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Abstract: In this note we study a variant of the greedy algorithm for weight functions
defined on the system of m-subsets of a given set E and characterize completely those
classes of weight functions for which this algorithm works. Well known examples come
from matroid theory, new ones come from valuation theory.
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Introduction When matroids were defined in 1935 by H. Whitney, they served the purpose
of clarifying on an abstract level the concept of linear (in)dependence. It took more than
thirty years before D. Gale observed 1968 in [G], based on earlier work of J.B. Kruskal
[K] and R. Rado [R], that they can also be defined by means of their close relationship
with greedy algorithms. More precisely, he showed that given a finite set E and a family
J of subsets of E with “J ⊆ I ∈ J ⇒ J ∈ J ” we can find for any map w from E into
the set R+ of nonnegative real numbers a set I = Imax ∈ J with f(I) :=

∑
x∈I

f(x) ≥ f(J)

for all j ∈ J by using the greedy algorithm (that is by first choosing an element x1 ∈ E
with {x1} ∈ J and f(x1) = max(f(y) | {y} ∈ J ), then an element x2 ∈ E \ {x1} with
{x1, x2} ∈ J and f(x2) = max(f(y) | {x1, y} ∈ J , y 6= x1) and so on) if and only if J is
the set of independent subsets of E with respect to some matroid M , defined on E.
Since then, many further interesting relations between the feasibility of greedy algorithms
and various combinatorial structures have been discovered (cf. ...) and proved to be rather
useful in combinatorial optimization. In this note we want to discuss an apparently new
perspective in this context. We start with the observation that in the situation studied
by Gale one knows in advance that the resulting set Imax is necessarily a basis of the
matroid M , that is, it is a maximal subset of J . According to ..., this can be used to
speed up the optimization process a little bit as follows: start with an arbitrary basis
B = {e1, . . . , em} of M , then choose x1 ∈ E such that B1 := {x1, e2, . . . , em} is a basis,
too, and f(B1) ≥ f({x, e2, . . . , em}) for all bases {x, e2, . . . , em}. Then replace e2 by some
x2 ∈ E for which B2; = {x1, x2, e3, . . . , em} is a basis and f(B2) ≥ ({x1, xe3, . . . , em})
for all bases {x1, x, e3, . . . , em} and so on. Then we have f({x1, . . . , xm}) ≥ f(J) for all
J ∈ J . One therefore may ask for an arbitrary map v from the set

(
E
m

)
of all m-subsets

of E into R ∪ {−∞} for conditions under which the corresponding algorithm of replacing
the elements e1, . . . , em of some m-subset {e1, . . . , em} of E with v({e1, . . . , em}) 6= −∞
consecutively by some x1, . . . , xm in a locally optimal or greedy fashion, the resulting set
{x1, . . . , xm} satisfies v({x1, . . . , xm}) ≥ v({y1, . . . , ym}) for all m-subsets {y1, . . . , ym} of
E.

This question has a surprisingly simple answer if, as suggested by D. Gale’s result, one
modifies it as follows: Given some v :

(
E
m

)
→ R ∪ {−∞} with v(

(
E
m

)
) 6= {−∞}, find
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necessary and sufficient conditions for v such that for all maps ϕ : E → R the maximal
value of vϕ :

(
E
m

)
→ R ∪ {−∞} given by

vϕ({e1, . . . , em}) := v({e1, . . . , em}) + ϕ(e1) + . . .+ ϕ(em)

can be found by the greedy algorithm, explained above. As we will show, this is possible
for all ϕ : E → R if and only if the following variant of the matroid exchange property
holds:
(V1) For all B1, B2 ∈

(
E
m

)
and e ∈ B1 \ B2 there exists some f ∈ B2 \ B1 with

v(B1) + v(B2) ≤ v((B1 \ {e}) ∪ {f}) + v((B2 \ {f}) ∪ {e}).

Interesting examples of maps v :
(
E
m

)
→ R ∪ {−∞}, satisfying this condition, come –

surprisingly enough – from p-adic analysis (or, more generally, from valuation theory –
actually, it was in this context, where the above condition occured first, (see [DW1]):
If E is a finite subset of Qm which spans Qm, then the Grassmann-Plücker relations imply
that for a given prime number p the map vp :

(
E
m

)
→ R ∪ {−∞} defined by

vp({e1, . . . , em}) :=


−∞ if det(e1, . . . , em) = 0
n if det(e1, . . . , em) = p−n · ab

with n ∈ Z, a, b ∈ Z \ p · Z

satisfies our condition. Hence, as an application of our result, one could compute a basis
e1, . . . , em of Qm, contained in E, for which the p-part of det(e1, . . . , em) is as small as
possible, by the above greedy algorithm.

It may also be interesting to review later work on the greedy algorithm from this perspec-
tive, in particular the work of B. Korte and L. Lovasz on greedoids (cf. [...]).

In the sequel we assume that E is some finite set and m ∈ N satisfies m ≤ #E.

For a map v :
(
E
m

)
→ R ∪ {−∞} we put

v(e1, . . . , em) :=
{
v({e1, . . . , em}) if {e1, . . . , em} ∈

(
E
m

)
−∞ otherwise .

Definition 1: A valuated matroid of rank m with values in R, is a pair (E, v),
consisting of a finite set E with #E ≥ m together with a map v :

(
E
m

)
→ R ∪ {−∞}

satisfying (V1) and

(V0) there exists some B ∈
(
E
m

)
with v(B) 6= −∞.

An m-set B ∈
(
E
m

)
is called a basis of the valuated matroid (E, v), if v(B) 6= −∞.

Remarks:i) By (V1) it is clear that the bases of a valuated matroid are also the
bases of a combinatorial geometry (or matroid in the classical sense).
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Vice versa, if M is a combinatorial geometry of rank m, defined on
E, then any map v from

(
E
m

)
into R∪{−∞} which satisfies (V0) and

(V1) is called a valuation of M , if for all B ∈
(
E
m

)
one has v(B) 6= −∞

if and only if B is a basis of M .
ii) A valuation v :

(
E
m

)
→ R ∪ {−∞} is called trivial, if there exists

some α ∈ R with v(B) ∈ {α,−∞} for all B ∈
(
E
m

)
.

Every combinatorial geometry M of rank m, defined on E, has a trivial valuation v :(
E
m

)
→ R ∪ {−∞}, namely

v(B) :=
{

0 if B is a base of M
−∞ otherwise .

This is nothing but a reformulation of the strong exchange property for bases of M .

Definition 2: Assume v :
(
E
m

)
→ R ∪ {−∞} is some map with v(B) 6= −∞ for at least

one B ∈
(
E
m

)
. The greedy algorithm runs as follows:

Step 0 : Choose some e1, . . . , em ∈ E with v({e1, . . . , em}) 6= −∞.
Step k(1 ≤ k ≤ m) : Assume that x1, . . . , xk−1 ∈ E are already determined and

choose some xk ∈ E such that

v({x1, . . . , xk, ek+1, . . . , em}) ≥ v({x1, . . . , xk−1, x, ek+1, . . . , em})

for all x ∈ E.

We say that the greedy algorithm works for v if for all starting sequences e1, . . . , em ∈ E
with v({e1, . . . , em}) 6= −∞ and all permitted choices of the x1, . . . , xm one has
v({x1, . . . , xm}) ≥ v(B) for all B ∈

(
E
m

)
in which case v is called admissible.

For e1, . . . , em−1 ∈ E put

Mv(e1, . . . , em−1)
:= {x ∈ E | v(e1, . . . , em−1, x) ≥ v(e1, . . . , em−1, y) for all y ∈ E}.

Obviously, v is admissible if and only if for all e1, . . . , em ∈ E with v(e1, . . . , em) 6= −∞
and all x1, . . . , xm ∈ E with

xi ∈Mv(x1, . . . , xi−1, ei+1, . . . , em) for 1 ≤ i ≤ m

we have v(x1, . . . , xm) ≥ v(y1, . . . , ym) for all y1, . . . , ym ∈ E.

Definition 3: Two maps v, w :
(
E
m

)
→ R∪ {−∞} are called projectively equivalent, if

there exists some α ∈ R and some map ϕ : E → R such that

w(e− 1, . . . , em) = α+
m∑
i=1

ϕ(ei) + v(e1, . . . , em) for all e1, . . . , em ∈ E.
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If this is the case, we write w := v(α, ϕ).

Remark: If v :
(
E
m

)
→ R∪ {−∞} is a valuation of some combinatorial geometry M , then

it is clear that v(α, ϕ) is also a valuation of M for all α ∈ R and all maps ϕ : E → R.

Now we can show

Theorem: Assume E is a finite set with #E ≥ m and v :
(
E
m

)
→ R∪ {−∞} is some map

satisfying (V0). Then (E, v) is a valuated matroid, if and only if the greedy algorithm
works for vϕ for all α ∈ R and all maps ϕ : E → R.

Proof: At first we assume that v is a valuation of some combinatorial geometry M , defined
of E. By the last remark it is enough to show that v is admissible.

Assume e1, . . . , em ∈ E with v({e1, . . . , em}) 6= 0 and x1, . . . , xm ∈ E such that xi ∈
Mv(x1, . . . , xi−1, ei+1, . . . , em) for 1 ≤ i ≤ m. Put B0 := {x1, . . . , xm}. We must prove

(1) v(B) ≤ v(B0) for all B ∈
(
E
m

)
.

At first we show

(2) v((B0 \ xj) ∪ x) ≤ v(B0) for 1 ≤ j ≤ m and all x ∈ E.

By our assumption (2) is clear for j = m.

To prove (2) for 1 ≤ j ≤ m− 1 we may assume by induction that

(2a) v((B0 \ {xj , xm}) ∪ {x, em}) ≤ v((B0 \ xm) ∪ em) for all x ∈ E,

because v′ :
(
E\em
m−1

)
→ R ∪ {−∞} defined by

v′(A) := v(A ∪ em) (A ∈
(
E\em
m

)
)

is obviously a valuation of the contraction M ′ := M/{em} of rank m− 1.

Now assume v((B0 \ xj) ∪ x) 6= −∞ for some fixed j with 1 ≤ j ≤ m − 1 and some
fixed x ∈ E. Consider the bases B1 := (B0 \ xm) ∪ em and B2 := (B0 \ xj) ∪ x of M .
(2) clearly holds in case xj = x. Otherwise we have xj ∈ B1 \ B2. Thus there exists
e ∈ B2 \B1 ⊆ {xm, x} with

v(B1) + v(B2) ≤ v((B1 \ xj) ∪ e) + v((B2 \ e) ∪ xj).

But (2a) yields v((B1 \ xj) ∪ e) ≤ v(B1) and thus

(2b) v(B2) ≤ ((b2 \ e) ∪ xj).

Furthermore, we have {x1, . . . , xm−1} ⊆ (B2 \ e) ∪ xj , and thus our choice of xm implies

(2c) v((B2 \ e) ∪ xj) ≤ v(B).
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(2) follows now from (2b) and (2c).

Now we derive (1) from (2) by induction on n := #({y1, . . . , ym} \ {x1, . . . , xm}). The
cases n = 0 and v(y1, . . . , ym) = 0 are trivial, while for n = 1 we are done by (2).

Now assume 2 ≤ n ≤ m, say, #{y1, . . . , yn, x1, . . . , xm} = n+m and yk = xk for n+ 1 ≤
k ≤ m. Then by (V1), (2) and our induction hypothesis there exists i with 1 ≤ i ≤ n and

v({y1, . . . , yn, xn+1, . . . , xm}) + v(B0)
≤v({xi, y2, . . . , yn, xn+1, . . . , xm}) + v((B0 \ xi) ∪ y1)
≤2 · v(B0).

Since v(B0) ≥ v({e1, . . . , em}) > −∞, this means

v(y1, . . . , yn, xn+1, . . . , xm) ≤ v(B0).

Now assume that, vice versa, vϕ is admissible for all α ∈ R and all maps ϕ : E → R. We
have to show that v satisfies (V1). Otherwise assume e1, . . . , em, f1, . . . , fm ∈ E are such
that for B1 := {e1, . . . , em} and B2 := {f1, . . . , fm} we have

(3) v(B1) + v(B2) > v((B2 \ fi) ∪ e1) + v((B1 \ e1) ∪ fi)

for all i with 1 ≤ i ≤ m. Then we must have e1 /∈ B2 and v(B2) 6= −∞.

Since E is finite, we can choose some γ ∈ R such that for all γ0, δ0 ∈ v(
(
E
m

)
) ∩ R we have

(4) γ0 − δ0 < γ.

Now define ϕ : E → R by

ϕ(e1) := 0,

ϕ(fi) :=
{
γ if v({fi, e2, . . . , em}) = −∞
v(B1)− v({fi, e2, . . . , em}) otherwise,

ϕ(x) := −2m · γ for x ∈ E \ {e1, f1, . . . , fm}.

and put w := v(0, ϕ).

By the definition of ϕ we have

v({e1, . . . , em}) ≥ ϕ(x) + v({x, e2, . . . , em})

and therefore
vϕ({e1, . . . , em}) ≥ vϕ({x, e2, . . . , em}) for all x ∈ E

and thus e1 ∈Mw(e2, . . . , em).
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On the other hand, we show next that for all pairwise distinct x1, . . . , xm ∈ E with
X := {x1, . . . , xm} 6= B2 we have

(5) w(B2) > w(B);

so no base B with e1 ∈ B can have maximal vϕ-value in contradiction to our assumption
that the greedy algorithm works for vϕ.

Indeed, if X * B2 ∪ e1, then ϕ(x0) = −2m · γ for at least one x0 ∈ X and ϕ(x) ≤ γ for all
x ∈ X \ x0. This means in view of −γ ≤ ϕ(fi) for 1 ≤ i ≤ m also

w(X) =
m∑
j=1

ϕ(xj) + v(X) ≤ −(m+ 1) · γ + v(x)

< −m · γ + v(B2) ≤ w(B2).

Otherwise, X = (B2 \ fi) ∪ e1 for some i with 1 ≤ i ≤ m. If v(fi, e2, . . . , em) 6= −∞, then
(3) implies

w(X) =
m∑
j=1
j 6=1

ϕ(fj) + v(X) <
m∑
j=1
j 6=1

ϕ(fj) + v(B1) + v(b2)− v(fi, e2, . . . , em)

and therefore

w(X) <
m∑
j=1
j 6=i

ϕ(fj) + v(B2) + ϕ(fi) = w(|B2).

Finally, if v(fi, e2, . . . , em) = −∞, then

w(X) =
m∑
j=1
j 6=1

ϕ(fj) + v(X) <
m∑
j=1
j 6=i

ϕ(fj) + γ + v(B2) = w(B2).

�
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