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Abstract
The general recipe of Weyl is applied to the Heisenberg model of a one-dimensional

magnetic chain with impurities. It is found that impurities break the obvious transla-
tional symmetry, but preserve the hidden one. Rarefied bands emerge from irregular
orbits of action of the translation group.

1 Introduction

We examine here an application of the general recipe of Weyl [1, 2] to the Heisenberg
model of a magnet [3, 4]. It has been shown that the hidden symmetry group of Weyl’s
recipe yields some symmetries of the distribution of quantum states of a magnet within
the Brillouin zone [3], and that these symmetries can be described in terms of rarefied
bands [3, 4]. These results, obtained for a crystal with the perfect translational symmetry,
can be discussed again for crystals with broken periodicity, caused by impurities. We have
discussed already the case of a single impurity [5], and found an apparently puzzling result
that breaking of translational symmetry increases, rather than decreases, the symmetry
of this distribution. Here we proceed to discuss a more general case of some impurities
in the light of the recipe of Weyl. In particular, we aim to point out that breaking of
translational symmetry is equivalent to decreasing of the obvious symmetry group, which
does not automatically imply lowering of the hidden symmetry [6].

2 The recipe of Weyl

Let us assume that we have a system with some obvious symmetry, described by a group
G. A good example is a system that constitutes a regular orbit of this group, so elements
of the system can be labelled by g ∈ G. The recipe of Weyl states that then all intrinsic
features of the system are derivable from the group Aut G, the group of all automorphisms
of G. This group, Aut G, is called the hidden symmetry group of the system.

3 The homogeneous magnet

Let
X = {j | j = 1, 2, . . . , n} (1)
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be the set of all n nodes of a crystal. Within the Heisenberg model of a magnet, one
assumes that each node j ∈ X is occupied by a spin s. Let

Y = {i | i = 1, 2, . . . ,m} (2)

be the set of labels of projections −s,−s+ 1, . . . ,+s of the spin s, so that m = 2s+ 1. Any
mapping f : X → Y is called a magnetic configuration. It can be displayed in a form

f = |i1, . . . , in〉 , ij ∈ Y, j ∈ X. (3)

The set of all magnetic configurations is

Y X = {f : X → Y }. (4)

We assume that n nodes of our crystal are arranged into a one-dimensional finite chain,
or, more precisely, that the set X constitutes a regular orbit of the cyclic group

G = Cn, (5)

the translational symmetry group of the magnet. We take Cn as the obvious symmetry
group of Weyl’s recipe.

We denote by

B = {k = 0,±1,±2, . . . ,

{
±(n/2− 1), n/2 for n even
±(n− 1)/2 for n odd

} (6)

the set of labels of all irreducible representations of the group Cn over the field Cl of complex
numbers. This set is referred to as the Brillouin zone in condensed matter physics.

We proceed to define the distribution of quantum states of the magnet over the Brillouin
zone B. Let P : Sn × Y X → Y X be the action of the symmetric group Sn on the set Y X

of all magnetic configurations. This action is defined by the formula

P (σ) =

(
f

f ◦ σ−1

)
, f ∈ Y X , σ ∈ Sn. (7)

Let, moreover,
L = lcCl Y

X (8)

be the linear closure over the field Cl , spanned on the set Y X , with the unitary structure
imposed by requirement that Y X is an orthonormal basis in L. We denote the action of
the group Sn in the linear unitary space L by the same letter P . Under the embedding
Cn ⊂ Sn this action subduces to

P ↓ Cn ∼=
∑
k∈B

ρ(k)Γk, (9)

where Γk is an irreducible representation of Cn. The decomposition (9) defines the mapping
ρ : B → ZZ of B into the ring ZZ of integers, called the distribution of quantum states of the
magnet over the Brillouin zone B. This distribution can be evaluated as [4, 7, 8]

ρ(k) =
1

n

∑
κ∈K(n)

nκ
ϕ(κ̄)

ϕ(κ̄′)
µ(κ̄′), (10)
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where
K(n) = {κ ∈ X | lcd(n, κ) = κ} (11)

is the lattice of all divisors of the integer n,

κ̄ = n/κ (12)

is the divisor complementary to κ in the lattice K(n), ϕ : K(n)→ ZZ and µ : K(n)→ ZZ is
the Euler and Möbius function, respectively, and

κ′ = lcd(κκ0, n), (13)

κ0 = lcd(|k|, n), (14)

with lcd denoting the largest common divisor.
The symmetry of the distribution ρ is described by

AutCn = {r ∈ X | lcd(r, n) = 1}, (15)

the hidden symmetry group of the recipe of Weyl [3, 4, 9]. Let Ψ : AutCn × B → B be
the action of AutCn on the Brillouin zone B, defined by the formula

Ψ(r) =

(
k

rk mod n

)
, k ∈ B, lcd(r, n) = 1. (16)

The action Ψ yields orbits

B(κ) = {k ∈ B | lcd(k, κ) = κ}, κ ∈ K(n), (17)

called generalized stars. Thus the Brillouin zone decomposes into disjoint generalized stars
as

B =
⋃

κ∈K(n)

B(κ). (18)

Theory of condensed matter bases heavily on the notion of a band. A full band cor-
responds to a such distribution of system states over the Brillouin zone B, in which each
quasimomentum k ∈ B is associated with exactly one quantum state. It is, in fact, a
quantum analog of the first Newton law of dynamics. A rarefied band correspond to a
distribution, in which one quantum state corresponds to a subset B0 of the Brillouin zone
B, whereas the complement B \B0 carries no state.

The Heisenberg model of a magnet with a finite set X of nodes yields rarefied bands,
carried by subsets [4]

B0 = B|κ = {ξκ ∈ B | ξ ∈ ZZ}, κ ∈ K(n). (19)

The subset B|κ is called a κ-tuply rarefied Brillouin zone. It corresponds to the crystal
with κ̄ = n/κ nodes [6]. In particular, κ = 1 corresponds to a full band.

We notify two important conclusions on the distribution ρ given by Eq. (10): (i) it is
inhomogeneous in the Brillouin zone B, so that the magnet has to exhibit some rarefied
bands (actually, these rarefied bands (19) are labelled by κ ∈ K(n)), (ii) the distribution ρ
is constant on each generalized star B(κ) given by Eq. (17). It is an intrinsic feature of this
distribution.

These two conclusions are, in fact, partial results of Weyl’s recipe. They reflect the
fact that the symmetry of the distribution ρ is determined by the hidden symmetry group
AutCn.
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4 Impurities

Now we assume that the subset X0 ⊂ X is occupied by ‘host’ atoms with the spin s
(m = 2s + 1), whereas its complement X ′ = X \ X0 is occupied by ‘impurities’ with the
spin s′ 6= s. Thus

X = X0 ∪X ′, (20)

and, accordingly,
n = n0 + n′. (21)

Thus the geometric distribution of nodes is the same as for the homogeneous magnet, and
the change consists in chemical occupation. The main difficulty is caused by breaking of
translational symmetry Cn of the magnet by impurities, so the notion of the Brillouin zone
looses its original meaning.

Let the embedding X ′ ⊂ X define the chemical configuration of the magnet (i.e. the
distribution of impurities). The set of all magnetic configurations is now

Φ(X ′ ⊂ X) = Y X0
0 × Y ′X′ (22)

and depends on the chemical configuration of the magnet. Hence

Y0 = Y, Y ′ = {i | i = 1, 2, . . . ,m′}, m′ = 2s′ + 1. (23)

The notion of quasimomentum and the Brillouin zone is restored by introducing the
ensemble of magnets, with the extended set of magnetic configurations

Φens =
⋃
σ∈Cn

Φ(σ(X ′) ⊂ X). (24)

Obviously, the set Φ(X ′ ⊂ X) is not closed under the action of the group Cn, whereas the
set Φens already is. The corresponding action Pens : Cn × Φens → Φens can be decomposed
as

Pens
∼=
⊕
k∈B

m(Pens, k)Γk, (25)

defining thus the average distribution ρav : B → Ql for the ensemble as

ρav(k) = m(Pens, k)/n, k ∈ B, (26)

with Ql being the field of rational numbers.
For the case of single impurity, i.e. n′ = |X ′| = 1, we obtain

ρav =
mn−1m′

n
, k ∈ B. (27)

This distribution is thus homogeneous in the Brillouin zone. This result is apparently
puzzling, since the translational symmetry of the homogeneous magnet yields an inhomo-
geneity of the distribution ρ (cf. Eq. (10)), whereas breaking of this symmetry by a single
impurity implies a homogeneous distribution ρav (cf. Eq. (27)). Thus it looks that breaking
of magnet symmetry increases the symmetry of quantum state distribution in the Brillouin
zone. Actually, this effect should be attributed to the procedure of averaging over the
ensemble, rather than breaking of translational symmetry.
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We conclude that average over the ensemble of magnets differing mutually by the po-
sition of a single impurity (i) restores the quantum number k of quasimomentum and the
Brillouin zone, (ii) wipes out the inhomogeneity of the distribution ρ, (iii) preserves the
hidden symmetry AutCn. In particular, ρav remains constant on each generalized star B(κ),
κ ∈ K(n).

In general, the distribution ρav can be inhomogeneous even under average over positions
of impurities. The key observation is that rarefied bands emerge from irregular orbits of
the action Pens of the translation group Cn on the set Φens of all magnetic configurations of
the ensemble of magnets.

Let O ⊂ Φens be an orbit with

|O| = κ̄ = n/κ (28)

elements, i.e. with the stabilizer Cκ CCn. Then the restriction of Pens to this orbit decom-
poses as

Pens|lcClO
∼=
⊕
k∈B|κ

Γk, (29)

where the set B|κ is the κ-tuply rarefied Brillouin zone (cf. Eq. (19)). In particular, for a
regular orbit we have κ = 1, so that

|Oreg| = n (30)

and
Pens|lcClOreg

∼=
⊕
k∈B

Γk, (31)

since B|1 = B. Thus each regular orbit yields a full band. For κ > 1 we have

|B|κ| < n, (32)

so that each regular orbit yields a rarefied band, and thus inhomogeneity of the distribution
ρav.

In the case of two impurities, i.e. n′ = 2, we have

(Sn−2 × S2) ∩ Cn =

{
C2 for antipodal impurities (n even, S2 ⊂ Cn),
C1 otherwise,

(33)

so that for the case of antipodal impurities the translational symmetry of the magnet is
broken only partially (from Cn to C2).

E.g. for n = 6 and n′ = 2, with the host spin s = 1/2 (m = 2) and the impurity spin
s′ = 1 (m = 3), we get

|24 × 32| = 24 · 32 = 16 · 9 = 144 (34)

magnetic configurations for a given chemical configuration, i.e. for a given distribution of
the two impurities. The total number of magnetic configurations for the ensemble is

|Φens| = 6 · 144 = 864. (35)

When the translational symmetry is totally broken, we get a homogeneous distribution. In
the case of antipodal impurities the action Pens yields
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Table 1: Distribution of states for n = 6, n′ = 2

B(0) B(1) B(2) B(3)

full bands 138 138 138 138
rarefied bands 12 — 12 —
ρav 25 23 25 23

138 regular orbits of C6, i.e. 828 configurations
12 irregular orbits of C6, i.e. 36 configurations

150 orbits 864 configurations

The Brillouin zone decomposes into generalized stars as

B = {0}, {±1}, {±2}, {±3}. (36)

The resulting distribution of states is given in Table 1. Rarefied bands emerge from irregular
orbits corresponding to the rarefied Brillouin zone

B|2 = {0}, {±2}. (37)

5 Conclusions

We have found that impurities break the obvious symmetry of the recipe of Weyl, but
preserve the hidden symmetry. As a result, the distribution of quantum states over the
Brillouin zone does not loose the hidden symmetry. In particular, it remains constant on
each generalized star. Moreover, the procedure of averaging over the ensemble of magnets
with translationally equivalent distributions of impurities wipes out, partially or totally,
inhomogeneities of thus distribution. Rarefied bands emerge as a result of irregular orbits
of translation group action on the set of all magnetic configurations of an ensemble of
magnets.
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