Δ-matroids and Pfaffian Forms

Walter Wenzel, Bielefeld

In analogy to the fact that representable matroids may be defined in terms of Grassmann-Plücker maps we want to describe representability of Δ-matroids by skew-symmetric matrices in terms of Pfaffian forms. In the sequel we assume $n \in$ $\mathbb{N}, S:=\{1, \ldots, n\}$, and K denotes some commutative field.
Definition 1 (cf. [B1, §6] or [B2, §1]):
Assume $\mathcal{F} \subseteq \mathcal{P}(S)$. The pair (S, \mathcal{F}) is a Δ-matroid, if \mathcal{F} satisfies

$$
\text { For } F_{1}, F_{2} \in \mathcal{F} \text { and } e \in F_{1} \Delta F_{2} \text { there exists some }
$$

$$
\begin{equation*}
f \in F_{1} \Delta F_{2} \text { with } F_{1} \Delta\{e, f\} \in \mathcal{F} . \tag{SEA}
\end{equation*}
$$

For $\mathcal{F} \subseteq \mathcal{P}(S)$ and $T \subseteq S$ we put $\mathcal{F} \Delta T:=\{F \Delta T \mid F \in \mathcal{F}\}$.
Definition 2 (cf. [B2, §4]):
A Δ-matroid (S, \mathcal{F}) is representable over K by a skew-symmetric matrix $A=\left(a_{i j}\right)_{i, j \in S}$, if for some $T \subseteq S$ we have

$$
\mathcal{F} \Delta T=\mathcal{F}(A):=\left\{S^{\prime} \subseteq S \mid A^{\prime}:=\left(a_{i j}\right)_{i, j \in S^{\prime}} \text { is nonsingular }\right\},
$$

where $\left(a_{i j}\right)_{i, j \in \emptyset}$ is considered to be nonsingular. A is then called a presentation of (S, \mathcal{F}).
Theorem 3: A Δ-matroid (S, \mathcal{F}) is representable over K by a skew-symmetric matrix if and only if there exists some map $P: \mathcal{P}(S) \rightarrow K$ and some $T \in \mathcal{F}$ such that
(P0) For $I \subseteq S$ we have $P(I) \neq 0$ if and only if $I \Delta T \in \mathcal{F}$.
(P1) If $I \subseteq S$ and $\# I \equiv 1 \bmod 2$, then $P(I)=0$.
(P2) If $I_{1}, I_{2} \subseteq S$ and $I_{1} \Delta I_{2}=\left\{i_{1}, \ldots, i_{k}\right\}$ with $i_{j}<i_{j+1}$ for $1 \leq j \leq k-1$, then

$$
\sum_{j=1}^{k}(-1)^{j} \cdot P\left(I_{1} \Delta\left\{i_{j}\right\}\right) \cdot P\left(I_{2} \Delta\left\{i_{j}\right\}\right)=0
$$

If (S, \mathcal{F}) is representable by $A=\left(a_{i j}\right)_{i, j \in S}$, then P may be choosen to be the corresponding Pfaffian form, which may be defined by $P(I):=0$ for $\# I \equiv 1 \bmod 2, P(\emptyset):=1, P(\{i, j\}):=a_{i j}$ for $1 \leq i<j \leq n$, and

$$
\begin{aligned}
& P\left(\left\{i_{1}, \ldots, i_{2 m}\right\}\right):=\sum_{j=2}^{2 m}(-1)^{j} \cdot P\left(\left\{i_{1}, i_{j}\right\}\right) \cdot P\left(\left\{i_{2}, \ldots, i_{2 m}\right\} \backslash\left\{i_{j}\right\}\right) \\
& \text { for } 2 \leq m \leq \frac{n}{2} \text { and } i_{j}<i_{j+1} \text { for } 1 \leq j \leq 2 m-1 .
\end{aligned}
$$

Vice versa, if P satisfies (P0), (P1), (P2), then (S, \mathcal{F}) is representable by the matrix $A=\left(a_{i j}\right)_{i, j \in S}$ given by $a_{i i}:=0$ for $1 \leq i \leq n, a_{i j}=-a_{j i}=P(\{i, j\})$ for $1 \leq i<j \leq n$.

Corollary: A Δ-matroid (S, \mathcal{F}), representable by some skew-symmetric matrix, satisfies the following strong exchange property:

$$
\begin{aligned}
& \text { For } F_{1}, F_{2} \in \mathcal{F} \text { and } e \in F_{1} \Delta F_{2} \text { there exists some } \\
& f \in\left(F_{1} \Delta F_{2}\right) \backslash\{e\} \text { with } F_{1} \Delta\{e, f\} \in \mathcal{F} \text { and } F_{2} \Delta\{e, f\} \in \mathcal{F} .
\end{aligned}
$$

Furthermore, Theorem 3 suggests
Definition 4: Assume $F \subseteq \mathcal{P}(S)$.
i) (S, \mathcal{F}) is an orientable Δ-matroid, if there exists some $T \in \mathcal{F}$ and some map $P: \mathcal{P}(S) \rightarrow\{0,1,-1\}$ satisfying
(OP0) For $I \subseteq S$ we have $P(I) \in\{1,-1\}$ if and only if $I \Delta T \in \mathcal{F}$.
(OP1) For $I \subseteq S$ with $\# I \equiv 1 \bmod 2$ we have $P(I)=0$.
(OP2) If $I_{1}, I_{2} \subseteq S, I_{1} \Delta I_{2}=\left\{i_{1}, \ldots, i_{k}\right\}$ with $i_{j}<i_{j+1}$ for $1 \leq j \leq k-1$, and if for some $w \in\{1,-1\}$ we have $\kappa_{j}:=w \cdot(-1)^{j} \cdot P\left(I_{1} \Delta\left\{i_{j}\right\}\right) \cdot P\left(I_{2} \Delta\left\{i_{j}\right\}\right) \geq$ 0 for $1 \leq j \leq k$, then $\kappa_{j}=0$ for every j.
ii) Assume $P: \mathcal{P}(S) \rightarrow \mathbb{R}^{+} \cup\{0\}$ is some map. (S, \mathcal{F}, P) is a valuated Δ matroid, if for some $T \in \mathcal{F}$ we have
(VP0) For $I \subseteq S$ we have $P(I)>0$ if and only if $I \Delta T \in \mathcal{F}$.
(VP1) For $I \subseteq S$ with $\# I \equiv 1 \bmod 2$ we have $P(I)=0$.
(VP2) If $I_{1}, I_{2} \subseteq S$ with $\# I_{1} \equiv \# I_{2} \equiv 0 \bmod 2$, then for every $i \in I_{1} \Delta I_{2}$ there exists some $j \in\left(I_{1} \Delta I_{2}\right) \backslash\{i\}$ with

$$
P\left(I_{1}\right) \cdot P\left(I_{2}\right) \leq P\left(I_{1} \Delta\{i, j\}\right) \cdot P\left(I_{2} \Delta\{i, j\}\right)
$$

References

[B1] A. Bouchet: Greedy algorithm and symmetric matroids, Mathematical Programming 38 (1987), 147-159.
[B2] A. Bouchet: Representability of Δ-matroids, Colloquia Mathematica Societatis János Bolyai 52. Combinatorics, Eger (Hungary), 1987, 167-182.
[DW] A.W.M. Dress and W. Wenzel: Grassmann-Plücker relations and matroids with coefficients, to appear in Advances in Mathematics.
[K] G. Kowalewski: Determinantentheorie, Chelsea Publishing Company, New York, 1948.
[S] J.R. Stembridge: Nonintersecting Paths, Pfaffians, and Plane Partitions, Advances in Mathematics 83 (1990), 96-131.
[W] W. Wenzel: Pfaffian Forms and Δ-Matroids, in preparation.

