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Abstract

The present paper gives an introduction to the theory of association schemes, fol-

lowing Bose-Mesner (1959), Biggs (1974), Delsarte (1973), Bannai-Ito (1984) and

Brouwer-Cohen-Neumaier (1989). Apart from definitions and many examples, also

several proofs and some problems are included. The paragraphs have the following

titles:

1. Introduction 5. Representations

2. Distance regular graphs 6. Root lattices

3. Minimal idempotents 7. Generalizations

4. A-modules 8. References

§1. Introduction

An ordinary graph on n vertices (symmetric relation Γ on an n-set Ω) is described

by its symmetric n × n adjacency matrix A. We paint the edges of the complete

graph on n vertices in s colours:

J − I = A1 + A2 + ...+ As ,

and require that the vector space

A = 〈A0 = I, A1, A2, ..., As〉R
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is a symmetric algebra w.r.t. matrix multiplication, that is,

AiAj = AjAi =
s∑

k=0

akijAk ; i, j = 0, 1, ..., s .

We call this algebra the Bose-Mesner algebra of the s-association scheme (Ω,{id,Γ1,Γ2,

...,Γs}), where colour i corresponds to relation (graph) Γi and adjacency matrix

Ai. The intersection numbers akij and the valencies vi = a0
ii have the following

interpretation:

◦w ◦w’Γk

Γi Γj�
�
�
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�� ◦w Γi
�
�
�
�]vi

These notions go back to Bose and Mesner (1959).

Example 1.

A strongly regular graph is a 2-association scheme, where A1 and A2 denote the

adjacency matrices of the graph and its complement.

In the next example we use the distance ∂(u, v) of the vertices u and v of a graph,

and the relations Γi, defined by {u, v} ∈ Γi iff ∂(u, v) = i, for i = 0, 1, ..., d =

diameter.

Example 2.

The hexagon

◦1 ◦ 4

◦
6

◦
2

◦5 ◦3 �
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��
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TT
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TT
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gives rise to a 3-association scheme, since the distance i matrices Ai read:

A1 =

[
0 J − I

J − I 0

]
, A2 =

[
J − I 0

0 J − I

]
, A3 =

[
0 I

I 0

]
.
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Problem.

Prove that the distance relations in the cube graph form a 3-association scheme.

Determine the valencies and the intersection numbers.

Example 3 Hamming scheme H(v,F2).

Consider Ω := (F2)v with Hamming distance ∂H(x, y), that is, the number of

coordinates in which x and y ∈ Ω differ. Denote by Γi the relation

{x, y} ∈ Γi iff ∂H(x, y) = i .

Then we have a v-association scheme with

n = 2v , vi =
( v

i

)
, akij =

( k
1
2

(i− j + k)

)( v − k
1
2

(i+ j − k)

)
.

Example 4 Johnson scheme J(v, k).

Take Ω the set of all k-subsets of a v-set, and {w,w′} ∈ Γi iff |w ∩ w′| = k − i.
Then

n =
( v

k

)
, vi =

( k

i

)( v − k
i

)
.

In an association scheme (Ω, {Γi}) we will be interested in special subsets X ⊂ Ω,

for instance:

– blue cliques X : only blue edges in X,

– blue cocliques X : no blue edges in X,

– code X at min. distance δ : no Γ1,Γ2, ...,Γδ−1 in X,

– few-distance sets X in Rd, etc., etc.

The problem then will be to find bounds for the cardinality |X| of the special sub-

sets X ⊂ Ω, and to investigate the case of equality.

§2. Distance-regular graphs

In a graph Γ = (Ω, E) of diameter d we define:

distance ∂(u, v) = length of shortest path between u, v ∈ Ω ,

Γi(u) := {x ∈ Ω : ∂(x, u) = i} , |Γi(u)| =: ki .
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Definition.

A graph Γ is distance regular if for all u ∈ Ω, for i = 0, 1, 2, ..., d ,

each v ∈ Γi(u) has ci neighbours in Γi−1(u) ,

has bi neighbours in Γi+1(u) ,

has ai neighbours in Γi(u) .

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�k k2 ki−1 ki ki+1 kd

λ a2 ai−1 ai ai+1 ad

Γ1(u) Γ2(u) Γi−1(u) Γi(u) Γi+1(u) Γd(u)

b1 b2 bi−1 bi bi+11 c2 ci−1 ci ci+1 cdu

◦ . . . . . .

Then

ai + bi + ci = k , ki+1ci+1 = kibi , b0 = k , c1 = 1 , a1 = λ .

So the independent parameters are

{k = b0, b1, b2, ..., bd−1 ; 1 = c1, c2, ..., cd} .

It is convenient to arrange the parameters into the (d + 1) × (d + 1) tridiagonal

matrix T :

T :=



0 k

c1 a1 b1

c2 a2 b2

c3 a3
. . .

c4
. . .
. . .

. . . bd−1

cd ad


.

The definition of distance-regularity translates in terms of the n × n distance i

matrices Ai, which are defined by

Ai(x, y) = 1 if ∂(x, y) = i , = 0 otherwise. (So A1 = A, A0 = I.)

Theorem.

Γ is distance regular iff, for 1 ≤ i ≤ d− 1,

AAi = bi−1Ai−1 + aiAi + ci+1Ai+1 .
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Proof.

(AAi)(x, y) = # {z ∈ Ω : ∂(x, z) = 1, ∂(y, z) = i} .

There are such z only if ∂(x, y) = i − 1, i, i + 1 , and their numbers are bi−1, ai,

ci+1, respectively. �

Corollary.

In a distance regular graph the distance i matrices Ai are polynomials pi of degree

i in the adjacency matrix A, for i = 0, 1, ..., d.

Proof. By recursive application of the theorem. �

Corollary.

For a distance regular graph of diameter d, the distance i relations constitute a

d-association scheme.

Proof. Conversely to Ai = pi(A), deg pi = i, the powers I, A,A2, ..., Ad are linear

combinations of A0, A1, ..., Ad. This implies that 〈A0 = I, A1 = A,A2, ..., Ad〉R is a

Bose-Mesner algebra. �

Example.

The distance 1 relation in the Hamming scheme H(d,F2) defines a distance regular

graph. The vertices are the vectors of Fd2, two vertices being adjacent whenever

they differ in one coordinate. Hence

k = d , ci = i , bi = d− i , ki =
( d

i

)
.

Problem.

Find the parameters bi and ci for the distance regular graph formed by the d-subsets

of an n-set, n ≥ 2d, adjacency whenever two d-subsets differ in one element.

The tridiagonal matrix T , of size d+ 1, is useful for eigenvalues.

Lemma.

The eigenvalues of A are those of T (not counting multiplicities).

Proof. Let λ be an eigenvalue of A. Then Ai = pi(A) has the eigenvalue pi(λ).
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The theorem implies

λpi(λ) = bi−1pi−1(λ) + aipi(λ) + ci+1pi+1(λ) .

But this reads

T tp(λ) = λp(λ) , for p(λ) :=
(
p0(λ), p1(λ), ..., pd(λ)

)
.

and λ is an eigenvalue of T t, hence of T . There are d+ 1 distinct eigenvalues of A,

hence of T . �

Although T and T t have the same eigenvalues, they do not have the same eigenvec-

tors. We shall denote by u(ϑ) the eigenvector of T corresponding to the eigenvalue

ϑ:

T tp(λ) = λp(λ) ; Tu(ϑ) = ϑu(ϑ) ; u0 = p0 = 1 ,

hence

ciui−1 + aiui + biui+1 = ϑui ; i = 1, ..., d− 1 .

Lemma. (
u(ϑ), p(λ)

)
= 0 , for ϑ 6= λ .

Proof.

ϑ
(
u(ϑ), p(λ)

)
=
(
Tu(ϑ), p(λ)

)
=
(
u(ϑ), T tp(λ)

)
= λ

(
u(ϑ), p(λ)

)
. �

Theorem.

Let the adjacency matrix A of a distance regular graph have the eigenvalue ϑ of

multiplicity f . Let the tridiagonal T have eigenvector u(ϑ). Then

L :=
f

n
(I + u1A1 + u2A2 + ...+ udAd)

is an idempotent matrix of rank f .

Proof. If λ is any other eigenvalue of A, then the corresponding eigenvalue of L

equals

f

n

d∑
i=0

ui(ϑ)pi(λ) =
f

n

(
u(ϑ), p(λ)

)
= δϑ,λ .

Indeed, the lemma gives 0 for λ 6= ϑ. For λ = ϑ the corresponding eigenvalue of L,

which also has multiplicity f , equals 1, since trace L = f . �
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Remark.

The theory in this section goes back to Biggs (1974). By the present theorem a

distance regular graph may be viewed as a set of vectors at equal length in Rf , at

cosines ui. For certain classes of DRG this paves the way to characterization, by

use of root lattices, cf. BCN (1989) and §6.

§3. Minimal idempotents

We return to the general case of an association scheme with Bose-Mesner algebra

A = 〈A0 = I, A1, A2, ..., As〉R .

The commuting Ai are simultaneously diagonalizable, hence there exists a basis of

minimal orthogonal idempotents:

A =
〈
E0 =

1

n
J,E1, ..., Es

〉
R

.

Example.

s = 2, specA = (k1, rf , sg).

E1 =
1

r − s

(
A− sI − k − s

n
J
)

, of rank f ,

E2 =
1

r − s

(
rI − A+

k − r
n

J
)

, of rank g .

The algebra A is closed with respect to matrix multiplication. It is also closed with

respect to Schur (= entry-wise) multiplication with idempotents A0, A1, ..., As. We

have:
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Matrix multiplication · , Schur multiplication ◦
EiEj = δijEi , Ai ◦ Aj = δijAi

AiAj =
s∑

k=0

akijAk , Ei ◦ Ej =
s∑

k=0

bkijEk

intersection numbers akij ∈ N , Krein parameters bkij ≥ 0

Transition between the two bases of A:

Ak =
s∑
i=1

pikEi , Ei =
1

n

s∑
k=0

qkiAk

AkEi = pikEi , Ei ◦ Ak =
1

n
qkiAk

valency vk = pok , multiplicity fi = qoi

∆v := diag(vk) , ∆f := diag(fi)

P = [pik], the character table , Q from PQ = nI = QP .

Theorem.

∆fP = Qt∆v .

Proof.

fipik = pik trEi = trAkEi =
∑

Ei ◦ Ak =
1

n
qki
∑

Ak = qkivk ,

with trace MN t =
∑
elts

M ◦ N . �

Problem.

Prove the Krein inequalities bkij ≥ 0, by considering Ei ◦ Ej and Ei ⊗ Ej, and by

using that, for fixed i, j, the matrix Ei ◦ Ej has the eigenvalues bkij.

Remark.

For strongly regular graphs the vanishing of the Krein parameter b1
11 allows the

following combinatorial interpretation.

Let Γ be a strongly regular graph having b1
11 = 0. Then, for every vertex

x, the subconstituents Γ(x) and ∆(x) are both strongly regular.

8



Γ(x) ∆(x)Γ x ◦




J
J

Essentially, also the converse holds (under the assumption that Γ, Γ(x), ∆(x)

are strongly regular for some vertex x). Such graphs are called Smith graphs. For

r = 1, 2 they are the following unique graphs, with order and eigenvalues (n, k, r, s):

(16, 5, 1,−3) , (27, 10, 1,−5) , (100, 22, 2,−8) ,

(112, 30, 2,−10) , (162, 56, 2,−16) , (275, 112, 2,−28) .

The automorphism groups of these graphs are well-known groups, such as the 27

lines-group, the Higman-Sims group on 100, the McLaughlin group on 275 vertices,

cf. BCN (1989).

Example.

Elimination of Q from ∆fP = Qt∆v, PQ = QP = nI yields

P t∆fP = n∆v ,
s∑

z=0

fzpzkpzl = nvkδk,l .

In the case of distance regular graphs, the

pzi are (degree i)-polynomials in pz1 (0 ≤ i ≤ s) .

From the equations above it follows that the pzi form a family of orthogonal polyno-

mials with weights fz. For the Hamming scheme H(v,F2) these are the Krawchouk

polynomials, for the Johnson scheme J(v, l) the dual Hahn polynomials, cf. Del-

sarte (1973).

Remark.

Similarly, elimination of P leads to Q-polynomial association schemes, cf. the clas-

sification theorems in Bannai-Ito (1984).

§4. The A-module V

Let A be the Bose-Mesner algebra of an association scheme on Ω. Consider the

vector space

V = RΩ = {x =
∑
w∈Ω

x(w)w} = {f : Ω→ R} ,
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provided with the inner product (x, y) =
∑
w∈Ω

x(w)y(w).

A acts on V , with simultaneous eigenspaces

V = V0 ⊥ V1 ⊥ ... ⊥ Vs ; πi : V → Vi ;

AkVi = pikVi , Ei = Gram {πiw : w ∈ Ω} .

A subset X = {w1, ..., wm} ⊂ {w1, ..., wn} = Ω is represented by its characteristic

vector

x = (111..100..0) ∈ RΩ .

Then |X| = (x, x), |X ∩ Y | = (x, y), and the average valency of Ak over S is

ak :=
(x,Akx)

(x, x)
, k = 0, 1, ..., s .

Example.

For a code X in the Hamming scheme: a1 = a2 = ... = aδ−1 = 0.

Theorem.
s∑

k=0

(x,Akx)

vk
Ak =

s∑
i=0

(x,Eix)

fi
nEi .

Proof. Apply §3, then

left =
∑
k,i,j

(x,Eix)Ejpikpjk/vk =
∑
k,i,j

(x,Eix)Ejpikqkj/fj = right . �

Corollary.

Qta ≥ 0 , for a = (1, a1, a2, ..., as) .

Proof. Multiply the theorem by Ei, then

(x, x)
s∑

k=0

akqki = n(x,Eix) ≥ 0 .

Remark.

The constraints Qta ≥ 0, a ≥ 0, and |X| = 1 + a1 + a2 + ...+ as, provide a setting

for the application of linear programming, cf. Delsarte (1973).

A further application is the following Code-Clique theorem.
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Let T = {1, 2, ..., t} ⊂ S = {1, 2, ..., s} .
X ⊂ Ω is called a T -clique if only T -relations in X,

Y ⊂ Ω is called a T -code if no T -relations in Y :

(x,Akx) = 0 for t < k ≤ s ; (y, Aky) = 0 for 1 ≤ k ≤ t .

Theorem.

|X| · |Y | ≤ |Ω| and equality iff |X ∩ Y | = 1.

Proof.

n(x, x)(y, y) = n
s∑

k=0

(x,Akx)(y, Aky)/vk =

= n2

s∑
i=0

(x,Eix)(y, Eiy)/fi ≥ n2(x,E0x)(y, E0y) =

= |X|2|Y |2 . �

Problem.

Handle the case of equality.

§5. Representations

Combinatorial objects are represented as sets X of vectors in Euclidean space Rd.

The set X can be investigated by means of its Gram matrix. Another way is to

confront L(X) and L(Rd), where L denotes a linear space of certain test functions.

Theorem.

Any real symmetric semidefinite marix of rank m is the Gram matrix of n vectors

in Euclidean space Rm.

Proof. Use diagonalization of symmetric matrices:

sym
Λ+ 0

0 0
n

n n
m

= =

As an example we consider a graph Γ on n vertices, say regular of valency k, whose

adjacency matrix A has smallest eigenvalue s of multiplicity n−d−1. From A the
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following matrix G is constructed:

AJ = kJ , G := c
(
A− sI − k − s

n
J
)

=

 1 α/β
. . .

α/β 1

 .

Then G is symmetric, positive semidefinite of rank d, has constant diagonal (say

1) and two off-diagonal entries. By the theorem, G is the Gram matrix of a two-

distance set X on the unit sphere S in Euclidean space Rd. The following general

geometric theorem has consequences for graph theory.

Theorem.

Any 2-distance set X on the unit sphere S in Euclidean Rd has cardinality at most
1

2
d(d+ 3).

Proof. For any y ∈ X we define the polynomial

Fy(ξ) :=

(
(y, ξ)− α

)(
(y, ξ)− β

)
(1− α)(1− β)

, ξ ∈ S .

The n polynomials in ξ ∈ S, thus obtained, have degree ≤ 2 and are independent,

as a consequence of

Fy(x) = δy,x ; x, y ∈ X .

Therefore, their number n is at most the dimension of the space of all poly-

nomials of degree ≤ 2 in d variables, restricted to S. This dimension equals
1

2
d(d+ 1) + d+ 0 =

1

2
d(d+ 3). �

Only three examples are known for the case of equality, viz.

(n, d) = (5, 2) , (27, 6) , (275, 22) .

These 2-distance sets correspond to the pentagon graph, and the graphs of Schäfli,

and McLaughlin, respectively. We illustrate the second case.

Example.

The 28 vectors (32, (−1)6) in 7-space span 28 lines which are equiangular at cos ϕ =

1/3. Select a unit vector z along any line, then the 27 unit vectors along the other

lines at cos ϕ = −1/3 with z determine a 2-distance set in 6-space at

cos α = 1/4 , cos β = −1/2 .
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Problem.

From the Johnson scheme J(8, 2) find the Schäfli graph on 27 vertices (which cor-

responds to the 2-distance set just constructed). Find the parameters of the Schäfli

graph.

We now turn to representation in eigenspaces. Let the real symmetric n×n matrix

A have an eigenvalue ϑ of multiplicity m, and a corresponding eigenmatrix U of

size n×m:

AU = ϑU , U tU = Im , UU t = E .

Then the n× n matrix E is idempotent of rank m. The n row vectors ui ∈ Rm of

the matrix U have E as their Gram matrix. Now let A be the adjacency matrix of

a graph Γ = (V,A) on n vertices. Then U defines a representation of the graph in

R
m:

u : Γ→ R
m : V → U : i 7→ ui .

For distance regular graphs the inner products (ui, uj) are determined by the dis-

tance ∂(i, j) =: r, hence

(ui, ui) = constant , wr :=
(ui, uj)

(ui, ui)
= cos ϕij .

The adjacencies imply

ϑui =
∑
j∼i

uj , ϑ =
∑
j∼i

(ui, uj)

(ui, ui)
= kw1

and the first cosines are

w0 = 1 , w1(ϑ) = ϑ/k , w2(ϑ) = (ϑ2 − a1ϑ− k)/kb1 .

Theorem.

Let m > 2 denote the multiplicity of an eigenvalue of a distance regular graph.

Then the valency k and the diameter d satisfy Godsil’s bound

k ≤ (m− 1)(m+ 2)/2 , (d ≤ 3m− 4) .

Proof. For any vector p of a distance regular graph let K denote the set of the

neighbours of p. For any i, j ∈ K their distance ∂(i, j) equals 1 or 2, hence u(K)
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is a 2-distance set of k vectors in Rm−1. Now apply the bound above to obtain the

inequality for k. �

Problem.

Prove Godsil’s diameter bound.

§6. Euclidean root lattices

A lattice is a free Abelian subgroup of rank d in Euclidean Rd. The lattice is

integral if the inner products of its vectors are integral, and even if its vectors

have even norm (x, x). A root is a vector of norm 2. A root lattice is a lattice

generated by roots. A root lattice is invariant under the reflection in the hyperplane

perpendicular to any root r:

x 7→ x− 2
(x, r)

(r, r)
r = x− (x, r)r .

The Weyl group of the root lattice is the group generated by the reflections on the

roots.

Theorem (Witt).

The only irreducible root lattices in Rd are those of type Ad, Dd, E6, E7, E8.

To explain the root systems of type Dd and E8 (which contain the others: Ad ⊂
Dd+1; E6, E7 ⊂ E8), we select an orthonormal basis e1, e2, ..., ed in Rd.

Dd :=
{
x ∈ Rd : xi ∈ Z,

d∑
1

xi ∈ 2Z
}

;

the root system consists of the 2d(d− 1) vectors ± ei ± ej (i 6= j), and is situated

on d(d− 1) lines at 60◦ and 90◦ in Rd.

E8 :=
〈
D8,

1

2
(e1 + e2 + ...+ e8)

〉
Z

;

the root system consists of the 240 = 112+128 vectors±ei±ej and
1

2
(± e1 ± e2 ± ...

± e8) , even number of minusses, on 120 lines at 60◦, 90◦ in R8.

Witt’s theorem plays a role in the proof of the following theorems, cf. CGSS (1976),

Terw (1986), Neu (1985), BCN (1989).
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Theorem.

All graphs having smallest eigenvalue −2 are represented in the root systems of

types Dd and E8.

Theorem.

The Hamming graphs H(d, q) for q 6= 4, and the Johnson graphs J(d, k) for

(d, k) 6= (8, 2) are characterized by their parameters.

In order to illustrate this, we mention an ingredient used by Terwilliger:

E1 =
1

n

d∑
i=0

qi1Ai =
d∑
i=0

(a− bi)Ai = Gram(x, y, z, ... ∈ Rf ) .

Then 〈 1√
b

(x− y) : (x, y) ∈ A1

〉
Z

is a root lattice, etc.

An ingredient used by Neumaier:

G = I + u1A1 + ...+ udAd

is an idempotent matrix; for

ϑ = k − λ− 2 , ui =
k

λ+ 2
− i ,

this leads to root lattices, etc.

§7. Generalizations

We briefly indicate three recent developments which generalize the theory exposed

in the present survey.

a. Coherent algebras, cf. Higman (1987).

These are subalgebras of the matrix algebra Mn(C) which are closed under Schur

multiplication, and contain J . No symmetry, commutativity, containment of I

is presupposed. This leads to the earlier coherent configurations by the same

author.

b. Association schemes on triples, cf. Mesner, Bhattacharya (1990).

The paper deals with partitions of Ω×Ω×Ω into m+ 1 relations Ri, and with

3-dimensional matrices satisfying

AiAjAk =
m∑
l=0

plijkAl .
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Here the triple product D = ABC is the v × v × v matrix having the entries

Dxyz =
∑
w∈Ω

AwyzBxwzCxyw .

c. Polynomial spaces, cf. Godsil (1988).

Ω : J(n, k) S ⊂ Rn Sym(n) O(n)

ρ(x, y) : |x ∩ y| (x, y) |fixx−1y| tr(xty)

The paper deals with a general set-up involving linear inner-product spaces of

polynomials defined on a set Ω provided with a distance function ρ : Ω×Ω→ R.

The axioms are:

ρ(x, y) = ρ(y, x) , dim Pol(Ω, 1) <∞ ,

and for the inner products:

〈f, g〉 = 〈1, fg〉
and

〈1, f〉 ≥ 0 for f ≥ 0 , = 0 iff f = 0 .

The polynomials are defined in terms of zonals ζa(f), defined by(
ζa(f)

)
(x) := f

(
ρ(a, x)

)
, x ∈ Ω .

We refer to the original papers for further details.
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