The Tutte Group of Projective Spaces

Andreas Dress and Walter Wenzel, Bielefeld

The Tutte group of a matroid offers an algebraic approach to matroid theory. In particular, this group reflects some important geometric properties of matroids in algebraic terms.
In the sequel let M denote a matroid defined on some possibly infinite set E of finite rank n with $\mathcal{H}=\mathcal{H}_{M}$ as its set of hyperplanes and $\mathcal{L}=\mathcal{L}_{M}$ as its set of hyperlines.

Definition of the extended Tutte group:

Let $\mathbb{F}_{M}^{\mathcal{H}}$ denote the free abelian group generated by the symbols ε and $X_{H, a}$ for $H \in \mathcal{H}, a \in E \backslash H$, and let $\mathbb{K}_{M}^{\mathcal{H}}$ denote the subgroup of $\mathbb{F}_{M}^{\mathcal{H}}$ generated by ε^{2} and all elements of the form

$$
\varepsilon \cdot X_{H_{1}, a_{2}} \cdot X_{H_{1}, a_{3}}^{-1} \cdot X_{H_{2}, a_{3}} \cdot X_{H_{2}, a_{1}}^{-1} \cdot X_{H_{3}, a_{1}} \cdot X_{H_{3}, a_{2}}^{-1}
$$

for $H_{1}, H_{2}, H_{3} \in \mathcal{H}, L:=H_{1} \cap H_{2} \cap H_{3}=H_{i} \cap H_{j} \in \mathcal{L}$ for $i \neq j$ and $a_{i} \in H_{i} \backslash L$ for $1 \leq i \leq 3$.
Then the (extended) Tutte group $\mathbb{T}_{M}^{\mathcal{H}}$ of M is defined by

$$
\mathbb{T}_{M}^{\mathcal{H}}:=\mathbb{F}_{M}^{\mathcal{H}} / \mathbb{K}_{M}^{\mathcal{H}}
$$

Let ε_{M} denote the image of ε and $H(a)$ the image of $X_{H, a}$ in $\mathbb{T}_{M}^{\mathcal{H}}$, respectively.

Definition of the inner Tutte group:

Define the homomorphism $\Phi: \mathbb{T}_{M}^{\mathcal{H}} \rightarrow \mathbb{Z}^{\mathcal{H}} \times \mathbb{Z}^{E}$ by

$$
\begin{array}{ll}
\Phi\left(\varepsilon_{M}\right) & :=0 \\
\Phi(H(a)) & :=\left(\delta_{H}, \delta_{a}\right) \text { for } H \in \mathcal{H}, a \in E \backslash H .
\end{array}
$$

$\mathbb{T}_{M}^{(0)}:=\operatorname{ker} \Phi$ is the inner Tutte group of M.

Proposition 1:

Assume M is representable over the skewfield K; that is, there exists a family of maps $f_{H}: E \rightarrow K(H \in \mathcal{H})$ with
(H1) $f_{H}^{-1}(\{0\})=H$ for all $H \in \mathcal{H}$;
(H2) if $H_{1}, H_{2}, H_{3} \in \mathcal{H}$ are pairwise distinct and $L:=H_{1} \cap H_{2} \cap H_{3} \in \mathcal{L}$, then there exist $c_{1}, c_{2}, c_{3} \in K^{\star}$ such that for all $e \in E$ we have

$$
f_{H_{1}}(e) \cdot c_{1}+f_{H_{2}}(e) \cdot c_{2}+f_{H_{3}}(e) \cdot c_{3}=0
$$

Put $K_{C}:=K^{\star} /\left[K^{\star}, K^{\star}\right]$.
Then the homomorphism $\psi: \mathbb{F}_{M}^{\mathcal{H}} \rightarrow K^{\star}$ given by

$$
\begin{aligned}
& \psi(\varepsilon):=-1 \\
& \psi\left(X_{H, a}\right):=f_{H}(a) \text { for } H \in \mathcal{H}, a \in E \backslash H
\end{aligned}
$$

induces a homomorphism $\varphi=\bar{\psi}: \mathbb{T}_{M}^{\mathcal{H}} \rightarrow K_{C}$.

Proposition 2:

Assume $H_{1}, H_{2}, H_{3} \in \mathcal{H}$ with $H_{1} \cap H_{2} \cap H_{3} \in \mathcal{L}$ and $H_{3} \neq H_{i}$ for $i \in\{1,2\}$. Then for $a, b \in H_{3} \backslash\left(H_{1} \cup H_{2}\right)$ we have

$$
H_{1}(a) \cdot H_{2}(a)^{-1}=H_{1}(b) \cdot H_{2}(b)^{-1} .
$$

Definition of cross ratios in Tutte groups:

If H_{1}, H_{2}, H_{3} are as in Proposition 2, put

$$
\left\lvert\, \begin{array}{lll}
H_{1} & & H_{2} \\
& H_{3} &
\end{array}\right.:=H_{1}(a) \cdot H_{2}(a)^{-1} \text { for } a \in H_{3} \backslash\left(H_{1} \cup H_{2}\right) .
$$

Assume $H_{1}, H_{2}, H_{3}, H_{4} \in \mathcal{H}$ with $H_{1} \cap H_{2} \cap H_{3} \cap H_{4} \in \mathcal{L}$ and $H_{1}, H_{2} \neq H_{3}, H_{4}$, i.e. $\left\{H_{1}, H_{2}\right\} \cap\left\{H_{3}, H_{4}\right\}=\emptyset$. The cross ratio $\left[\begin{array}{ll}H_{1} & H_{2} \\ H_{3} & H_{4}\end{array}\right] \in \mathbb{T}_{M}^{(0)}$ is defined by

$$
\left[\begin{array}{ll}
H_{1} & H_{2} \\
H_{3} & H_{4}
\end{array}\right]:=\left\lvert\, \begin{array}{lll}
H_{1} & & H_{2} \\
& H_{3} & \\
& & \left.\left|\begin{array}{lll}
H_{2} & & H_{1} \\
& H_{4} &
\end{array}\right| . . . \begin{array}{lll}
&
\end{array}\right) .
\end{array}\right.
$$

By applying the more elementary part of Tutte's homotopy theory one proves

Proposition 3:

i) $\mathbb{T}_{M}^{(0)}$ is the subgroup of $\mathbb{T}_{M}^{\mathcal{H}}$ generated by ε_{M} and all cross ratios $\left[\begin{array}{cc}H_{1} & H_{2} \\ H_{3} & H_{4}\end{array}\right]$ for which $H_{1}, H_{2}, H_{3}, H_{4}$ are pairwise distinct hyperplanes in M with $H_{1} \cap H_{2} \cap H_{3} \cap H_{4} \in \mathcal{L}$.
ii) $\mathbb{T}_{M}^{(0)}$ is generated by all cross ratios $\left[\begin{array}{ll}H_{1} & H_{2} \\ H_{3} & H_{4}\end{array}\right]$ as in i) if and only if M is not regular.

Definition:

Put

$$
\begin{aligned}
\mathcal{H}^{(4)}:=\left\{\left(H_{1}, H_{2}, H_{3}, H_{4}\right) \in \mathcal{H}^{4} \mid\right. & H_{1} \cap H_{2} \cap H_{3} \cap H_{4}=H_{i} \cap H_{j} \in \mathcal{L} \\
& \text { for } i \in\{1,2\}, j \in\{3,4\}\} .
\end{aligned}
$$

i) $\left(H_{1}, H_{2}, H_{3}, H_{4}\right),\left(H_{1}^{\prime}, H_{2}^{\prime}, H_{3}^{\prime}, H_{4}^{\prime}\right) \in \mathcal{H}^{(4)}$ are called projective neighbours of each other, if $\bigcap_{i=1}^{4} H_{i} \neq \bigcap_{i=1}^{4} H_{i}^{\prime}$ and there exists some $H \in \mathcal{H}$ with
(I) $\bigcap_{i=1}^{4} H_{i} \subsetneq H, \bigcap_{i=1}^{4} H_{i}^{\prime} \subsetneq H$ and
(II) for $1 \leq i \leq 4$ we have $H_{i}=H_{i}^{\prime}$ or $H_{i} \cap H_{i}^{\prime}=H_{i} \cap H=H_{i}^{\prime} \cap H \in \mathcal{L}$.

If this is the case, we write $\left(H_{1}, H_{2}, H_{3}, H_{4}\right) \wedge\left(H_{1}^{\prime}, H_{2}^{\prime}, H_{3}^{\prime}, H_{4}^{\prime}\right)$.
ii) $G=\left(H_{1}, H_{2}, H_{3}, H_{4}\right)$ and $G^{\prime}=\left(H_{1}^{\prime}, H_{2}^{\prime}, H_{3}^{\prime}, H_{4}^{\prime}\right) \in \mathcal{H}^{(4)}$ are called projectively equivalent, if there exist $k \geq 0$ and $G_{0}, G_{1}, \ldots, G_{k} \in \mathcal{H}^{(4)}$ such that

$$
G_{0}=G, G_{k}=G^{\prime}, G_{i-1} \wedge G_{i} \text { for } 1 \leq i \leq k
$$

In this case we write $\left(H_{1}, H_{2}, H_{3}, H_{4}\right) \stackrel{p r}{\sim}\left(H_{1}^{\prime}, H_{2}^{\prime}, H_{3}^{\prime}, H_{4}^{\prime}\right)$.

Proposition 4:

Assume $\left(H_{1}, H_{2}, H_{3}, H_{4}\right) \stackrel{p r}{\sim}\left(H_{1}^{\prime}, H_{2}^{\prime}, H_{3}^{\prime}, H_{4}^{\prime}\right)$. Then we have

$$
\left[\begin{array}{ll}
H_{1} & H_{2} \\
H_{3} & H_{4}
\end{array}\right]=\left[\begin{array}{ll}
H_{1}^{\prime} & H_{2}^{\prime} \\
H_{3}^{\prime} & H_{4}^{\prime}
\end{array}\right] .
$$

From now on we assume that M is a projective space of dimension $m \geq 2$.

Proposition 5:

Assume $H_{1}, H_{2} \in \mathcal{H}$ are distinct, put

$$
\mathcal{H}_{1,2}:=\left\{H \in \mathcal{H} \mid H_{1} \cap H_{2} \subseteq H\right\}
$$

and let $\mathcal{G}_{\left(H_{1}, H_{2}\right)}$ denote the group of projectivities $p: \mathcal{H}_{1,2} \rightarrow \mathcal{H}_{1,2}$ with $p\left(H_{i}\right)=$ H_{i} for $i \in\{1,2\}$. Then $\eta: \mathcal{G}_{\left(H_{1}, H_{2}\right)} \rightarrow \mathbb{T}_{M}^{(0)}$ defined by

$$
\eta(p):=\left[\begin{array}{cc}
H_{1} & H_{2} \\
H_{3} & p\left(H_{3}\right)
\end{array}\right] \text { for } H_{3} \in \mathcal{H}_{1,2} \backslash\left\{H_{1}, H_{2}\right\}
$$

is a well defined group epimorphism; that is, η does not depend on H_{3}.

Proposition 6:

If $H_{1}, H_{2}, H_{3} \in \mathcal{H}$ are pairwise distinct with $L:=H_{1} \cap H_{2} \cap H_{3} \in \mathcal{L}$, then

$$
\mathbb{T}_{M}^{(0)}=\left\{\left.\left[\begin{array}{cc}
H_{1} & H_{2} \\
H_{3} & H_{4}
\end{array}\right] \right\rvert\, L \subseteq H_{4} \in \mathcal{H} \backslash\left\{H_{1}, H_{2}\right\}\right\} .
$$

By applying Proposition 1 and Proposition 6 one proves

Proposition 7:

If M is the projective space over the skewfield K of dimension $m \geq 2$, then $\mathbb{T}_{M}^{(0)} \cong K_{C}$.
If, in particular, K is a field, then $\mathbb{T}_{M}^{(0)} \cong K^{\star}$.
In general it follows from [G], Theorem 2, that in case M is a finite nondesarguesian projective plane its inner Tutte group $\mathbb{T}_{M}^{(0)}$ is necessarily trivial.

References

[B] R. Baer: Linear Algebra and Projective Geometry. New York: Academic Press 1952.
[DW1] A. W. M. Dress and W. Wenzel: Geometric Algebra for Combinatorial Geometries; to appear in Advances in Mathematics 76 (1989).
[DW2] A. W. M. Dress and W. Wenzel: On Combinatorial and Projective Geometry; in preparation.
[G] Th. Grundhöfer: The Groups of Projectivities of Finite Projective and Affine Planes. Ars Combinatoria 25A (1988), 269 - 275.
[HP] D. R. Hughes and F. C. Piper: Projective Planes. Springer Verlag New York, Heidelberg, Berlin 1972.
[T] W. T. Tutte: Lectures on Matroids. National Bureau of Standards Journal of Research 69B (1965), $1-47$.
[W] W. Wenzel: A Group Theoretic Interpretation of Tutte's Homotopy Theory; to appear in Advances in Mathematics 76 (1989).

Address:
Universität Bielefeld
Fakultät für Mathematik
Postfach 8640
D-4800 Bielefeld 1

