
Combinatorial analysis of magnetic configurations

W. Florek and T. Lulek
Division of Mathematical Physics

The Institute of Physics
A.Mickiewicz University

Matejki 48/49
60-769 Poznań, Poland

Abstract

Properties of polynomial coefficients are applied to investigation of finite spin systems.
Number of spin-configurations states with a given total magnetization are calculated by
recurrence formulas for polynomial coefficients and for sum of polynomial coefficients.

1 Introduction

There is a big interest in application of the so-called ‘finite lattice method’ due to easy com-
puter calculations or simulations. A dimension of state space is finite and, theoretically, one
can obtain exact results. It is very important to analyze a state space before starting computer
program in order to simplify calculations by, for example, decomposition of the space into sub-
spaces with given properties. A spin system with its total magnetization as ‘a given property’
is a very nice example of such procedure.

The finite spin system can be described as follows [1] (cf. also [2, 3] in this volume and
references quoted therein):

1. There is a given set of nodes of crystal lattice

X := n := {1, 2, . . . , n}. (1)

2. Each node carries spin s determined by a spin number s ≥ 0 (integer or half-integer).

3. Possible spin projections on a quantization axis form an (2s+ 1)-element set

Y := [−s,+s] := {−s,−s+ 1, . . . ,+s}. (2)

4. The spin-configurations of the considered spin system are the mappings f : X → Y ,
hence the set of spin-configurations is determined as

Y X := Map(n, [−s,+s]) := {f : X → Y } (3)

and consists of |Y X | = (2s+ 1)n elements.
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One can used Dirac’s notation and writes a spin-configuration as the so-called ket

|i1, i2, . . . , in〉 , ij ∈ Y, j ∈ X, (4)

where ij = f(j). The set Y X is an orthonormal basis of a space L of all quantum states of
magnet over the field of complex numbers Cl [2, 3]. For s = 1/2 we will use a set Y = {−,+}
instead of {−1/2,+1/2} for the sake of simplicity. In this case the set of all configurations
coincides with the power set 2X of X.

The most important operator acting in the space L is the energy operator, i.e. the Hamil-
tonian. It is well known, that two commuting operators have the same set of eigenfunctions,
so the states can be labelled simultaneously by two (or more) eigenvalues. These eigenvalues
are called ‘good quantum numbers’. For almost all magnetic systems (Hamiltonians) a total
magnetization is a good quantum number. It is the eigenvalue of an operator

Sz :=
∑
j∈X

szj , (5)

where szj is a one-site operator and szj |ij〉 = ij |ij〉 so

Sz |i1, i2, . . . , in〉 =

(∑
j∈X

ij

)
|i1, i2, . . . , in〉 = M |i1, i2, . . . , in〉 . (6)

It is obvious that all possible values of the total magnetization form a set

Z := [−ns,+ns] = {−ns,−ns+ 1, . . . ,+ns}, |Z| = 2ns+ 1. (7)

In this paper we present a method for calculating number of configurations with a given
magnetization M . The Hamiltonian of the considered system is irrelevant and it will be omitted
in discussion. It is easy to notice that the operator Sz commutes with any permutation σ ∈ Sn,
so this group is a symmetry group of our problem.

2 Polynomial coefficients

Let Ω(m,n) ⊂ ZZm be a set of all m-tuples (k1, k2, . . . , km) such that

ZZm ⊃ Ω(m,n) := {K = (k1, k2, . . . , km) | ki ≥ 0,
∑
i∈m

ki = n}. (8)

The n-th power of polynomial P(m) =
∑

i∈m xi, xi ∈ Cl , can be written as

Pn(m) =
∑

K∈Ω(m,n)

[n | K]
∏
i∈m

xkii , (9)

where [n | K] is a polynomial coefficient

[n | K] :=
n!∏

i∈m ki!
. (10)
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For m = 2 one obtains the Newton binomial coefficient

[n | (k, n− k)] =

(
n
k

)
=

n!

k!(n− k)!
(11)

and the well-known formula

(x1 + x2)n =
∑
k∈[0,n]

(
n
k

)
xk1x

(n−k)
2 . (12)

The properties of these coefficients are gathered in Table 1 and compared with the properties
of the binomial coefficients. A mnemonic scheme corresponds to the first recurrence procedure.
In the case m = 2 the well-known Pascal triangle (drawn in a two-dimensional space) is
obtained, whereas in the general case a similar scheme should be drawn in a m-dimensional
space and we can call it a (m-dimensional) Pascal ‘simplex’. Figure 1 presents an example for
m = 3 (‘Pascal tetrahedron’). This general scheme has the same properties as the ordinary
Pascal triangle (cf. Table 1):

1. Subsequent ‘bases’ of simplex, labelled by n, consists of (n+m−1)!
n!(m−1)!

entries.

2. The sum of entries in the n-th row is equal to mn.

3. The first recurrence formula (with respect to n) is satisfied.

Table 1: Properties of polynomial coefficients

general case m = 2

Number of different coefficients
(
n+m−1
m−1

)
n+ 1

Sum rules

∑
K∈Ω(m,n)

[n | K] = mn

∑
K∈Ω(m,n)

exp

 2πi
m

∑
i∈m

iki

 [n | K]=0

∑
k∈[0,n]

(
n
k

)
= 2n

∑
k∈[0,n]

(−1)k
(
n
k

)
= 0

Recurrences:
1. with respect to power n

[n | K] =
∑
i∈m

[n−1 | K(j)],

K(j) = (k1, . . . , kj−1, . . . , km)
K(j) ⊂ Ω(m,n−1)

(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)

2. with respect to number of
variables m1

[n | K] = [n | (k1, n−k1)]
× [n−k1 | K ′1],

K ′1 = (k2, k3, . . . , km)
K ′1 ⊂ Ω(m−1, n−k1)

(
n
k

)
=
(
n
k

) (n−k)!
(n−k)!

It is easy to notice that each m′-dimensional, m′ ≤ m, ‘wall’ of the simplex is also a Pascal
simplex corresponding to m′-nomial coefficients (see Figure 1). It is in the accordance with the
second recurrence formula1.

1This formula is trivial for m = 2 and for m ≥ 3 any element ki, i ∈ m, can be considered.
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Figure 1: An example of the Pascal simplex, m = 3, n ≤ 4. Dashed lines connect points with
the same

∑
i∈m iki (cf. Sec. 4 Eq. (29))

Let A be a linear function A : Ω(m,n)→ lR given as

A(K) =
∑
i∈m

αiki (13)

and determined by real coefficients αi ∈ lR (so this function can be identified with an m-tuple
(α1, α1, . . . , αm)). For each a ∈ A(Ω(m,n)) one can find its counter-image

A−1(a) = {K ∈ Ω(m,n) | A(K) = a}. (14)

For given m, n, and A we introduce the function An,m : lR→ ZZ+

An,m(a) :=
∑

K∈A−1(a)

[n | K]. (15)
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The recurrence formulas for polynomial coefficients yield similar ones for the function An,m.
That is,

An,m(a) =
∑
i∈m

An−1,m(a− αi) (16)

with the initial condition
A1,m(a) =

∑
i∈m

δ(αi, a), (17)

and the second one in the form

An,m(a) =
∑
k∈∆

(
n
k

)
An−k,m−1(a− α1k), (18)

where
∆ := {k ∈ [0, n] | (n− k)α ≤ (a− α1k) ≤ (n− k)β} (19)

with α and β being min(α2, α3, . . . , αm) and max(α2, α3, . . . , αm), respectively. Of course, the
other coefficient αi can be taken into account (cf. Table 1). The initial formula for m = 2 has
the following form

An,2(a) =
∑

(k,n−k)∈A−1(a)

(
n
k

)
=

{
2n if α1 = α2,(
n
k

)
for α1 6= α2, k = a−α2n

α1−α2
.

(20)

Let’s consider, e.g., a function (13) determined by the m-tuple N := (1, 1, . . . , 1), i.e. αi = 1,
i ∈ m. Then

N(K) =
∑
i∈m

1 · ki = n, for each K ∈ Ω(m,n), (21)

so N(Ω(m,n)) = {n}. Therefore, for the function (15) one obtains

N n,m(n) =
∑

K∈Ω(m,n)

[n | K] = mn. (22)

The first recurrence formula (16) yields

N n,m(n) =
∑
i∈m

N n−1,m(n− 1) =
∑
i∈m

mn−1 = m ·mn−1, (23)

so it is, of course, the well-known recurrence formula for the power mn. From the second
recurrence formula (18) one obtains (the set ∆ contains all integers 0, 1, . . . , n, see Eq. (19))

N n,m(n) =
∑
k∈[0,n]

(
n
k

)
N n−k,m−1(n− k) =

∑
k∈[0,n]

(
n
k

)
(m− 1)n−k

=
∑
k∈[0,n]

(
n
k

)
(m− 1)n−k · 1k = (1 + (m− 1))n. (24)

So, in this case, the recurrence formula is less useful, but evidently true.
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3 Orbits of symmetric group

The symmetric group Sn acts on the set Y X of all spin-configurations in the following way [2, 3]

P : Sn × Y X → Y X , P (σ) =

(
f

f ◦ σ−1

)
, f ∈ Y X , σ ∈ Sn. (25)

This action determines orbits

O(f) = {f ◦ σ−1 | σ ∈ Sn}. (26)

For each K ∈ Ω(m,n) there exists an orbit with the representative

f 0 :=
∣∣i01, i02, . . . , i0n〉 := | −s, . . . ,−s︸ ︷︷ ︸

k1 times

,−s+ 1, . . . ,−s+ 1︸ ︷︷ ︸
k2 times

, . . . ,+s, . . . ,+s︸ ︷︷ ︸
km times

〉, (27)

where m = |Y | = 2s+1. It is evident that orbits can be labelled by the m-tuples K ∈ Ω(m,n),
so they will be denoted hereafter as OK . These orbits have the following properties:

1. Cardinality of an orbit: |OK | = [n | K].

2. Stabilizer: GK
∼= Sn/

⊗
i∈m Ski (quotient group of the symmetric group Sn and the Young

subgroup
⊗

i∈m Ski).

3. Number of different orbits: [n+ 2s | (n, 2s)] (n+ 1 for s = 1/2, i.e. for m = 2).

4. Number of all configurations:∑
K∈Ω(m,n)

[n | K] = (2s+ 1)n =
∑

K∈Ω(m,n)

|OK |. (28)

4 Classification of configurations

Let’s consider a function (13) determined by the m-tuple M := (−s,−s + 1, . . . ,+s), i.e.
αi = i− s− 1, i ∈ m. Then

M(K) =
∑
i∈m

(i− s− 1)ki = −n(s+ 1) +
∑
i∈m

iki =
∑
µ∈Y

µkµ+s+1

= k1(−s) + k2(−s+ 1) + . . .+ k2s+1s = MK , (29)

where MK is a magnetization of any configuration in the orbit OK (see Eqs. (6) and (27)).
Therefore, the image of the set Ω(m,n) is M(Ω(m,n)) = Z given by Eq. (7) and each value of
the function (cf. Sec. 3)

Mn,2s+1(M) =
∑

K∈M−1(M)

[n | K] =
∑

K∈M−1(M)

|OK | (30)

determines a number of spin-configurations with a given total magnetization M ∈ Z (for a
given number n of spins s). It is important to underline that for all n and s

Mn,2s+1(M) =Mn,2s+1(−M), M ∈ Z. (31)
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The recurrence formulas described by Eqs. (16,18) yield the procedures for the calculation
of Mn,2s+1(M). From the first formula one can easy find

Mn,2s+1(M) =
∑
i∈m

Mn−1,2s+1(M − i+ s+ 1) =
∑
µ∈Y

Mn−1,2s+1(M − µ) (32)

with the starting condition

M1,2s+1(M) =

{
1 for M ∈ [−s,+s] = Y,
0 in other cases.

(33)

One can introduce in a formal way the function M0,2s+1 as

M0,2s+1(M) := δM,0. (34)

It is easy to notice that with this definition (34) a mnemonic scheme, like the Pascal triangle,
can be constructed for this recurrence procedure. Examples of such scheme are presented in
Figure 2 and 3 for s = 1/2, 1 and s = 3/2, respectively. This ‘extended’ Pascal triangle has
the following properties (of course, for s = 1/2, m = 2 they coincide with the properties of the
Pascal triangle):

1. There are |Z| = |[−ns,+ns]| = 2ns+ 1 nonzero entries in the n-th row.

2. Each number in the n-th row is a sum of |Y | = |[−s,+s]| = 2s + 1 numbers from the
(n−1)-th row. These numbers are the ‘nearest-neighbor’ of calculated entry (see Figures
2 and 3).

From the second recurrence formula the following rule is obtained

Mn,2s+1(M) =
∑
k∈∆

(
n
k

)
Mn−k,2s(M + sk), (35)

where
∆ = {k ∈ [0, n] | n(1− s)−M ≤ k ≤ (ns−M)/2s} (36)

with the initial condition

Mn,2(M) =

(
n

n/2−M

)
= [n | (n

2
−M,

n

2
+M)]. (37)

This procedure can be called the recurrence with respect to spin (since one can introduce a new
spin s′ = s− 1/2, so 2s′ + 1 = 2s = m− 1), whereas the previous is the recurrence with respect
to number of spins.

5 Examples

A. n = 2
One can easy find that

M2,2s+1 =
∑
µ∈Y

M1,2s+1(M −m) =
∑
µ∈Y

∑
µ′∈Y

δ(µ′,M − µ) = 2s+ 1− |M |.
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Table 2: Results for n = 3 and s = 3/2 (m = 4) for non-negative M

Orbit number K Representative MK |OK | A3,4(M)
1 (1,0,1,1) |−3/2,+1/2,+3/2〉 1/2 6
2 (0,2,0,1) |−1/2,−1/2,+3/2〉 1/2 3
3 (0,1,2,0) |−1/2,+1/2,+1/2〉 1/2 3 12
4 (1,0,0,2) |−3/2,+3/2,+3/2〉 3/2 3
5 (0,1,1,1) |−1/2,+1/2,+3/2〉 3/2 6
6 (0,0,3,0) |+1/2,+1/2,+1/2〉 3/2 1 10
7 (0,1,0,2) |−1/2,+3/2,+3/2〉 5/2 3
8 (0,0,2,1) |+1/2,+1/2,+3/2〉 5/2 3 6
9 (0,0,1,2) |+1/2,+3/2,+3/2〉 7/2 3 3
10 (0,0,0,3) |+3/2,+3/2,+3/2〉 9/2 1 1

B. s = 1/2
For each M ∈ [−n/2,+n/2] there exists only one orbit with the representative

| −,−, . . . ,−︸ ︷︷ ︸
n/2−M times

,+,+, . . . ,+︸ ︷︷ ︸
n/2+M times

〉,

so number of configurations with a given magnetization equals the cardinality of the orbit

O(n/2−M,n/2+M) =

(
n

n/2−M

)
.

C. M = ns
There exists only one solution K0 = (0, 0, . . . , 0, n) of the equation M(K) = ns. Therefore

Mn,2s+1(ns) = [n | K0] = 1.

@
@
@
@n

M

4

3

2

1

0

-2 -1 0 1 23 1 1 3
2 2 2 2

1 4 6 4 1

1 3 3 1

1 12

1 1

1

��� HHj ���

...

... ...

. . . . . . . . . . . . . . . . . . . . . . . . . . .

a) s = 1/2

-4 -3 -2 -1 0 1 2 3 4

1 4 10 16 19 16 10 4 1

1 3 6 7 6 3 1

1 2 3 2 1

1 1 1

1

?���) PPPq?���)

... ...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) s = 1

Figure 2: ‘Extended’ Pascal triangles for a) s = 1/2 and b) s = 1, n ≤ 4. Arrows correspond
to the first recurrence procedure

8



@
@
@
@n

M

4

3

2

1

0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 611 9 7 5 3 1 1 3 5 7 9 11
2 2 2 2 2 2 2 2 2 2 2 2

1 4 10 20 31 40 44 40 31 20 10 4 1

1 3 6 10 12 12 10 6 3 1

1 2 3 4 3 2 1

1 1 1 1

1

���
(((((9

hhhhhzHHj ���
(((((9

hhhhhzHHj ���

...

... ...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s = 3/2

Figure 3: ‘Extended’ Pascal triangles for s = 3/2, n ≤ 4. Arrows correspond to the first
recurrence procedure

Table 3: Results for n = 4 and s = 1 (m = 3) for non-negative M

Orbit number K Representative MK |OK | A4,3(M)
1 (2,0,2) |−1,−1,+1,+1〉 0 6
2 (1,2,1) |−1, 0, 0,+1〉 0 12
3 (0,4,0) |0, 0, 0, 0〉 0 1 19
4 (1,1,2) |−1, 0,+1,+1〉 1 12
5 (0,3,1) |0, 0, 0,+1〉 1 4 16
6 (1,0,3) |−1,+1,+1,+1〉 2 4
7 (0,2,2) |0, 0,+1,+1〉 2 6 10
8 (0,1,3) |0,+1,+1,+1〉 3 4 4
9 (0,0,4) |+1,+1,+1,+1〉 4 1 1

Hence, there is only one configuration — |s, s, . . . , s〉 — with the maximal total magnetization
M(K0) = ns.

D. M = ns− 1
In this case there is also one solution of the form K1 = (0, 0, . . . , 0, 1, n − 1). Then the
representative of the orbit OK1 is |s− 1, s, . . . , s〉 and the cardinality of the orbit is

|OK1| = [n | (0, 0, . . . , 1, n− 1)] =

(
n
1

)
= n.

Therefore the dimension of a subspace Lns−1 ⊂ L, consisting of states with Sz |ψ〉 = (ns−1) |ψ〉
is n. Moreover, this orbit does not decompose into subsets with the restriction Sn|T , where
T is the translation symmetry group of a crystal lattice. This orbit is the regular one of the
group T . It is very important, since the Hamiltonian commutes with any translation, so the
subspace Lns−1 is always an eigenspace of the Hamiltonian.

E. n = 3, s = 3/2 and n = 4, s = 1
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The results obtained for these parameters are presented in Table 2 and 3, respectively. Please
compare them with Figures 1, 2, and 3.

6 Final remarks

The properties of the polynomial coefficients and their application to the finite spin system
investigation, presented in this paper, do not exhaust riches of this structure. It should be
pointed at first, that the spin system is, very fine but, only one example of possible physics
applications. This approach can be also useful for any problem, in which one has n elements
and m equivalence classes. E.g., [n | K] determines a number of different states for n bosons
and m admissible energy levels [4]. The second example is the Ising model and equivalent
systems: lattice gas and two-component alloy [5].

On the other hand, the analysis presented in Secs. 2 and 4 does not use the generating-
function method. It seems that this method would enable to perform more clear presentation
and more efficient application. Moreover, the polynomial coefficients are closely connected with
partitions (and then with Young diagrams) — each m-tuply K corresponds to a partition of n
into no more than m non-negative integers ki. In the similar way, the condition (29) determines
a partition of MK + n(s+ 1) into n non-negative terms no longer than m = 2s+ 1. (The sum∑

i∈m iki determines a type of element π ∈ Sn(s+1)+MK
[6].)

The recurrence procedures for number of configuration are called the recurrence with respect
to number of nodes n and to spin s, respectively. In the first one, we ‘cut off’ the n-th node,
whereas in the next one nodes carrying the minimal spin projections (−s in the first step) are
removed, so the number of nodes decreases, too. A. Kerber has proposed lately a procedure
in which the smallest (or the largest) projection −s (or +s) are substituted by the next one,
i.e. by −s+ 1 or s− 1, respectively [7]. Therefore, in this method only m decreases while n is
constant.

The results obtained for spin-systems and presented here are the very first step in solving
an eigenproblem for a given Hamiltonian. However, this step is important, since one finds
dimensions of subspaces LM ⊂ L, M ∈ Z, which are eigenspaces of almost all magnetic
Hamiltonians. For example, the ground-state of the Heisenberg antiferromagnet should have
the total magnetization equal to 0. From Table 3 one obtains that for n = 4 and s = 1 the
dimension of the subspace L0 is 19, while whole space L has the dimension 81. The next
step, which is necessary, is determination of bases of the subspaces LM , i.e. one has to find a
representative of each orbit OK . It appears that the presented recurrence procedures enable us
to determine these representatives, too [8]. One of us (WF) has used them investigating the
finite Heisenberg magnets and the problems can be solved very quick and in a very efficient
way (see e.g. [9, 10]).

At the end, we would like to show some extensions of the polynomial coefficients. They can
be written as a function γ : ZZr → ZZ in the form

γ(k1, k2, . . . , kr) =
(
∑

i∈r ki)!∏
i∈r ki!

. (38)

This function can be extended to the space lRr introducing the Euler function Γ and for x̄ =
(x1, x2, . . . , xr) ∈ lRr one obtains

γ(x̄) =
Γ(1 +

∑
i∈r xi)∏

i∈r Γ(1 + xi)
. (39)
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This function satisfies the recurrence formulas (see Table 1)

γ(x̄) =
∑
i∈r

γ(x1, . . . , xi − 1, . . . , xr), (40)

γ(x̄) = γ(x1,
r∑
i=2

xi)γ(x2, x3, . . . , xr). (41)

For r = 2 the sum-rule is also satisfied. For x+ y = n we have∫ ∫
γ(x, y) dx dy =

∫ ∞
−∞

γ(x, n− x) dx = 2n, (42)

where we applied the formula (see, e.g., [11])∫ ∞
−∞

(Γ(c+ x)Γ(d− x))−1dx =
2c+d+2

Γ(c+ d− 1)
. (43)

One also can assume that the Pascal simplex is drawn in m-dimensional Euclidean space
lEm. It is easy to notice that counter-images of the function (21) lie in a (m − 1)-dimensional
hypersurface perpendicular to the vector [1, 1, . . . , 1], so calculation of the function N is simply
connected with a projection of the space lEm onto the line determined by this vector. The
same is true for the second function defined by the m-tuple (−s,−s + 1, . . . ,+s). Therefore
number of spin-configuration with a given total magnetization M , for a given number of spins
n, corresponds to a projection onto two-dimensional space spanned by the orthogonal vectors
N and M. The ‘extended’ Pascal triangle is simply the projection of the Pascal simplex
(for points with non-negative integer coordinates, dashed line in Figure 1 correspond to this
projection). This also yields that points K,K ′ ∈ lEm has the same value of n = N(K) = N(K ′)
and M = M(K) = M(K ′) iff the vector K − K ′ ∈ lRm is orthogonal to both vectors N and
M. For example, when n = 4 and s = 3/2 (m = 4) we have four orbits with M = 0:
(2,0,0,2), (1,1,1,1), (1,0,3,0), (0,3,0,1). This points (in lE4) determines six vectors in lR4: [1,-1,-
1,1], [1,0,-3,2], [2,-3,0,1], [0,1,-2,1], [1,-2,1,0], [1,-3,3,-1]. These vectors are orthogonal to vectors
[1,1,1,1] and [-3/2,-1/2,1/2,3/2] and th first and the sixth can be treated as the orthogonal basis
in two-dimensional space complementary to the subspace containing extended Pascal triangle.
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