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Abstract

Being a mathematician and a musician (I play the flute) I found it very interesting
to deal with Pólya’s counting theory in my Master’s thesis. When reading about
Pólya’s theory I came across an article, called ”Enumeration in Music Theory” by
D. L. Reiner [11]. I took up his ideas and tried to enumerate some other ”musical
objects”.

At first I would like to generalize certain aspects of 12-tone music to n-tone
music, where n is a positive integer. Then I will explain how to interpret intervals,
chords, tone-rows, all-interval-rows, rhythms, motifs and tropes in n-tone music.
Transposing, inversion and retrogradation are defined to be permutations on the sets
of ”musical objects”. These permutations generate permutation groups, and these
groups induce equivalence relations on the sets of ”musical objects”. The aim of this
article is to determine the number of equivalence classes (I will call them patterns) of
”musical objects”. Pólya’s enumeration theory is the right tool to solve this problem.

In the first chapter I will present a short survey of parts of Pólya’s counting theory.
In the second chapter I will investigate several ”musical objects”.

1 Preliminaries

There is a lot of literature about Pólya’s counting theory. For instance see [2], [1], [3],
[9] or [10]. Let M be a set with |M | = m. You should know the definition of the
type (λ1, λ2, . . . , λm) of a permutation π ∈ SM and the definition of the cycle index
CI(Γ;x1, . . . , xm) of a permutation group Γ ≤ SM . In particular we will use the cycle
index of the cyclic group and of the dihedral group.

2 Applications of Pólya’s Theory in Musical Theory

Some parts of this chapter were already discussed by D.L.Reiner in [11]. Now we are
going to calculate the number of patterns of chords, intervals, tone-rows, all-interval-rows,
rhythms, motifs and tropes. Proving any detail would carry me too far. For further
information see [6].

∗The author thanks Jens Schwaiger for helpful comments.
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2.1 Patterns of Intervals and Chords

2.1.1 Number of Patterns of Chords

Definition 1 (n-Scale) 1. If we divide one octave into n parts, we will speak of an
n-scale. The objects of an n-scale are designated as 0, 1, . . . , n− 1.

2. In twelve tone music we usually identify two tones which are 12 semi-tones apart.
For that reason we define an n-scale as the cyclic group (Zn,+) of order n.

Definition 2 (Transposing, Inversion) 1. Let us define T the operation of trans-
posing as a permutation T :Zn → Zn, a 7→ T (a): = 1+a. The group 〈T 〉 is the cyclic
group ζ

(E)
n .

2. Let us define I the operation of inversion as I:Zn → Zn, a 7→ I(a): = −a. The group
〈T, I〉 is the dihedral group ϑ

(E)
n .

Definition 3 (k-Chord) 1. Let k ≤ n. A k-chord in an n-scale is a subset of k
elements of Zn. An interval is a 2-chord.

2. Let G = ζ
(E)
n or G = ϑ

(E)
n . Two k-chords A1, A2 are called equivalent iff there is

some γ ∈ G such that A2 = γ(A1).

Remark 4 1. We want to work with Pólya’s Theorem, therefore I identify each k-
chord A with its characteristic function χA. Two k-chords A1, A2 are equivalent iff
the two functions χA1 and χA2 are equivalent in the sense of Pólya’s Theorem.

2. Let us define two finite sets: P : = Zn and F : = {0, 1}. Each function f ∈ FP will
be identified with Af : = {k ∈ Zn

f(k) = 1}.

3. Let w:F → R: = Q[x] be a mapping with w(1): = x and w(0): = 1, where x is an
indeterminate. Define the weight W (f) of a function f ∈ FP as

W (f): =
∏
k∈Zn

w
(
f(k)

)
.

We see that the weight of a k-chord is xk. The weight of a pattern W ([f ]): = W (f)
is well defined.

Applying Pólya’s Theorem of [1], we derive:

Theorem 5 (Patterns of k-Chords) 1. Let G be a permutation group on Zn. The
number of patterns of k-chords in the n-scale Zn is the coefficient of xk in

CI(G; 1 + x, 1 + x2, . . . , 1 + xn).

2. If G = ζ
(E)
n , the number of patterns of k-chords is

1
n

∑
j|gcd(n,k)

ϕ(j)
( n

j

k
j

)
, where ϕ

is Euler’s ϕ-function.
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3. If G = ϑ
(E)
n , the number of patterns of k-chords is

1
2n

( ∑
j|gcd(n,k)

ϕ(j)
(n
j
k
j

)
+ n

( (n−1)
2

[ k2 ]

))
if n ≡ 1 mod 2

1
2n

( ∑
j|gcd(n,k)

ϕ(j)
(n
j
k
j

)
+ n

(n
2
k
2

))
if n ≡ 0 mod 2 and k ≡ 0 mod 2

1
2n

( ∑
j|gcd(n,k)

ϕ(j)
(n
j
k
j

)
+ n

(n
2−1

[ k2 ]

))
if n ≡ 0 mod 2 and k ≡ 1 mod 2.

4. In the case n = 12 and G = ζ
(E)
n , we get the numbers in table 1.

k 1 2 3 4 5 6 7 8 9 10 11 12
# of patterns 1 6 19 43 66 80 66 43 19 6 1 1

Table 1: Number of patterns of k-Chords in 12-tone music with regard to ζ(E)
n .

5. In the case n = 12 and G = ϑ
(E)
n , we get the numbers in table 2.

k 1 2 3 4 5 6 7 8 9 10 11 12
# of patterns 1 6 12 29 38 50 38 29 12 6 1 1

Table 2: Number of patterns of k-Chords in 12-tone music with regard to ϑ(E)
n .

2.1.2 The Complement of a k-Chord

Definition 6 (Complement of a k-Chord) Let A ⊆ Zn with |A| = k be a k-chord.
The complement of A is the (n− k)-chord Zn \A.

Remark 7 1. Let G = ζ
(E)
n or G = ϑ

(E)
n be a permutation group on Zn and let

1 ≤ k < n. There exists a bijection between the sets of patterns of k-chords and
(n− k)-chords.

2. If n ≡ 0 mod 2, the complement of an n
2 -chord is an n

2 -chord. Now I want to figure
out the number of patterns of n2 -chords [A] with the property A ∼ Zn \A. Applying
the Theorem of [2] we get:

Theorem 8 1. Let n ≡ 0 mod 2. The number of patterns of n
2 -chords which are equiv-

alent to their complement, is CI(G; 0, 2, 0, 2, . . .).

2. If n = 12 and G = ζ
(E)
n , there are 20 patterns of 6-chords which are equivalent to

their complement.

3. If n = 12 and G = ϑ
(E)
n , there are 8 patterns of 6-chords which are equivalent to

their complement.
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2.1.3 The Interval Structure of a k-Chord

In this section we use ϑ(E)
n as the permutation group acting on Zn. The set of all possible

intervals between two differnet tones in n-tone music will be called Int(n), thus

Int(n): = {x− y
x, y ∈ Zn, x 6= y} = {1, 2, . . . , n− 1}.

Definition 9 (Interval Structure) On Zn we define a linear order 0 < 1 < 2 < . . . <
n− 1. Let A: = {i1, i2, . . . , ik} be a k-chord. Without loss of generality let i1 < i2 < . . . <
ik. The interval structure of A is defined as the pattern [fA], wherein the function fA is
defined as

fA: {1, 2, . . . , k} → Int(n)

fA(1): = i2 − i1, fA(2): = i3 − i2, . . . , fA(k − 1): = ik − ik−1, fA(k): = i1 − ik,

and two functions f1, f2: {1, 2, . . . , k} → Int(n) are called equivalent, iff there exists some
ϕ ∈ ϑ(E)

k such that f2 = f1 ◦ ϕ. The group ϑ
(E)
k is generated by T̃ and Ĩ with T̃ (i): =

i + 1 mod k and Ĩ(i): = k + 1 − i for i = 1, . . . , k. The differences ij+1 − ij must be
interpreted as differences in Zn. They are the intervals between the tones ij and ij+1.

Theorem 10 Let A1: = {i1, i2, . . . , ik} and A2: = {j1, j2, . . . , jk} be two k-chords with
i1 < i2 < . . . < ik and j1 < j2 < . . . < jk. Furthermore let f : = fA1 and g: =
fA2 : {1, 2, . . . , k} → Int(n) be constructed as in Definition 9. Then

[f ] = [g]⇐⇒ [{i1, i2, . . . , ik}] = [{j1, j2, . . . , jk}].

I omit the proof of this theorem.

Remark 11 If the permutation group acting on Zn is the cyclic group ζ
(E)
n , then the

interval structure of A: = {i1, i2, . . . , ik} must be defined as the pattern [fA] in regard to
ζ

(E)
k : = 〈T̃ 〉 with T̃ (i): = i+ 1 mod k. The function fA is defined as in Definition 9.

Remark 12 Let f be a function f : {1, 2, . . . , k} → Int(n). The pattern [f ] is the interval
structure of a k-chord, iff

∑k
i=1 f(i) = n. One must interpret this sum as a sum of intervals,

thus as a sum of positive integers.

Remark 13 Let x, y1, y2, . . . , yn be indeterminates over Q and let R be the ring R: =
Q[x, y1, y2, . . . , yn]. Now I want to define a weight function w: Int(n) → R, i 7→ w(i): =
xiyi. The weight of a function f : {1, 2, . . . , k} → Int(n) is the product weight

W (f): =
k∏
i=1

w
(
f(i)

)
=

k∏
i=1

xf(i)yf(i) = x
∑k

i=1
f(i)

k∏
i=1

yf(i).

Now we can define W ([f ]): = W (f). According to Remark 12 the pattern [f ] is the interval
structure of a k-chord, iff

∑k
i=1 f(i) = n.This is true, iff W (f) = xn

∏k
i=1 yf(i). The indices

of the y’s in W (f) show, which intervals occur in the k-chord.

An Application of Pólya’s Theorem of [1] is

Theorem 14 The inventory of interval structures of k-chords in n-tone music is the

coefficient of xn in CI
(
ϑ

(E)
k ;

n−1∑
i=1

xiyi,
n−1∑
i=1

x2iyi
2,
n−1∑
i=1

x3iyi
3, . . . ,

)
.
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Example 15 The inventory of the interval structures of 3-chords in 12-tone music is the
coefficient of x12 in

CI
(
ϑ

(E)
3 ;

11∑
i=1

xiyi,
11∑
i=1

x2iyi
2,

11∑
i=1

x3iyi
3
)
.

This is

y1
2y10 +y1(y2y9 +y3y8 +y4y7 +y5y6)+y2

2y8 +y2(y3y7 +y4y6 +y5
2)+y3

2y6 +y3y4y5 +y4
3

If you are interested in the number of patterns of 3-chords with intervals ≥ k, then put
y1: = y2: = . . . : = yk−1: = 0 and yk: = yk+1: = . . . : = yn: = 1. In the case k = 2 there are 7
patterns of 3-chords with intervals greater or equal 2.

2.2 Patterns of Tone-Rows

Definition 16 (Tone-Row, k-Row) 1. Arnold Schönberg introduced the so called
tone-rows. Here I am going to give a mathematical form of his definition. Let n ≥ 3.
A tone-row in an n-scale is a bijectiv mapping f : {0, 1, . . . , n − 1} → Zn, i 7→ f(i).
f(i) is the tone which occurs in ith position in the tone-row.

2. Let n ≥ 3 and 2 ≤ k ≤ n. A k-row in n-tone music is an injective mapping
f : {0, 1, . . . , k − 1} → Zn.

Remark 17 1. A k-row with k = n is a tone-row.

2. Two k-rows f1, f2 are equivalent if f1 can be written as transposing, inversion, ret-
rogradation or an arbitrary sequence of these operations of f2.

Transposing of a k-row f is T ◦ f , Inversion of f is I ◦ f . According to Definition
2, we know that T and I are permutations on Zn, and that 〈T, I〉 = ϑ

(E)
n . Actually

inversion of a k-row f should be defined as T f(0) ◦ I ◦ T−f(0) ◦ f . Retrogradation R,
is a permutation R ∈ S{0,1,...,k−1} defined as:

R: =
{

(0, k − 1) ◦ (1, k − 2) ◦ . . . ◦ (k2 − 1, k2 ) if k ≡ 0 mod 2
(0, k − 1) ◦ (1, k − 2) ◦ . . . ◦ (k−3

2 , k+1
2 ) ◦ (k−1

2 ) if k ≡ 1 mod 2.

Let Π: = 〈R〉 ≤ S{0,1,...,k−1}, then |Π| = 2. Retrogradation of a k-row f is defined
as f ◦R.

3. Since Π: = 〈R〉, the cycle index of Π is

CI(Π; y1, y2, . . . , yk) =

{
1
2 (y1

k + y2
k
2 ) if k ≡ 0 mod 2

1
2 (y1

k + y1y2
k−1

2 ) if k ≡ 1 mod 2.

Thus two k-rows f1, f2 are equivalent iff ∃ϕ ∈ ϑ(E)
n ∃σ ∈ Π such that f1 = ϕ ◦ f2 ◦ σ.

Applying Theorem 5.2 of [1], we get

Theorem 18 (Number of Patterns of k-Rows) The number of patterns of k-rows in

Zn is CI
(

Π;
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xk

)
CI(ϑ(E)

n ; 1 + x1, 1 + 2x2, . . . , 1 + nxn)

x1=x2=...=xn=0

.

This is
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1.
1
2

(
1
4

(
(2)k + 2

k
2 (
k

2
)!
((n

2
k
2

)
+
(n−2

2
k
2

)))
+

1
2n

((
n

k

)
k! + 2

k
2 (
k

2
)!
(n

2
k
2

)))
,

if n ≡ 0 mod 2 and k ≡ 0 mod 2. For integers k, v, v ≥ 0 the expression (k)v is
definied as:

(k)v: = k · (k − 1) · . . . ·
(
k − (v − 1)

)
.

2.
1
2

(
1
4
· 2 · 2

k−1
2

(n−2
2

k−1
2

)
(
k − 1

2
)! +

1
2n

(
n

k

)
k!
)
,

if n ≡ 0 mod 2 and k ≡ 1 mod 2.

3.
1
2

(
1

2n

(
n

k

)
k! +

1
2

2
k
2

(n−1
2
k
2

)
(
k

2
)!
)
,

if n ≡ 1 mod 2 and k ≡ 0 mod 2.

4.
1
2

(
1

2n

(
n

k

)
k! +

1
2

2
k−1

2

(n−1
2

k−1
2

)
(
k − 1

2
)!
)
,

if n ≡ 1 mod 2 and k ≡ 1 mod 2.

In the case n = 12 the number of patterns of k-rows is in table 3.

k 2 3 4 5 6 7
# of patterns 6 30 275 2 000 14 060 83 280

k 8 9 10 11 12
# of patterns 416 880 1 663 680 4 993 440 9 980 160 9 985 920

Table 3: Number of patterns of k-rows in 12-tone music.

The special case of Theorem 18 for k = n is

Theorem 19 (Number of patterns of Tone-Rows) Let n ≥ 3. The number of pat-
terns of tone-rows in n-tone music is

1
4

(
(n− 1)! + (n− 1)!!

)
if n ≡ 1 mod 2

1
4

(
(n− 1)! + (n− 2)!!(n2 + 1)

)
if n ≡ 0 mod 2.

If n is in N then

n!! =
{
n · (n− 2) · . . . · 2 if n ≡ 0 mod 2
n · (n− 2) · . . . · 1 if n ≡ 1 mod 2.

Especially there are 9 985 920 patterns of tone-rows in 12-tone music.
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2.3 Patterns of All-Interval-Rows

Let A and B be two finite sets. The set of all injective functions f :A→ B will be denoted
by Inj(A,B). For that reason the set of all tone-rows is Inj

(
{0, 1, . . . , n− 1}, Zn

)
. In this

chapter let n ≥ 3.

Definition 20 (All-Interval-Rows) Let us define a mapping

α: Inj
(
{0, 1, . . . , n− 1}, Zn

)
→ {g

g: {1, 2, . . . , n− 1} → Int(n)}

f 7→ α(f)

and α(f)(i): = f(i)−f(i−1) for i = 1, 2, . . . , n−1. This is subtraction in Zn. The function
α(f) is called all-interval-row, iff α(f) is injective, that means α(f) ∈ Inj

(
{1, 2, . . . , n −

1}, Int(n)
)
. In other words a tone-row induces an all-interval-row, iff all possible intervals

occur as differences between two successive tones of the tone-row. The set of all all-
interval-rows will be denoted as Allint(n).

Let’s define some mappings:

1.
β: Inj

(
{1, 2, . . . , n− 1}, Int(n)

)
→ {g

g: {0, 1, . . . , n− 1} → Zn}

f 7→ β(f)

β(f)(0): = 0 and β(f)(i): = β(f)(i− 1) + f(i) mod n for i = 1, 2, . . . , n− 1. You can
easily derive that for i = 0, 1, . . . , n− 1

β(f)(i) ≡
i∑

j=1

f(j) mod n.

2. Let l ∈ Zn.

β̃: Inj
(
{1, 2, . . . , n− 1}, Int(n)

)
→ {g

g: {0, 1, . . . , n− 1} → Zn}

f 7→ β̃(f), β̃(f)(i) ≡
i∑

j=1

f(j) + l mod n.

Theorem 21 Let f be a mapping f : {1, 2, . . . , n− 1} → Int(n). The following statements
are equivalent:

1. f is an all-interval-row.

2. f ∈ Inj
(
{1, 2, . . . , n− 1}, Int(n)

)
and β(f) ∈ Inj

(
{0, 1, . . . , n− 1}, Zn

)
.

3. f ∈ Inj
(
{1, 2, . . . , n− 1}, Int(n)

)
and β̃(f) ∈ Inj

(
{0, 1, . . . , n− 1}, Zn

)
.

The proof is omitted.
You can easily prove the following results:

1. If n ≡ 1 mod 2, there are no all-interval-rows.
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2. If n ≡ 0 mod 2 the function f defined as

f(i): =
{
i if i ≡ 1 mod 2
−i if i ≡ 0 mod 2

is an all-interval-row.

For the rest of this chapter let n ≥ 4 and n ≡ 0 mod 2.

3. f ∈ Allint(n) implies β(f)(n− 1) = n
2 .

4. f ∈ Allint(n) implies f(1) 6= n
2 and f(n− 1) 6= n

2 .

Remark 22 1. On Int(n) we have the following permutations:

I: Int(n)→ Int(n), j 7→ I(j): = n− j.

I stands for inversion. I is of the type (1, n2 − 1, 0, . . .).

In the case n = 12 there is a further permutation called

Q: Int(n)→ Int(n), j 7→ Q(j):≡ 5 · j mod 12.

Q stands for quartcircle symmetry. Since gcd(5, 12) = 1, Q is a permutation on Zn,
and since 5 · 0 = 0, Q is a permutation on Int(n). Q is of the type (3, 4, 0, . . . , 0).
You can easily prove that (I ◦Q)(j) = (Q ◦ I)(j) = 7 · j mod 12 and that it is of the
type (5, 3, 0, . . . , 0). I ◦Q is called quintcircle symmetry.

2. On the set {1, 2, . . . , n− 1} retrogradation R is a permutation, defined as

R: = (1, n− 1) ◦ (2, n− 2) ◦ . . . ◦ (
n

2
− 1,

n

2
+ 1) ◦ (

n

2
).

3. If f ∈ Allint(n), then I ◦ f , f ◦ R are in Allint(n). Furthermore if n = 12 then
Q ◦ f ∈ Allint(12).

4. For that reason we can define the following permutations on Allint(n).

ϕI , ϕR, ϕQ: Allint(n)→ Allint(n)

f 7→ ϕI(f): = I ◦ f, f 7→ ϕR(f): = f ◦R, f 7→ ϕQ(f): = Q ◦ f.
For ϕQ we need the assumption that n = 12.

5. It is easy to prove that these permutations commute in pairs and that ϕI2 = ϕR
2 =

ϕQ
2 = id.

6. In [4] there is a further permutation E called exchange at n
2 . It is defined as

E: Allint(n)→ Allint(n), f 7→ E(f)

and

E(f)(i): =

 f
(
f−1(n2 ) + i

)
if i < n− f−1(n2 )

n
2 if i = n− f−1(n2 )
f
(
i− n+ f−1(n2 )

)
if i > n− f−1(n2 ).

I have already mentioned, that f(1) 6= n
2 and f(n − 1) 6= n

2 . Since f ∈ Allint(n) is
bijective, there exists exactly one j, such that 1 < j < n−1 and f(j) = n

2 . The values
of the function E(f)(i) for i = 1, 2, . . . , n−1 are f(j+1), f(j+2), . . . , f(n−1), f(j) =
n
2 , f(1), f(2), . . . , f(j − 1). The permutation E is defined for n ≥ 4, but in the case
n = 4 we have E = ϕR.
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7. The following formulas hold: E ◦ ϕI = ϕI ◦ E, E ◦ ϕQ = ϕQ ◦ E, E ◦ ϕR = ϕR ◦ E
and E2 = id.

8. Let us define three permutation groups on Allint(n).
G1: = 〈ϕI , ϕR〉, G2: = 〈ϕI , ϕR, E〉 und G3: = 〈ϕI , ϕR, E, ϕQ〉. For G2 we must as-
sume n ≥ 6, and for G3 we must assume n = 12. We calculate that |G1| = 4, |G2| =
8, |G3| = 16.

Remark 23 (Counting of All-Interval-Rows) Let

x1, x2, . . . , xn−1, y1, y2, . . . , yn−1, z1, z2, . . . , zn−1

be indeterminates over Q. Furthermore let f be a mapping f : {1, 2, . . . , n− 1} → Int(n).
We define R: = Q[x1, x2, . . . , xn−1, z1, z2, . . . , zn−1] and

W (f): =
n−1∏
i:=1

wi
(
f(i)

)
.

The functions wi are defined as wi: Int(n) → R, j 7→ wi(j): = zj
∏n−1
ν:=i xν

j . After cal-
culating W (f) you have to replace terms of the form xν

j by yj mod n. Then you get
W̃ (f) ∈ Q[y1, y2, . . . , yn−1, z1, z2, . . . , zn−1]. According to Theorem 21 f is an all-interval-
row, if and only if, W̃ (f) =

∏n−1
i=1 yizi. Consequently the number of all-interval-rows in

n-tone music is the coefficient of
∏n−1
i=1 yizi in

n−1∏
i=1

(n−1∑
j=1

zj

n−1∏
k=i

xk
j
)

xνj=yj mod n

.

Remark 24 For ϕ ∈ G1 or G2 or G3 we want to calculate

χ(ϕ): = |{f ∈ Allint(n)
ϕ(f) = f}|.

After some calculations we can derive that there are only 4 permutions ϕ such that χ(ϕ) 6=
0. In Remark 23 we calculated χ(id). The value of χ(ϕI ◦ϕR) is the coefficient of

∏n−1
i=1 yizi

in
n
2−1∏
i=1

(n−1∑
j=1
j 6=n

2

zjzn−j

n−1∏
k=i

xk
j
n−1∏
k=n−i

xk
n−j
)
zn

2

n−1∏
k=n

2

xk
n
2


xνj=yj mod n

.

Now let n ≥ 6. The value of χ(ϕI ◦ V ) is the coefficient of
∏n−1
i=1 yizi in

n
2−1∏
i=1

(n−1∑
j=1
j 6=n

2

zjzn−j

n−1∏
k=i

xk
j

n−1∏
k=(n2 +i)

xk
n−j
)
zn

2

n−1∏
k=n

2

xk
n
2


xνj=yj mod n

.

Now let n = 12. In order to calculate χ(ϕQ ◦ V ◦ ϕR) you must compute

5∑
i=1

(
z6

11∏
j=2i

xj
6z3z9

( 11∏
j=i

xj
3

11∏
j=i+6

xj
9 +

11∏
j=i

xj
9

11∏
j=i+6

xj
3
)
·

·
i−1∏
j=1

( n−1∑
k=1

k 6∈{3,6,9}

zkz5k mod 12

11∏
l=j

xl
k

11∏
l=2i−j

xl
5k mod 12

)
·
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·
i+5∏

j=2i+1

( n−1∑
k=1

k 6∈{3,6,9}

zkz5k mod 12

11∏
l=j

xl
k

11∏
l=12+2i−j

xl
5k mod 12

))
.

Then substitute yj mod 12 for xνj and find the coefficient of
∏11
i=1 yizi.

Theorem 25 (Number of Patterns of All-Interval-Rows) For i = 1, 2, 3 the num-
ber of patterns of all-interval-rows in regard to Gi is

1. 1
4

(
χ(id) + χ(ϕI ◦ ϕR)

)
for i = 1.

2. 1
8

(
χ(id) + χ(ϕI ◦ ϕR) + χ(ϕI ◦ V )

)
for i = 2.

3. For i = 3 we calculate

1
16
(
χ(id) + χ(ϕI ◦ ϕR) + χ(ϕI ◦ V ) + χ(ϕQ ◦ ϕR ◦ V )

)
=

=
1
16

(3 856 + 176 + 120 + 120) = 267.

This is an application of the Lemma of Bunside of [1].

2.4 Patterns of Rhythms

Definition 26 (n-Bar, Entry-time, k-Rhythm) A bar is an important contribution
in a composition. Usually a lot of bars of the same form follow one another. If you know
the smallest rhythmical subdivision of a bar, you can figure out how many entry-times
(think of rhythmical accents played on a drum) a bar holds. If there are n entry-times in a
bar, I call it an n-bar. In mathematical terms an n-bar is expressed as the cyclic group Zn.
We can define cyclic temporal shifting S as a permutation S:Zn → Zn, t 7→ S(t): = t+ 1.
Retrogradation R (temporal inversion) is defined as R:Zn → Zn, t 7→ R(t): = −t. The
group 〈S〉 is ζ(E)

n and 〈S,R〉 = ϑ
(E)
n . A k-rhythm in an n-bar is a subset of k elements of

Zn. The permutation groups ζ(E)
n or ϑ(E)

n induce an equivalence relation on the set of all
k-rhythms. Now we want to calculate the number of patterns of k-rhythms. We get the
same numbers as in Theorem 5.

2.5 Patterns of Motifs

Definition 27 (k-Motif) 1. Now I want to combine both rhythmical and tonal as-
pects of music.

2. Assume we have an n-scale and an m-bar, then the set M

M : = {(x, y)
x ∈ Zm, y ∈ Zn} = Zm × Zn

is the set of all possible combinations of entry-times in the m-bar Zm and pitches
in the n-scale Zn. Furthermore let G be a permutation group on M . In Remark 29
we are going to study two special groups G. The group G defines an equivalence
relation on M :

(x1, y1) ∼ (x2, y2):⇐⇒ ∃g ∈ G with (x2, y2) = g(x1, y1).

In addition to this we have |M | = m · n.
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3. Let 1 ≤ k ≤ m · n. A k-motif is a subset of k elements of M .

Theorem 28 (Number of Patterns of k-Motifs) The number of patterns of k-motifs
in an n-scale and in an m-bar is the coefficient of xk in

CI(G; 1 + x, 1 + x2, . . . , 1 + xm·n).

This completely follows from Pólya’s Theorem of [1].

Remark 29 (Special Permutation Groups) Now I want to demonstrate two exam-
ples for group G.

1. In Definition 2 we had a permutation group G2 = ζ
(E)
n or G2 = ϑ

(E)
n acting on the

n-scale Zn. Moreover in Definition 26 there was a permutation group G1 = ζ
(E)
m

or G1 = ϑ
(E)
m defined on the m-bar Zm. For that reason, we define the group G as

G: = G1⊗G2. Two elements (x1, y1), (x2, y2) ∈M are called equivalent with respect
to G, iff there exist ϕ ∈ G1 and ψ ∈ G2, with

(x2, y2) = (ϕ,ψ)(x1, y1) = (ϕ(x1), ψ(y1)).

Because of the fact that we know how to calculate the cycle index of G1 ⊗ G2, we
can compute the number of patterns of k-motifs.

2. In the case m = n, we can define another permutation group G, as it is done in [8].
The group G is defined as G: = 〈T, S, ϕA

A ∈ Gl (2, Zn)〉, with

T :M →M,

(
x
y

)
7→ T

(
x
y

)
: =
(

x
y + 1

)

S:M →M,

(
x
y

)
7→ S

(
x
y

)
: =
(
x+ 1
y

)
ϕA:M →M,

(
x
y

)
7→ ϕA

(
x
y

)
: = A

(
x
y

)
.

The multiplication A ·
(
x
y

)
stands for matrix multiplication. The set Gl (2, Zn) is

the group of all regular 2× 2-matrices over Zn.

You can easily derive the following results:

(a) Tn = Sn = idM and T j 6= idM and Sj 6= idM for 1 ≤ j < n.

(b) T ◦ S = S ◦ T . In addition to this T 6∈ 〈S〉 and S 6∈ 〈T 〉.
(c) Let 0 ≤ i, j < n, then: T i ◦ Sj 6∈ 〈ϕA

A ∈ Gl (2, Zn)〉, iff i 6= 0 or j 6= 0.

(d) Let A: =
(
a b
c d

)
, then: ϕA ◦ T k ◦ Sl = T (cl+dk) ◦ S(al+bk) ◦ ϕA.

(e) G is the group of all affine mappings Zn2 → Zn
2.

Although we know quite a lot about the group G, I could not find a formula for the
cycle index of G for arbitrary n.

Example 30 Let us consider the case, that n = m = 12.



40 H. Fripertinger

1. If G is defined as G: = ϑ
(E)
n ⊗ ϑ(E)

n , then we derive

CI(G;x1, x2, . . . , x144) =

= 1
576 (x144

1 +12x24
1 x

60
2 +36x4

1x
70
2 +147x72

2 +8x48
3 +24x8

3x
20
6 +60x36

4 +96x24
6 +192x12

12).

By applying Theorem 28, the number of patterns of k-motifs is the coefficient of
xk in 1 + x + 48x2 + 937x3 + 31 261x4 + 840 006x519 392 669x6 + 381 561 281x7 +
6 532 510 709x8 + 98 700 483 548x9 + 1 332 424 197 746x10 + . . ..

2. If G: = 〈T, S, ϕA
A ∈ Gl (2, Zn)〉, I computed the cycle index of G with a Turbo

Pascal program as

CI(G;x1, x2, . . . , x144) =
1

663 552
(x144

1 + 18x72
1 x

36
2 + 36x48

1 x
48
2 + . . .).

By applying Theorem 28, the number of patterns of k-motifs is the coefficient of
xk in 1 + x+ 5x2 + 26x3 + 216x4 + 2 024x5 + 27 806x6 + 417 209x7 + 6 345 735x8 +
90 590 713x9 + 1 190 322 956x10 + . . ..

For k = 1, 2, 3, 4 these numbers are the same as in [8]. In the case k = 5 however, it
is stated that there exist 2 032 different patterns of 5-motifs, while here we get 2 024
of these patterns.

2.6 Patterns of Tropes

Definition 31 (Trope) 1. If you divide the set of 12 tones in 12-tone music into 2
disjointed sets, each containing 6 elements, and if you label these sets as a first and
a second set, we will speak of a trope. This definition goes back to Josef Matthias
Hauer. Two tropes are called equivalent, iff transposing, inversion, changing the
labels of the two sets or arbitrary sequences of these operations transform one trope
into the other.

2. For a mathematical definition let n ≥ 4 and n ≡ 0 mod 2. A trope in n-tone music
is a function f :Zn → F : = {1, 2} such that |f−1({1})| = |f−1({2})| = n

2 . f(i) = k
is translated into: The tone i lies in the set with label k. Furthermore T and I are
permutations on Zn as in Definition 2. The group 〈T, I〉 is ϑ(E)

n . Two tropes f1, f2

are called equivalent, if and only if, ∃π ∈ ϑ(E)
n ∃ϕ ∈ S2 such that f2 = ϕ−1 ◦ f1 ◦ π.

3. Let x and y be indeterminates over Q. Define a function w:F → Q[x, y] by w(1): = x
and w(2): = y. For f ∈ FZn the weight of f is defined as product weight

W (f): =
∏
x∈Zn

w
(
f(x)

)
.

A function f :Zn → F : = {1, 2} is a trope, iff W (f) = x
n
2 y

n
2 .

Theorem 32 (Patterns of Tropes) Let ϕ be Euler’s ϕ-function. The number of pat-
terns of tropes in regard to ϑ(E)

n is
1
4

(
1
n

(∑
t|n2

ϕ(t)
( n
t
n
2t

)
+

∑
t|n

t≡0 mod 2

ϕ(t)2
n
t

)
+
(n

2
n
4

)
+ 2

n
2−1

)
if n ≡ 0 mod 4

1
4

(
1
n

(∑
t|n2

ϕ(t)
( n
t
n
2t

)
+

∑
t|n

t≡0 mod 2

ϕ(t)2
n
t

)
+
(n−2

2
n−2

4

)
+ 2

n
2−1

)
if n ≡ 2 mod 4.
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In 12-tone music there are 35 patterns of tropes. (See [5].) Hauer himself calculated that
there are 44 patterns of tropes, because in his work the permutation group acting on Zn
was the cyclic group 〈T 〉.

This is an application of of the Power Group Enumeration Theorem in polynomial Form
of [7].

2.7 Special Remarks on 12-tone music

In addition to the operations of transposing T and of inversion I we can study quartcircle-
and quintcircle symmetry in 12-tone music.

Remark 33 (Quartcircle Symmetry) The quartcircle symmetry Q is defined as

Q:Z12 → Z12, x 7→ Q(x): = 5x.

Q is a permutation on Z12, since gcd(5, 12) = 1. Furthermore Q 6∈ 〈I, T 〉, Q ◦ T = T 5 ◦Q,
Q2 = idZ12 and Q ◦ I = I ◦Q = 7x, which is called the quintcircle symmetry.
Let G be G: = 〈I, T,Q〉. Each element ϕ ∈ G can be written as ϕ = T k ◦ Ij ◦Ql such that
k ∈ {0, 1, . . . , n− 1}, j ∈ {0, 1}, and l ∈ {0, 1}. The cycle index of G: = 〈I, T,Q〉 is

CI(G;x1, x2, . . . , x12) =

=
1
48

(∑
t|12

ϕ(t)xt
12
t + 2x6

1x
3
2 + 3x4

1x
4
2 + 6x2

1x
5
2 + 11x6

2 + 4x2
3x6 + 6x3

4 + 4x2
6

)
.

This group G is an other permutation group acting on Z12 with a musical background.
The question arises, how to generalize the quartcircle symmetry of 12-tone music to n-tone
music. Should we take any unit in Zn or only those units e such that e2 = 1 ?
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