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1. Introduction

In this paper we shall discuss three topics in partitions. Section 2 is devoted to par-
titions with difference conditions and is an elucidation of joint work with J. B. Olsson
[16]. In Section 3 we discuss certain partition problems which have their origins in
statistical mechanics. We take as the theme for this section Euler’s article: Exemplum
Memorabile Inductionis Fallacis [23]. The material for this section is closely related
to the work in [10]. Section 4 contains a discussion of some of Ramanujan’s formulas
from both his Notebooks and lost Notebook. More extensive accounts of this topic
are found in [8] and [11].

2. Partitions with Difference Conditions

The work in this section is based on [16], joint work with J. B. Olsson. In 1989,
Olsson was studying Mullineux’s conjecture [29] which briefly may be described as
a ”conjugation” map for p–regular partitions (i.e. partitions with no part repeated
more than p− 1 times). As Mullineux asserts [29; p. 60]: ” . . . when p is prime it is
conjectured that this bijection (i.e. conjugation) arises in the representation theory of
the symmetric group Sn of degree n. Farahat, Müller and Peel [24] have shown how to
form a ’good’ labelling of the irreducible p–modular representations of Sn (for prime
p) by p–regular partitions of n. Now the alternating representation of Sn induces in
the usual way a bijection (whose square is the identity) upon these representations and
hence induces a similar bijection upon the set of p–regular partititons via the labelling.
For low values of n this group theoretic bijection agrees with the one constructed here;
the verification of this has been carried out using the tables of decomposition numbers
found in Kerber and Peel ([27], p = 3, n ≤ 10, n 6= 7); Robinson ([30], p = 3, n = 7)
and Wagner ([34], p = 5, 7, ≤ 8).”
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Olsson calculated the number of partitions fixed by Mullineux’s map and those
fixed by the Farahat–Müller–Peel [24] induced map. If the two maps are the same
then obviously the cardinalities of the two sets of fixed points will be identical. This
calculation led to the following:

Problem. Let λ = (a1, a2, . . . , ak) be a partition of n. Consider the two following
sets of conditions (p an odd prime).{

(1A) p 6 | ai and 2 6 | ai for all i,
(1B) ai 6= ai+1 for all i.


(2A) 2 | ai if and only if p | ai for all i,
(2B) 0 ≤ ai − ai+1 ≤ 2p for all i (ak+1 = 0)
(2C) if ai = ai+1 then ai is even,
(2D) if ai − ai+1 = 2p then ai is odd.

Is the number of partitions of n satisfying (1A)–(1B) equal to the number of par-
titions satisfying (2A)–(2D)?

The simplest possible case is p = 3. In this case conditions (1A)–(1B) describe
partitions into distinct parts ≡ 1 or 5 (mod 6), and this suggests the following result
of Schur [32] specialized to fit this instance.

Theorem 2.1 [32]. The number or partititons of n into distinct parts congruent to 1
or 5 mod 6 equals the number of partitions of n into parts congruent to 0, 1 or 5 mod
6 with the condition that the difference between parts is at least 6 and greater than 6
between two multiples of 6.

For example there are 11 partitions of 36 into distinct parts congruent to 1 or
5 (mod 6): 35+1, 31+5, 29+7, 25+11, 23+13, 23+7+5+1, 19+17, 19+11+5+1,
17+13+5+1, 17+11+7+1, 13+11+7+5. The second class of eleven partitions arising
from Schur’s Theorem when n = 36 is: 36, 35+1, 31+5, 30+6, 29+7, 25+11, 24+12,
24+11+1, 23+13, 23+12+1, 19+12+5.

In contrast, the eleven partitions arising from conditions (2A)–(2D) in the Problem
for n = 36, p = 3 are: 17+11+7+1, 13+11+7+5, 13+11+6+5+1, 12+12+7+5,
12+11+7+5+1, 12+11+6+6+1, 12+11+6+6+5, 11+7+6+6+5+1, 11+6+6+6+6+1,
7+6+6+6+6+5, 6+6+6+6+6+5+1.

Inspection shows that MacMahon’s theory of modular partitions for modulus 6
[28] provides a perfect bijection between these two latter classes of partitions. In
MacMahon’s representation each part is represented by a row of 6’s with the residue
mod 6 tacked on at the end. Consequently the eleven MacMahon graphs of the final
set of partitions above is:
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6 6 5 6 6 1 6 6 6 6 1 6 6
6 5 6 5 6 6 6 5 6 5
6 1 6 1 6 1 6 6 1
1 5 5 5 5

1 1

6 6 6 6 6 5 6 5 6 1 6
6 5 6 1 6 1 6 6 6
6 6 6 6 6 6
6 6 6 6 6 6
1 5 5 6 6 6

1 1 5 5
1

Now we form a new set of partitions by reading these graphs by columns instead
of rows. The result is Schur’s second set of partitions, and a little reflection shows
that the above mapping always provides a bijection between Schur’s partitions and
those of the second kind in the Problem where p = 3.

The relationship described above suggests that the Problem may be solved by
relating it to some generalization of Schur’s Theorem and then applying MacMahon’s
modular theory. While there arose some difficulties, this program eventually produced
the following result.

Theorem 2.2 [16]. Let A = {a1, a2, . . . , ar} be a set of r distinct positive integers
arranged in increasing order, and let N be an integer larger than ar. Let P1(A;N,n)
denote the number of partitions of n into distinct parts each of which is congruent
to some ai modulo N . Let P2(A;N,n) denote the number of partititons of n into
parts each of which is congruent to 0 or to some ai modulo N , in addition only parts
divisible by N may be reapeated, the smallest part is < N , the difference between
sucessive parts is at most N and strictly less than N if either part is divisible by N .
Then for each n ≥ 0,

P1(A;N,n) = P2(A;N,n).

In the above theorem, A = {a1, . . . , ar} is an arbitrary set of positive integers
arranged in increasing order for which ar < N . The relevant generalization of Schur’s

theorem requires additionally: (i)
k−1∑
s=1

as < ak (k ≤ r), (ii)
r∑
s=1

as ≤ N , and (iii) all 2r

subsets of A must have distinct sums. Let A′ be the set of 2r−1 positive sums arising
from the nonempty subsets of A. Let A′N denote the set of all positive integers that
are congruent to some element of A′ modulo N . Let ρN (m) denote the least positive
residue of m modulo N . For m ∈ A′, let b(m) be the number of terms appearing in
the sum of distinct elements of A making up m and let ν(m) denote the least ai in
this sum.

In [2], the main result may be restated as follows:
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Theorem 2.3. Let E(A′N ;n) denote the number of partitions of n into parts taken
from A′N : n = c1 + c2 + · · ·+ cs, ci ≥ ci+1,

ci − ci+1 ≥ Nb(ρN (ci+1)) + ν(ρN (ci+1))− ρN (ci+1).

Then E(A′;n) = P1(A;N,n).

The proof of Theorem 2.3 was successfully altered to yield Theorem 2.2. In ad-
dition when conditions (i)–(iii) listed above apply to A and N in Theorem 2.2, then
MacMahon’s modular partitions may be utilized to show the equivalence of the two
results.

Finally it should be mentioned that C. Bessenrodt [20] has proved a generalization
of Theorem 2.2 using purely combinatorial methods. Also K. Alladi and B. Gordon
[1] have a nice study of related continued fractions when A is the two element set
{a1, a2}.

3. Euler’s “Exemplum Memorabile Inductionis Fallacis”

In [12], [13] and [14] a model generalizing the hard hexagon model was solved
using several q–analogs of trinomial coefficients. The trinomial coefficients

(
m
j

)
2

may
be defined by

(3.1)
m∑

j=−m

(
m

j

)
2

xj = (1 + x+ x−1)m.

In this way for given m, the largest coefficient is
(
m
0

)
2
. These numbers fit a modified

Pascal triangle
1

1 1 1
1 2 3 2 1

1 3 6 7 6 3 1
1 4 10 16 19 16 10 4 1

1 : : : : : : : : : 1

Euler discovered a sufficiently mysterious aspect of the central column of this array
that he wrote a short note entitled, “Exemplum Memorabile Inductionis Fallacis” (A
Remarke Example of Misleading Induction).

Euler first computed
(
m
0

)
2

for 0 ≤ m ≤ 9:

1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, . . .

He then tripled each entry in a row shifted one to the right:

1,1,3,7,19,51,141,393,1107, 3139,. . .
3,3,9,21,57,153,423,1179,3321, . . . ,
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and starting with the first two–entry column, he subtracted the first row from the
second:

2, 0, 2, 2, 6, 12, 30, 72, 182, . . . ,

each of which may be factored into two consecutive integers:

1 · 2, 0 · 1, 1 · 2, 1 · 2, 2 · 3, 3 · 4, 5 · 6, 8 · 9, 13 · 14, . . . .

The first factors make up the Fibonacci sequence Fn defined by F−1 = 1, F0 = 0,
Fn = Fn−1 + Fn−2 for n > 0.

Surprisingly, however, this marvelous rule

(3.2) 3
(
m+ 1

0

)
2

−
(
m+ 2

0

)
2

= Fm(Fm + 1), −1 ≤ m ≤ 7,

is false for m > 7. In order to understand (3.2) we define

(3.3) Em(a, b) =
∞∑

λ=−∞

((
m

10λ+ a

)
2

−
(

m

10λ+ b

)
2

)
.

As part of Theorem 3.1, we show that

(3.4) 2Em+1(0, 1) = Fm(Fm + 1),

from which (3.2) follows by inspection.

Theorem 3.1.

2Em(1, 2) = 2Em−1(0, 3) = 2Em+1(0, 1) = Fm(Fm + 1),(3.5)

Em(1, 4) = Em+1(2, 3) = Fm+1Fm,(3.6)

2Em(3, 4) = 2Em−1(2, 5) = 2Em+1(4, 5) = Fm(Fm − 1),(3.7)

2Em(1, 3) = F2m + Fm,(3.8)

2Em(2, 4) = F2m − Fm,(3.9)

2Em(1, 5) = F2m+1 − Fm−1,(3.10)

2Em(0, 4) = F2m+1 + Fm−1,(3.11)

2Em(0, 2) = F2m−1 + Fm+1,(3.12)

2Em(3, 5) = F2m−1 − Fm+1,(3.13)

Em(0, 5) = F2m−1 + FmFm−1.(3.14)

Sketch of Proof. We note that

Em(a, b) = −Em(b, a), Em(10r + a, 10s+ b) = Em(a, b),(3.15)

Em(10− a, b) = Em(a, b),(3.16)

Em(10− a, b) = Em(a, b) = Em(a, 10− b),(3.16)
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and that

(3.17) Em(a, b) = Em−1(a, b) + Em−1(a− 1, b− 1).

Equations (3.15)–(3.17) totally define Em(a, b) together with appropriate initial
values. The rest follows by induction. �

As a corollary of Theorem 3.1 it is easy to show that

3
(
m+ 1

0

)
2

−
(
m+ 2

0

)
2

= 2
(
m+ 1

0

)
2

− 2
(
m+ 1

1

)
2

= 2Em+1(0, 1) (for m ≤ 7)

= Fm(Fm+1 + 1) (by (3.5)).

The natural question that arises is: Are there q–analogs of at least portions of Theo-
rem 2.1 and if so, what are the implications for the Rogers–Ramanujan type identities?

In [10], q–analogs of (3.8)–(3.11) were found. For example, we recall Schur’s poly-
nomials G1(q) = G2(q) = 1, Gn(q) = Gn−1(q) + qn−2Gn−2(q) for n > 2. Schur [31]
showed that

(3.18) Gn+1(q) =
∞∑

λ=−∞

(−1)λqλ(5λ+1)/2

[
n

bn−5λ
2 c

]
q

.

where bxc is the greatest integer ≤ x and[
A
B

]
=
[
A
B

]
q

=

{
(1−qA)(1−qA−1)···(1−qA−B+1)

(1−qB)(1−qB−1)···(1−q) 0 ≤ B ≤ A,
0 otherwise.

The q–analog of trinomial coefficients appropriate for our discussion here is

(3.19)
(
m;B; q
A

)
2

=
∑
j≥0

qj(j+B)

[
m
j

] [
m− j
j +A

]
.

Note that

(3.20)
(
m;B; 1
A

)
2

=
(
m

A

)
2

.

Schur [31] deduced the first Rogers-Ramanujan identity as a limiting case of (3.18).
For q–analogs of (3.11) and (3.10) respectively, we discover that

(3.21)
1
2

(G2m+1(q1/2) +G2m+1(−q1/2))

=
∞∑

λ=−∞

q30λ2−2λ

(
m; 10λ; q

10λ

)
2

−
∞∑

λ=−∞

q30λ2+22λ+4

(
m; 10λ+ 4; q

10λ+ 4

)
2

,
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(3.22)
q−1/2

2
(G2m+1(q1/2)−G2m+1(−q1/2))

=
∞∑

λ=−∞

q30λ2+8λ

(
m; 10λ+ 1; q

10λ+ 1

)
2

−
∞∑

λ=−∞

q30λ2+32λ+8

(
m; 10λ+ 5; q

10λ+ 5

)
2

.

In contrast with Schur’s identity (3.18), we find [9] that

(3.23) Gn+1(q) =
∞∑

λ=−∞

(−1)λqλ(5λ+1)/2

(
n; b 5λ+1

2 c; q
b 5λ+1

2 c

)
2

.

From (3.23) one can again deduce the first Rogers-Ramanujan identity as a limiting
case; however, the simple replacement of the Gaussian polynomial in (3.18) by a q-
trinomial in (3.23) is at the very least quite surprising.

Furthermore the limiting cases of (3.21) and (3.22) do not lead to the first Rogers-
Ramanujan identity, but rather to the Rogers-Ramanujan series split into even and
odd parts. Namely

1 +
∞∑
j=1

qj
2

(1− q)(1− q2) · · · (1− qj)
=

1
∞∏
n=1

(1− q2n){ ∞∑
λ=−∞

(q60λ2−4λ − q60λ2+44λ+8) + q
∞∑

λ=−∞

(q60λ2+16λ − q60λ2+64λ+16)

}
.

The main riddle concerning all this is precisely the combinatorics. In [3], [4; Ch. 9],
[15], [21], we see clearly the partition-theoretic significance of (3.18). However the q-
trinomial version (3.23) is still a complete conbinatorial mystery.

4. Ramanujan

The work in the last several years stemming from Ramanujan’s discoveries has
truly been amazing. Bruce Berndt at the University of Illinois has been the chief
architect of much of the work. He is bringing out edited versions [17], [18], [19] of
Ramanujan’s famous Notebooks. In addition, the book Ramanujan Revisited [7],
edited by Berndt and others, describes recent research on a number of topics related
to Ramanujan’s work, and the Lost Notebook has been published in photostatic
reproduction by Springer–Narosa in 1987. The Mock Theta Conjectures arising from
the Lost Notebook were described as follows by Ian Stewart in Nature [33]:

One of the most unusual people in the annals of mathematical research
is Srinivasa Ramanujan, a self-taught Indian mathematician whose pre-
mature death left a rich legacy of unproved theorems. Ramanujan was
preeminent in an unfashionable field — the manipulation of formulas.
He tended to state his results without proofs — indeed on many occa-
sions it is unclear whether he possessed proofs in the accepted sense —
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yet he had an uncanny knack of penetrating to the heart of the matter.
Over the years, many of Ramanujan’s claims have been established in
full rigour, although seldom easily. The most recent example, the ‘mock
theta conjectures’, is especially striking, because the results in question
were stated in Ramanujan’s final correspondence with his collaborator
Godfrey H. Hardy. The conjectures have recently been proved by Dean
Hickerson [26]
. . . The proof involves delicate manipulations of infinite series of a kind
that would have delighted Ramanujan. The astonishing complexity of
the proof underlines, yet again, the depth of Ramanujan’s genius. It is
very hard to see how anyone could have been led to such results without
getting bogged down in the fine detail. Ramanujan was the formula man
par exellence, operating in a period when formulas were out of fashion.
Today’s renewed emphasis on combinatorics, inspired in a part by the
digital nature of computers, has provoked a renewed interest in formula
manipulations. The half–forgotten ideas of Srinivasa Ramanujan are
breathing new life into number theory and combinatorics.

In what follows we provide a sketch of recent work arising from Ramanujan’s Note-
books.

In [22], D. Bressoud gave a very simple proof of the Rogers–Ramanujan identities.
We may for purposes of example slightly rephrase his proof. Namely, he noted that

(4.1) αn =

{
1 if n = 0

(−1)n
(
zq(

n
2) + z−nq(

n+1
2 )
)

if n > 0,

and

(4.2) βn =
(z)n (q/z)n

(q)2n

form a Bailey pair [6; p. 26], i.e.

(4.3) βn =
n∑
j=0

αj
(q)n−j (aq)n+j

where

(4.4) (A)n = (A; q)n = (1−A)(1−Aq) · · · (1−Aqn−1).

A weak iterated version of Bailey’s Lemma asserts that if αn and βn form a Bailey
pair, then

(4.5)
1

(aq; q)∞

∞∑
n=0

qkn
2
aknαn =

∑
nk≥···≥n1≥0

αn1+···+naqn
2
1+···+n2

kβn1

(q)nk−nk−1(q)nk−1−nk−2 · · · (q)n2−n1

.
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Bressoud’s proof [22] can be viewed as setting z = 1 in (4.1) and (4.2) and inserting
the resulting pair in (4.5) with k = 2.
If instead, we take (4.1) and (4.2) as they are and insert them into (4.5) with k = 1
and α = 1, we find

∞∑
n=0

(z)n (q/z)n qn
2

(q)2n
=

1 +
∞∑
n=1

(−1)n
(
znq(

n
2) + z−nq(

n+1
2 )
)
qn

2

(q)∞

=

∞∑
n=−∞

(−z)nqn(3n−1)/2

(q)∞
(4.6)

=
(q3; q3)∞(zq; q3)∞(z−1q2; q3)∞

(q)∞
,

a result from the Lost Notebook.
If we differentiate each entry in (4.6) and then set z = 1, we deduce

∞∑
n=1

(1− q)(1− q2) · · · (1− qn−1)qn
2

(1− qn+1)(1− qn+2) · · · (1− q2n)
=

∞∑
n=−∞

(−1)nnqn(3n−1)/2

(q)∞

=
∞∑
n=0

(
q3n+1

1− q3n+1
− q3n+2

1− q3n+2

)

=
∞∑
n=1

qn

(∑
d/n

(
d

3

))
,(4.7)

where
(
d
3

)
is the Legendre symbol.

Thus just beneath the surface of (4.6) is a q-series (namely the left–hand side of
(4.7)) with multiplicative coefficients all non–negative, all indeed O(n2).

This suggests that the underlying combinatorics of (4.7) is well worth a look, and
we shall not be disappointed. Following the program outlined in [5], we consider

(4.8) f(t, q) =
∞∑
n=1

t2nqn
2
(−tq)n−1

(t)n+1 (t2q; q2)n
.

The function f(t, q) was constructed to both satisfy a first order nonhomogeneous
q-difference equation

(4.9) f(t, q) =
t2q

(1− t)(1− tq)(1− t2q)
+

t2q(1 + tq)
(1− t)(1− t2q)

f(tq, q),

and to reduce in the case t = −1 to the left–hand side of (4.7):

f(−1, q) =
1
2

∞∑
n=1

qn
2
(q)n−1

(qn+1; q)n
.
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If the magic of Ramanujan’s mathematics is operating here, then f(t, q) should be
an interesting generating function of polynomials (in q), and f(q, q2), lim

t→1−
f(t, q)(1−t)

should also exhibit interesting structure. In this regard, we find

f(t, q) =
∞∑
n=2

tnpn(q)

with

pn(q) =
∞∑

λ=−∞

q(2λ+1)(3λ+1)

[
n

bn2 c − 3λ− 1

]
,

lim
t→1−

(1− t)f(t, q) =
∞∑
n=1

(1 + q)2(1 + q2)2 · · · (1 + qn−1)2(1 + qn)qn
2

(1− q)(1− q2) · · · (1− q2n)

= q
∞∏
n=1

(1− q12n)(1 + q12n−1)(1 + q12n−11)
(1− qn)

,

and finally

1
1− q

+(1+q)f(q, q2) =
∞∑
n=0

q2n2+2n(−q; q2)n
(q)2n+1(−q2; q2)n

=
∞∏
n=1

(1− q6n)(1 + q6n−1)(1 + q6n−5)
(1− q2n)

.

It should be added that the above discoveries all resulted from a consideration of
four seemingly benign identities of Ramanujan [11]. The simplest of which is

∞∑
n=1

(−1)n−1nq(
n+2

2 )(1− qn)
(1 + qn)2

=
( ∞∑
n=−∞

(−1)nqn
2
)2 ∞∑

n=1

nq(
n+1

2 )

1− qn
.

The proof of this result relies in an essential way on Bressoud’s Bailey pair (4.1), (4.2)
differentiated with respect to z and with z then set equal to 1 together with a general
q-hypergeometric identity of Bailey [25, p. 42, eq. (2.10.10)].

5. Conclusion

These lectures being expository lack the details necessary for a full understanding
of the underlying proofs. In this regard, Section 2 is an exposition of [16]; Section 3
of [10], and Section 4 of [5], [8] and [11]. Related background material may be found
in [2] and [4] for Section 2, [9] for Section 3 and [6; Ch.9] for Section 4.
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