chi_{\mu}=\chi^{\left(\delta_{\left.\mu, 0, \ldots, \delta_{\mu, n-1}\right)}\right.}$ to the μ-th component holds for all $1 \leq \mu, \nu \leq n$. An application of Lemma 2.4 guarantees the set

$$
D:=\left\{d_{\rho}:=\prod_{1 \leq \nu \leq n} a_{\nu}^{c_{\nu, \rho}} \mid 1 \leq \rho \leq r\right\}
$$

to be in $\mathcal{D}(X(\tilde{q}, n), n)$ for $\tilde{q}:=\left\lceil\frac{e}{\left.n \cdot \max _{\mu, \rho}\left(\mid \sum_{1 \leq \nu \leq n} \epsilon_{\mu, \nu} c_{\nu, \rho}\right) \mid\right)}\right\rceil$ and therefore in $\mathcal{D}(X(q, n), n)$ in view of

$$
\begin{aligned}
q & <\frac{e}{n \cdot\left(n+(n-1) \cdot\binom{k}{2}\right)}+1=\frac{e}{n \cdot(n+r-1)}+1 \leq \\
& \leq \frac{e}{n \cdot \max _{\mu, \rho}\left(\left|c_{\mu, \rho}\right|\right)}+1 \leq \tilde{q}+1,
\end{aligned}
$$

that is $q \leq \tilde{q}$. In view of $0 \neq\left|c_{0, \rho}-c_{0, \rho^{\prime}}\right| \leq 2 \cdot(n+r-1)=2 \cdot\left(n+(n-1) \cdot\binom{k}{2}\right)<e$ and therefore $d_{\rho} \neq d_{\rho^{\prime}}$ for $1 \leq \rho<\rho^{\prime} \leq r$ the set D has r elements. Hence $(n-1) \cdot\binom{k}{2} \leq r=\# D$ and we may apply the Lemmata 2.3 and 2.1 to conclude that

$$
\left\{\left(\omega^{\kappa \cdot c_{0, \rho}}, \omega^{\kappa \cdot c_{1, \rho}}, \ldots, \omega^{\kappa \cdot c_{n-1, \rho}}\right) \mid 1 \leq \rho \leq r, 1 \leq \kappa<k\right\}
$$

is a zero-test set for $X(q, n)_{k}$ of size at most $k \cdot r=k \cdot\left((n-1) \cdot\binom{k}{2}+1\right) \quad$ व
The main result of the paper [GKS88] is the case where K is the finite field $G F(s)$ for a some s with $s \geq q k^{2} n^{2}$ and $U:=G F(s) \backslash\{0\}$ in Theorem 3.

3 General Case

If no reduction to a cyclic group is possible, all we can do is to give a method for a recursive construction of zero-test sets for direct products of abelian monoids from those of the factors.

Lemma 3.1 (cf. [CDGK88]) . If A and B are abelian monoids, if for given $X \subseteq \operatorname{Hom}(A,(K, *))$ and $Y \subseteq \operatorname{Hom}(B,(K, *))$ we have zero-test sets $A_{1}=\left\{1_{A}\right\}, A_{2}, \ldots, A_{k} \subseteq A$ and $B_{1}=\left\{1_{B}\right\}, B_{2}, \ldots, B_{k} \subseteq B$ for $X_{1}, X_{2}, \ldots, X_{k}$ and $Y_{1}, Y_{2}, \ldots, Y_{k}$, respectively, then - identifying $\operatorname{Hom}(A \times$ $B,(K, *))$ with $\operatorname{Hom}(A,(K, *)) \times \operatorname{Hom}(B,(K, *))$, as usual - the set

$$
\bigcup_{i \cdot j \leq k} A_{i} \times B_{j} \subseteq A \times B
$$

is a zero-test set for $(X \times Y)_{k}$.
Proof. Note that any $f \in(X \times Y)_{k}$ can be written uniquely in the form

$$
f=\sum_{\eta \in Y} f_{\eta} \cdot \eta
$$

for some $f_{\eta} \in X_{i(\eta)}(\eta \in Y)$ and $\sum_{\eta \in Y} i(\eta) \leq k$. Obviously the cardinality j of the Y-support $\operatorname{supp}_{Y}(f):=\left\{\eta \in Y \mid f_{\eta} \neq 0\right\}$ of f is bounded by k and in case $f \neq 0$ there must exist some $\eta_{0} \in \operatorname{supp}_{Y}(f)$ with $i\left(\eta_{0}\right) \leq \frac{k}{j}$. Choose $a \in A_{i\left(\eta_{0}\right)}$ with $f_{\eta_{0}}(a) \neq 0$. Consequently, $f(a,-)$ is a non-zero j-sum of characters from Y for which we can find an element $b \in B_{j}$ with $f(a, b) \neq 0$. -

This lemma generalizes immediately to the situation of more than two factors.

Lemma 3.2 If $A^{(1)}, \ldots, A^{(n)}$ are abelian monoids, if for given $X^{(\nu)} \subseteq \operatorname{Hom}\left(A^{(\nu)}, R\right)$ we have zero-test sets $A_{1}^{(\nu)}=\left\{1_{A^{(\nu)}}\right\}, A_{2}^{(\nu)}, \ldots, A_{k}^{(\nu)} \subseteq A^{(\nu)}$ for $X_{1}^{(\nu)}, X_{2}^{(\nu)}, \ldots, X_{k}^{(\nu)}$, respectively for $\nu=1, \ldots, n$, then the set

$$
\bigcup_{i_{1} \ldots i_{n} \leq k} A_{i_{1}}^{(1)} \times \ldots \times A_{i_{n}}^{(n)} \subseteq A^{(1)} \times \ldots \times A^{(n)}
$$

is a zero-test set for k-sums from $X^{(1)} \times \ldots \times X^{(n)} \subseteq \operatorname{Hom}\left(A^{(1)}, R\right) \times \ldots \times$ $\operatorname{Hom}\left(A^{(n)}, R\right)=\operatorname{Hom}\left(A^{(1)} \times \ldots \times A^{(n)}, R\right)$.

Corollary 3.3 Let A be a finitely generated abelian group isomorphic to $\prod_{1 \leq \nu \leq n} C_{q_{\nu}}$ where $C_{q_{\nu}}$ is a cyclic group of order q_{ν}, q_{ν} a prime power or ∞, generated by a_{ν}. Then

$$
\bigcup_{\substack{k_{1} \ldots, \ldots n_{n} \leq k \\ k_{\nu} \leq \min \left(k, q_{\nu}\right)}} T_{k_{1}}^{(1)} \times \ldots \times T_{k_{n}}^{(n)}
$$

where $T_{k_{\nu}}^{(\nu)}:=\left\{1, a_{\nu}, a_{\nu}^{2}, \ldots, a_{\nu}^{\mathbf{k}_{\nu}-1}\right\}$ is a zero-test set for all sums of characters from $X_{k}=\left\{\chi^{\alpha} \mid \alpha \in \prod_{1 \leq \nu \leq n} \mathbf{q}_{\nu}\right\}(\infty:=\mathbb{Z})$.

Theorem 4 (cf. [CDGK88]) . Let U be a finite submonoid of order q of the multiplicative group of a field K for a natural number q, let X be the set of characters $X(n, q)$ for U^{n} and T be any zerotest set for X_{k}. If U contains 0 , then for every subset $S \subseteq\{1, \ldots, n\}$ such that $\# S \leq\left\lfloor\log _{2} k\right\rfloor$ the set T contains an element $a^{S}=\left(a_{1}^{S}, \ldots, a_{n}^{S}\right)$ with $S=\left\{i: a_{i}^{S}=0\right\}$. Hence T has at least $\sum_{i=0}^{\left\lfloor\log _{2} k\right\rfloor}\binom{n}{i}$ elements.

Proof. For every subset $S \subseteq\{1, \ldots, n\}$ such that $\# S \leq\left\lfloor\log _{2} k\right\rfloor$ define a sum of characters by

$$
f_{S}:=\prod_{i \in S}\left(\chi_{i}^{q-1}-1\right) \cdot \prod_{i \notin S} \chi_{i},
$$

where χ_{i} is the projection to the i-th component. These functions have the following properties:

1. p_{S} is in X_{k}.
2. $p_{S}(a) \neq 0$ if and only if $\left\{i: a_{i}=0\right\}=S$.

The first property follows from $2^{\# S} \leq 2^{\left\lfloor\log _{2} k\right\rfloor} \leq k$, the second from the fact that the zeros of $\chi_{i}^{q-1}-1$ are exactly the elements of $U \backslash\{0\}$. Hence, to distinguish such a polynomial and the zero-polynomial, there has to be an element a^{S} as claimed in the set A.

In case $q=2$ we may combine Corollary 2.2 and the results before to obtain a minimal zero-test set.

Theorem 5 (cf. [CDGK88]) . Let U be the submonoid $\{0,1\}$ of a field K, let X be the set of characters $X(n, 2)$ for U^{n}. Then

$$
\left\{a^{S} \in U^{n} \mid S \subseteq\{1, \ldots, n\}, \quad a_{i}^{S}= \begin{cases}1, & \text { if } i \in S \\ 0, & \text { if } i \neq S\end{cases}\right.
$$

is a minimal zero-test set of X_{k} of cardinality $\sum_{i=0}^{\left\lfloor\log _{2} k\right\rfloor}\binom{n}{i}$.

Proof. It suffices to show that this set really is a zero-test set, but this follows from Lemma 3.1 using $A_{2}^{(\nu)}:=\{0,1\}$ for all $1 \leq \nu \leq n$.

As we have observed already in the introductions there does not seem to exist a universally applicable algorithm which would allow to interpolate k-sums of characters from some character set X from their restrictions to zero-test sets for $X_{2 k}$. Hence to construct interpolation algorithms one has to consider more specific situations. One such situation is described in the following:

Theorem 6 . Assume that for some field K, some monoid A, some finite set $X \subseteq \operatorname{Hom}(A,(K, *))$ of K-valued characters of A of cardinality q, and some subset $D \subseteq A$ of the same cardinality q with $\operatorname{det}(\chi(a))_{\chi \in X, a \in D} \neq 0$, the inverse of the $q \times q$-matrix $(\chi(a))_{\chi \in X, a \in D}$ is given and that in addition for any two natural numbers k and n a zero-test set $T_{n, k} \subseteq A^{n}$ of cardinality $t(n, k)$ for X^{n} is specified. Then for any $k, n \in \mathbb{N}$ one can compute $\operatorname{supp}(f)$ as well as the coefficients of f for any $f \in\left(X^{n}\right)_{k}$ from altogether at most $n \cdot\left(k^{2}=q\right) \cdot t(n-1, k)$ evaluations of f by an algorithm which needs at most $2 n$ matrix inversions, each matrix having at most k rows ans colums, and otherwise only matrix multiplications and methods to find for $r \leq k$ and $r \leq l \leq \max \left(k^{2}, q\right)$ the first r linearly indepentent columns in an $r \times l$ matrix of rank r. Moreover, the $2 n$ matrix inversions can be performed on n parallel processors so that the first n inversions, then the next $\frac{n}{2}, \frac{n}{4}, \ldots$ inversions can be done in parallel, leading to altogether to $\log _{2}(n)$ basic computational rounds.

Proof. We define set partitions $P^{l}:=\left(P_{1}^{l}, \ldots, P_{\left\lceil\frac{n}{\left.2^{l}\right\rceil}\right.}^{l}\right)$ of \mathbf{n} for $0 \leq l \leq$ $\left\lceil\log _{2} n\right\rceil$ by

$$
P_{\nu}^{l}:=\left\{\nu \cdot 2^{l}, \nu \cdot 2^{l}+1, \ldots,(\nu+1) \cdot 2^{l}-1\right\},
$$

of course stopping at $n-1$ in the last part. Next the sets $\left(\operatorname{supp}_{P_{\nu}^{l}}\right)_{0 \leq \nu<\left\lceil\frac{n}{2}\right\rceil}$ are determined inductively. In case $l=0$ we use n-times Lemma ?? for $T:=P_{\nu}^{0}=\{\nu\}$ and the supersets $\hat{Y}^{\{\nu\}}$, always setting A^{T} to be $\prod_{\nu \notin T} A^{(\nu)}$ and making the usual identifications. For the induction step we use at most $\left\lceil\frac{n}{2^{l+1}}\right\rceil$-times Lemma ?? for $T:=P_{\nu}^{(l+1)}$ and the supersets $\hat{Y}^{P_{\nu}^{l+1}}:=$ $\operatorname{supp}_{P_{2 \nu}^{l}}(f) \times \operatorname{supp}_{P_{2 \nu+1}^{l}}(f)$.
This is justified as more generally suppose that for disjoint subsets T_{0} and T_{1} of \mathbf{n} the corresponding supports $\operatorname{supp}_{Y^{T_{0}}}(f)$ and $\operatorname{supp}_{Y^{T_{1}}}(f)$ are known,
then it is clear that we can use $Y^{T_{0} \cup T_{1}} \supseteq \hat{Y}^{T_{0} \cup T_{1}}:=\operatorname{supp}_{Y^{T_{0}}}(f) \times \operatorname{supp}_{Y^{T_{1}}}(f)$ as a finite superset of $s u p p_{Y^{T_{0}} \cup T_{1}}(f)$.
Finally we arrive at $\operatorname{supp}(f)$. An application of lemma ?? for $T:=\mathbf{n}$ gives the coefficients of f.

Note that we only required elements d^{T} and zero-test sets Z^{T} for the at most $2 n+1$ sets occuring in the set partitions. The calculations to recover f require at most $2 n+1$ applications of Lemma ??, i.e. in step 0 we have to invert (in parallel) n Vandermonde matrices, having as many rows and columns as the cardinality of the given supersets of $\operatorname{supp}_{\{\nu\}}(f)$. In the next $\left\lceil\log _{2} n\right\rceil$ steps at each stage l at most $\left\lceil\frac{n}{2^{l}}\right\rceil$ Vandermonde matrices of size $k^{2} \times k^{2}$ have to be inverted. A further inversion of a $k \times k$ Vandermonde matrix gives the coefficients. Note further that the number of evaluation points can be reduced if one allows adaptive algorithms.

A similar result holds for the more general case of products $\prod_{1 \leq \nu \leq n}$ and character sets X_{1}, \ldots, X_{n} as long as for every $1 \leq \nu \leq n$ a zero-test set for a $\left(\prod_{\mu \neq \nu} X_{\mu}\right)_{k}$ is known.

References

[BT88] Ben-Or, M., Tiwari, P. A Deterministic Algorithm for Sparse Multivariate Polynomial Interpolation, Proc. STOC ACM, (1988).
[CDGK88] Clausen, M., Dress, A., Grabmeier, J., Karpinski, M. On zerotesting and interpolation of k-sparse multivariate polynomials over finite fields, Theor. Comp. Sc., to appear, 1989
[GK87] Grigoriev, D.Y., Karpinski, M. The Matching Problem for Bipartite Graphs with Polynomially Bounded Permanents is in NC, Proc. $28^{\text {th }}$ IEEE FOCS (1987), Los Angeles, Oct. 12-14, 1987.
[GKS88] Grigoriev, D.Y., Karpinski, M., Singer, M.F. Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields, preprint, 1988.
[KR88] Karp, R.M., Ramachandran, V. L. A Survey of Parallel Algorithms for Shared-Memory Machines, Preprint, 1988, to appear in the Handbook of Theoretical Computer Science, North-Holland
[LN83] Lidl, H., Niederreiter, H. Finite Fields,Encyclopedia of Mathematics and its Applications, Vol.10, Cambridge University Press 1983.
[MS72] MacWilliams, F.J., Sloane, N.J.A. The Theory of Error Correcting Codes,North Holland (1972).
[M86] Mulmuley, K. A Fast Parallel Algorithm to Compute the Rank of a Matrix over an Arbitrary Field, Proc. STOC ACM (1986), 338-339.

[^0]: *Part of this work was prepared during a visit at the Scientific Center Heidelberg, IBM Germany which is gratefully acknowledged.

