
ON THE INTEGRALITY OF THE WITT POLYNOMIALS1

BY

Andreas DRESS AND Christian SIEBENEICHER2

Consider, for example, the following covariant functors defined on the category
rings of commutative rings with a unit element3 and with values in rings :

A 7→ F (A) := A[X]

A 7→ F (A) := A[X]/(X2)

A 7→ F (A) := A× A
A 7→ F (A) := A⊗Z A

These functors share the following property:

If p is a prime number and if p · A = 0, then p · F (A) = 0,
that is, char A = p =⇒ char F (A) = p.

Question: Do all functors from rings to rings share this property?

Answer: No.

The simplest counterexample known to us is based on the well known

fact that every prime number p divides the binomial coefficient

(
p
j

)
for all

integers j ∈ {1, . . . , p− 1}.
Indeed, consider for an arbitrary ring A the subset

A(2)
p := {rp(a, b) := (a, ap + p · b) | a, b ∈ A} ⊂ A× A.
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of the cartesian product A× A and observe that with(
p
j

)′
:=

1

p
·
(
p
j

)
(j ∈ {1, . . . , p− 1})

one has

rp(0, 0) = (0, 0) ∈ A(2)
p ,

rp(1, 0) = (1, 1) ∈ A(2)
p ,

as well as

rp(a1, b1)± rp(a2, b2) =

= (a1 ± a2, (a1 ± a2)p + p(b1 ± b2 −
∑p−1
j=1(±1)j

(
p
j

)′
· ap−j1 · aj2))

= rp(a1 ± a2, b1 ± b2 −
∑p−1
j=1(±1)j

(
p
j

)′
· ap−j1 · aj2)

and
rp(a1, b1) · rp(a2, b2) =

= (a1 · a2, (a1 · a2)p + p · (ap1 · b2 + b1 · ap2 + p · b1 · b2))
= rp(a1 · a2, a

p
1 · b2 + b1 · ap2 + p · b1 · b2)

for all a1, b1, a2, b2 ∈ A. So the subset A(2)
p is a sub–ring of the product ring

A × A and the above formulae suggest to define quite formally a new addition

and multiplication, say
p
+ and

p
◦ , on the set A× A by

(a1, b1)
p
+ (a2, b2) := (a1 + a2, b1 + b2 −

p−1∑
i=j

(
p
j

)′
· ap−j1 · aj2)

and
(a1, b1)

p
◦ (a2, b2) := (a1 · a2, a

p
1 · b2 + b1 · ap2 + p · b1 · b2),

so that the map

rp : A× A→ A× A (a, b) 7→ rp(a, b)

becomes a homomorphism from (A× A,
p
+,

p
◦ ) into the product–ring A× A.

Obviously, if A has no p–torsion, the homomorphism rp maps (A× A,
p
+,

p
◦ ) iso-

morpically onto A(2)
p , which establishes in particular that (A×A,

p
+,

p
◦ ) is indeed a

ring for such A. But even if A has p–torsion, in which case the map rp is no more

injective, (A × A,
p
+,

p
◦ ) is a ring. This can be verified either by direct compu-

tation or by using a surjective homomorphism from some appropriate p–torsion
free ring, e.g. some polynomial ring over Z, onto the ring A.
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In other words, the above construction defines a functor

WCp
: rings → rings

A 7→WCp
(A) := (A× A,

p
+,

p
◦ )

(h : A→ A′) 7→ (WCp
(h) : A× A→ A′ × A′ (a, b) 7→ (h(a), h(b)))

for which there exists a canonical natural transformation

Φ : WCp → id× id

Φ(A) : WCp(A)→ A× A : (a, b) 7→ rp(a, b).

This functor provides a counter–example for the assumption made above, i.e. if
A is a ring for which p · A = 0, then p ·WCp(A) 6= 0:

Indeed the calculation

rp(p ◦ (a, b)) = p · rp(a, b)
= (pa, pap + p2b)

= rp(pa, (1− pp−1)ap + pb)

shows that
p ◦ (1, 0) = (p, 1− pp−1)

holds at least if A has no p–torsion, and therefore, as above, this identity must
hold for all rings A.

Hence if char A = p, then for the unit element (1, 0) of WCp(A) one has

p ◦ (1, 0) = (0, 1) 6= (0, 0).

More generally, E. Witt observed that for every ring A the subset

{(a1, a
2
1 + 2a2, . . . ,

∑
d|n
d · an/dd , . . . ) | a1, a2, . . . ∈ A}

of the infinite product ring AN, N = {1, 2, 3, . . .} constitutes a sub–ring of AN

and that, as above, this allows to construct a functor

W : rings → rings

which is uniquely determined by the following properties:

• W(A) = AN

• W(h : A→ A′) = hN : (a1, a2, . . . ) 7→ (h(a1), h(a2), . . . )
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• for every n ∈ N one has a natural transformation

Φn : W −→ id

Φn(A) : W(A)→ A : (a1, a2, . . . ) 7→
∑
d|n
d · an/dd

To understand these constructions from a structural rather than a purely com-
putational point of view, consider even more generally a pro–finite group G and
let O(G) denote the set of open subgroups of G. For every ring A, one considers
the ring

AO(G)/∼ := {f : O(G)→ A | f(U) = f(V ) if U
G∼ V }

of all functions f : O(G)→ A which are constant on G–conjugacy classes. Then
the subset of all those maps g : O(G) → A for which there exists some f ∈
AO(G)/∼ such that

g(U) =
∑

W∈O(G)

′#FixU(G/W ) · f(W )(W :U)

(where the symbol
∑′ is meant to indicate that for each conjugacy class of open

subgroups W of G exactly one summand has to be taken and with (W : U) :=
(G : U)/(G : W )4) can be shown to be a sub–ring of AO(G)/∼. As above, this
allows to construct an associated functor WG from rings to rings described in

Theorem 1:
Let G be a pro–finite group and let O(G) denote the set of open sub–groups of
G. Then there exists a unique functor WG : rings → rings with the following
properties:

• WG(A) := AO(G)/∼,

• for every ring homomorphism h : A→ A′ one has

WG(h) : WG(A)→WG(A′) : f 7→ h ◦f,

• for every open subgroup U ∈ O(G) one has a natural transformation

ΦU : WG −→ id,

defined by

ΦU(A) : WG(A)→ A : f 7→
∑

V ∈O(G)

′#FixU(G/V ) · f(V )(V :U).

4which is an integer whenever FixU (G/W ) is non empty
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Remarks:
(1) Witt’s theorem presents the special case where G is the pro–finite completion
Ĉ of the infinite cyclic group C.

(2) The functor WCp considered in our first example is precisely the functor
WCp for G the cyclic group Cp with p elements.

Further results concerning this construction are:

Theorem 2:
With Fp the finite field with p elements, one has pn ·WG(Fp) = 0 if and only if
p ·#Gp divides pn, where Gp denotes a p–Sylow subgroup of G. In particular, if
Gp is infinite, one has pn ·WG(Fp) 6= 0 for all n ∈ N.

Theorem 3:
There exists a canonical isomorphism from WG(Z) onto the (completed) Burnside
ring5 Ω̂(G). It has the following property: If for every positive integer q ∈ N
and for every U ∈ O(G) one denotes by C0(U, q)) the U–set of all continuous
maps from U into the discrete set {1, . . . , q} 6 and if indGU (C0(U, q)) denotes the
almost finite G–set induced from it,7 then the canonical isomorphism maps every
f ∈WG(Z) with f(U) ≥ 0 for all U ∈ O(G) onto the disjoint union

[f ] :=
⋃̇

U∈O(G)

′
indGU (C0(U, f(U))),

taken over all conjugacy classes in O(G).

Remark:
Using this isomorphism the above formula in Theorem 1 for the natural trans-
formation ΦU(A) has a rather natural interpretation:
for any f ∈ WG(Z) as in Theorem 3 the number of U–invariant elements
in the almost finite G–set [f ] is precisely

∑′
V ∈O(G) #FixU(G/V ) · f(V )(V :U).

In other words, using the identification WG(Z) = Ω̂(G), the homomorphism
ΦU(Z) : WG(Z)→ Z coincides with the homomorphism ϕ : Ω̂(G)→ Z, induced
by associating to each almost finite G–set the number of its U–invariant elements.

5that is the Grothendieck ring of those discrete G–spaces—called almost finite G–sets—
where for every open subgroup U ∈ O(G) there are only finitely many points which are invariant
under U .

6C0(U, q)) is easily seen to be an almost finite U–set.
7For an almost finite U–set X we denote by indGU (X) the almost finite G–set induced by

X. It is the by definition the set of U–orbits (g, x) in the cartesian product G×X relative to
the (free) U–action U × (G×X)→ G×X defined by (u, (g, x)) 7→ (gu−1, ux) where of course
g1 · (g2, x) := (g1g2, x).
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Theorem 4:

1. For every open subgroup U ∈ O(G) there are natural transformations

• FU : WG →WU

• VU : WU →WG

where for every ring A

• the map FU(A) : WG(A)→WU(A) is a ring homomorphism,

• the map VU(A) : WU(A)→WG(A) is an additive homomorphism.

2. Using the identification from Theorem 3 FU(Z) : WG(Z) → WU(Z) coin-
cides with the restriction map resGU : Ω̂(G)→ Ω̂(U) and VU(Z) : WU(Z)→
WG(Z) coincides with the induction map indGU : Ω̂(U)→ Ω̂(G).

3. The standard identities relating restriction and induction hold more gener-
ally for F and V , e.g. for any ring A and any x ∈WG(A) and y ∈WU(A)
one has x ·VU(A)(y) = VU(A)(FU(A)(x) · y) (Frobenius reciprocity) and for
U1, U2 ∈ O(G) and x ∈ WU1(A) one can compute FU2(A)(VU1(A)(x)) ∈
WU2(A) according to an appropriate variant of the Mackey sub–group for-
mula.

Remark:
In case G = Ĉ, the natural transformations F and V specialize to the well known
Frobenius and Verschiebung maps defined for universal Witt vectors. Moreover,
the well known identities relating the Frobenius and Verschiebung maps follow
from the third assertion of Theorem 4 in this particular case.

To prove Witt’s theorem as well as Theorems 1 to 4 one needs to show that

certain rational numbers—like e.g.
1

p

(
p
j

)
—are indeed integers. In the case

1

p

(
p
i

)
this, of course, can be shown by direct computation, but it can also be

shown without any computation by realizing that
1

p

(
p
j

)
is the number of orbits

of the action of the cyclic group Cp of order p on the set

(
Cp

j

)
of its subsets

of cardinality j.

It is this way of using group actions to prove integrality results of this type which
is fundamental for the proof of our theorems and which—first of all—suggested
that a rather general variant of Witt’s construction should exist, based on the
equivariant combinatorics of arbitrary rather than of cyclic pro–finite groups,
only.
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L’Enseignement de Mathématique, vol. 16 (1970), 21–30

Dress, A.W.M., Siebeneicher, Ch: The Burnside Ring of profinite Groups and the
Witt Vector Construction.
Advances in Mathematics, vol. 70 (1988), 87–132.

Dress A.W.M. and Siebeneicher, Ch: The Burnside Ring of the Infinite Cyclic
Group and its Relations to the Necklace Algebra, λ–Rings and the Universal Ring of
Witt Vectors,
Advances in Mathematics, vol. 78 (1989), 1–41.

Dress A.W.M. and Siebeneicher, Ch: A Multinomial Identity for Witt Vectors,
Advances in Mathematics, vol. 80 (1990), 250–260.

Metropolis N. and Rota G.–C.: Witt Vectors and the Algebra of Necklaces,
Advances in Mathematics, vol. 50 (1983), 95–125.

Witt E.: Zyklische Körper und Algebren der Charakteristik p vom Grade pn, J. Reine
Angew. Math. (Crelle), vol. 176 (1937), 126-140.

7


