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M.Kuźma, Institute of Physics
Higher Pedagogical School, Rejtana 16a

35–310 Rzeszów, Poland

B.Lulek, Institute of Physics
A. Mickiewicz University, Matejki 48/49

60–769 Poznań, Poland

Abstract

The Mac Lane method has been applied to the construction of the second cohomology
group in the extension C12×AutC12. The method simplifies significantly the difficult prob-
lem of construction of nonequivalent extensions and allows to investigate their structure.

1 Introduction

Extensions of groups have many applications in physics. Space groups in crystallography being
extensions of a three-dimensional translation group by a point group is a classical example of
such an application. Many other physical phenomena and theorems can be described in the
formalism of extension of groups, too. From this it follows that it is necessary to search methods
of obtaining the extensions and investigate their structures.

In this paper we present the application of the Mac Lane method [1,2] to the construction
of extensions of finite cyclic groups by a group of its automorphisms. Physical motivation
for the investigation of such extensions arises from group-theoretic description of properties of
line polymers whose structure is described by a line group [3]. In this case one-dimensional
translations form a cyclic group whereas a group of automorphisms, according to the Weyl
recipe [4], describes the inner symmetry of a system.

The Mac Lane method allows us to obtain all nonequivalent extensions expressed by a fac-
tor system. Calculations were performed for the cyclic group C12 having four automorphisms
forming a group D2.
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2 Nonequivalent extensions of groups

A group G is an extension of the ”passive” group T by an ”active” group Q under a given
operator action ∆ if it has a normal subgroup T ′ C G isomorphic with T and if the quotient
group G/T ′ is isomorphic with Q.

The groups G, T , Q form an exact sequence:

0 −→ T
κ−→ G

ω−→ Q −→ 1. (1)

Denoting the elements of the extension G by 〈t, q〉, t ∈ T , q ∈ Q, the multiplication rule in the
group G has the form:

〈t, q〉 〈t′, q′〉 = 〈t+ qt′ +m(q, q′), qq′〉 . (2)

The factors m(q, q′) form the so-called factor system, which fully characterises an extension G.
An extension is described for a given operator action ∆ : Q→ AutT of the active group Q

on a passive group T :

∆(q) =

(
t
qt

)
q ∈ Q, t ∈ T. (3)

Two extensions G and G′ (for the same groups Q and T ) are equivalent if there exists an
isomorphism χ : G→ G′ such that the diagram which represents sequences of these extensions
is commutative i.e. χ ◦ κ = κ′ and ω′ ◦ χ = ω

0 −→ T
κ−→ G

ω−→ Q −→ 1
↓ idT ↓ χ ↓ idQ

0 −→ T ′
κ′−→ G′

ω′−→ Q −→ 1

(4)

The equivalency of extensions can also be defined basing on a factor system. Namely two
extensions are equivalent if their factor systems differ from each other by a twocoboundary δc

m′ = m+ δc. (5)

3 Second group of cohomology

For given groups Q and T one can obtain many extensions. But not all of them differ. Some of
them are equivalent. The number of nonequivalent extensions is given by the second cohomology
group H2

∆(Q, T ) [5,6]:
H2

∆(Q, T ) = Z2
∆(Q, T )/B2

∆(Q, T ), (6)

where Z2
∆(Q, T ) is the group of all twococycles, while B2

∆(Q, T ) is the group of all twocobound-
aries. Groups Z2

∆(Q, T ) and B2
∆(Q, T ) are subgroups of all twocochains C2

∆(Q, T ). The order of
this group is great:

|C2
∆(Q, T )| = |T |(|Q|2). (7)

This order increases when the orders of the groups T and Q are increased (combinatorial ex-
plosion) and e.g. for such small groups Q and T as |Q| = 3, |T | = 4 the order of the group of
twococycles is equal to 262144.
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4 The Mac Lane method

Mac Lane’s theorem helps to construct the second cohomology group and enables us to inspect
some features of the structure of extension. The essence of the method is in a theorem that
a second cohomology group is isomorphic with a quotient group for another exact sequence
involving free groups [1]:
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where F , R are free groups with alphabet 〈X〉 and 〈Y 〉 respectively.
The group F is generated freely from a set A ⊂ Q of generators of an active group Q. The

free group RCF is a quotient group of F and its alphabet is formed using the Nielson–Schreier
theorem [5]:

Y = {sxβ(sx)−1 | x ∈ X, s ∈ S}, S = {fq | q ∈ Q}, (9)

where S is the Nielson–Schreier set, fq — representatives of cosets of F . In diagram (8) ϕ
denotes an operator homomorphisms from R to T and γ denotes a crossed homomorphisms
from F to T .

Denoting the set of all operator and crossed homomorphisms by Z1
∆◦M(F, T ) we can derive

the second cohomology group from an isomorphism:

H2
∆(Q, T ) ∼= HomF (R, T )/Z1

∆◦M(F, T )|R, (10)

where Z1
∆◦M(F, T ) is restricted to R.

One can construct a group HomF (R, T ) from a manifold of all mappings from the alphabet
Y of the group R on to group T

HomF (R, T ) = T Y = {ϕ | Y → T}. (11)

Then we have to select from this manifold T Y the submanifold of all operator homomorphisms
i.e. such mappings, which intertwine the action Ξ : F → AutR and ∆ : Q→ AutT . They form
conditions for the operator homomorphism:

ϕ(xyx−1) = M(x)ϕ(y) x ∈ X, y ∈ Y. (12)

The group Z1
∆◦M(F, T ) of crossed homomorphisms is derived from other rules:

γ(f1f2) = γ(f1) +M(f1)γ(f2), f1f2 ∈ F 2. (13)

5 Extensions of C12 × AutC12

The presented method has been applied to the construction of all nonequivalent extensions of
groups C12×AutC12, where the translation group T is a cyclic group C12 = {j | j = 1, 2, . . . , 12}
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Table 1: The group AutC12

τ\j 1 2 3 4 5 6 7 8 9 10 11 12
τ1 1 2 3 4 5 6 7 8 9 10 11 12
τ5 5 10 3 8 1 6 11 4 9 2 7 12
τ7 7 2 9 4 11 6 1 8 3 10 5 12
τ11 11 10 9 8 7 6 5 4 3 2 1 12

Table 2: Operator actions ∆ : Q→ AutC12

τ\∆ ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8 ∆9 ∆10 ∆11 ∆12 ∆13 ∆14 ∆15 ∆16

τ1 τ1 τ1 τ1 τ1 τ1 τ1 τ1 τ1 τ1 τ1 τ1 τ1 τ1 τ1 τ1 τ1

τ5 τ1 τ1 τ1 τ1 τ5 τ5 τ5 τ5 τ7 τ7 τ7 τ7 τ11 τ11 τ11 τ11

τ7 τ1 τ5 τ7 τ11 τ1 τ5 τ7 τ11 τ1 τ7 τ5 τ11 τ1 τ5 τ7 τ11

τ11 τ1 τ5 τ7 τ11 τ5 τ1 τ11 τ7 τ7 τ1 τ11 τ5 τ11 τ7 τ5 τ1

and the point group Q is the group of automorphisms AutC12 = {τr | r = 1, 5, 7, 11}. The latter
one has four elements τr described by relation τrj = rj mod 12, j ∈ C12. This group (cf also
Table 1) is isomorphic to the group D2. All possible operator actions ∆ : Q → AutC12 have
been listed in Table 2.

We express nonequivalent extensions for the operator action ∆7 (Table 2) in terms of a factor
system defined by

m(q1, q2) = ϕ(%(q1, q2)), (q1, q2) ∈ Q2. (14)

The function %(q1, q2) in (14) is described by a product

fq1fq2 = %(q1, q2)fq1q2 , (15)

where fq is a representative of the coset in the decomposition

F =
⋃
q∈Q

Rfq, (16)

and R is the kernel of the epimorphism M : F → Q. The group D2 has an alphabet X = {x1, x2}
and the Schreier set consists of four elements S = {eF , x1, x2, x1x2}. This set determines the
factor system % : Q×Q→ R by (15). For our case the factor system %(q1, q2) has been presented
in Table 3.

The alphabet Y of the subgroup R can be identify with the set of all non-trivial elements of
the second and third columns of Table 3. Thus we have

Y = {y1 = x2
1, y2 = x2

2, y3 = x2x1x
−1
2 x−1

1 , y4 = x1x2x1x
−1
2 , y5 = x1x

2
2x
−1
1 . (17)

The factor system % : Q×Q→ R, expressed in terms of the alphabet Y is presented in Table 4.
Having the alphabets X and Y we can construct conditions for operator homomorphisms (12)
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Table 3: The factor system % : Q×Q→ R in the alphabet X

eF x1 x2 x1x2

eF eF eF eF eF
x1 eF x2

1 eF x2
1

x2 eF x2x1x
−1
2 x−1

1 x2
2 x2x1x2x

−1
1

x1x2 eF x1x2x1x
−1
2 x1x

2
2x
−1
1 x1x2x1x2

Table 4: The factor system % : Q×Q→ R in the alphabet Y

E ux uy uz
E eF eF eF eF
ux eF y1 eF y1

uy eF y3 y2 y3y5

uz eF y4 y5 y4y2

(see Table 5). Both, operator and crossed homomorphisms, forming groups HomF (R,C12) and
Z1

∆◦M , are collected in Table 6 and 7, respectively.
According to formula (6) we construct cosets determined by Z1

∆◦M(F, T ) in HomF (R, T ) (see
Table 8) forming the second cohomology group H2

∆7
(Q, T ). This group has eight elements. It

yields that we have eight nonequivalent extensions C12 × AutC12 (under operator action ∆7).
Such extensions are listed in Table 9 in the form of factor systems m : Q × Q → C12 for the
coset representatives chosen as in Table 8.

6 Conclusions

The second cohomology group for an extension C12 × AutC12 is of the order 8 (under the
operator action ∆7 described in Table 2). Each element of this group m ∈ H2(D2, C12) forms
the factor system (Table 9) determined by the Seitz formula (2) and gives an nonequivalent

Table 5: Conditions for operator homomorphisms ϕ : R→ T

x1 x2

y1 ϕ(y1) = 5ϕ(y1) ϕ(y3) + ϕ(y4) = 7ϕ(y1)
y2 ϕ(y5) = 5ϕ(y2) ϕ(y2) = 7ϕ(y2)
y3 ϕ(y4)− ϕ(y1) = 5ϕ(y3) ϕ(y2)− ϕ(y5)− ϕ(y3) = 7ϕ(y3)
y4 ϕ(y1) + ϕ(y3) = 5ϕ(y4) ϕ(y1)− ϕ(y2) + ϕ(y3) + ϕ(y5) = 7ϕ(y4)
y5 ϕ(y2) = 5ϕ(y5) ϕ(y5) = 7ϕ(y5)
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Table 6: The group HomF (R,C12) of operator homomorphisms (for operation action ∆7)

y1 y2 y3 y4 y5 y1 y2 y3 y4 y5

ϕ1 3 2 5 4 10 ϕ25 9 2 5 10 10
ϕ2 3 2 11 10 10 ϕ26 9 2 11 4 10
ϕ3 3 4 1 8 8 ϕ27 9 4 1 2 8
ϕ4 3 4 7 2 8 ϕ28 9 4 7 8 8
ϕ5 3 6 3 6 6 ϕ29 9 6 3 12 6
ϕ6 3 6 9 12 6 ϕ30 9 6 9 6 6
ϕ7 3 8 5 4 4 ϕ31 9 8 5 10 4
ϕ8 3 8 11 10 4 ϕ32 9 8 11 4 4
ϕ9 3 10 1 8 2 ϕ33 9 10 1 2 2
ϕ10 3 10 7 2 2 ϕ34 9 10 7 8 2
ϕ11 3 12 3 6 12 ϕ35 9 12 3 12 12
ϕ12 3 12 9 12 12 ϕ36 9 12 9 6 12
ϕ13 6 2 2 4 10 ϕ37 12 2 2 10 10
ϕ14 6 2 8 10 10 ϕ38 12 2 8 4 10
ϕ15 6 4 4 2 8 ϕ39 12 4 4 8 8
ϕ16 6 4 10 8 8 ϕ40 12 4 10 2 8
ϕ17 6 6 6 12 6 ϕ41 12 6 6 6 6
ϕ18 6 6 12 6 6 ϕ42 12 6 12 12 6
ϕ19 6 8 2 4 4 ϕ43 12 8 2 10 4
ϕ20 6 8 8 10 4 ϕ44 12 8 8 4 4
ϕ21 6 10 4 2 2 ϕ45 12 10 4 8 2
ϕ22 6 10 10 8 2 ϕ46 12 10 10 2 2
ϕ23 6 12 6 12 12 ϕ47 12 12 6 6 12
ϕ24 6 12 12 6 12 ϕ48 12 12 12 12 12

Table 7: The group Z1
∆◦M of crossed homomorphisms (for operation action ∆7)

y1 y2 y3 y4 y5

γ1 6 8 2 4 4
γ2 6 4 10 8 8
γ3 6 12 6 12 12
γ4 12 8 8 4 4
γ5 12 4 4 8 8
γ6 12 12 12 12 12
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Table 8: Coset representatives HomF (R, T )/Z1
∆◦M(F, T ) (for operation action ∆7)

y1 y2 y3 y4 y5

r0 12 12 12 12 12
r1 9 6 9 6 6
r2 3 6 9 12 6
r3 3 12 3 6 12
r4 9 12 3 12 12
r5 6 6 12 6 6
r6 6 6 6 12 6
r7 6 12 12 6 12

Table 9: Factor systems m : Q×Q→ C12 (for operation action ∆7)

r0 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 r1 =


0 0 0 0
0 9 6 3
0 9 6 3
0 6 6 0


r2 =


0 0 0 0
0 3 0 3
0 9 6 3
0 0 6 6

 r3 =


0 0 0 0
0 3 0 3
0 3 0 3
0 6 0 6


r4 =


0 0 0 0
0 9 0 9
0 3 0 3
0 0 0 0

 r5 =


0 0 0 0
0 6 0 6
0 0 6 6
0 6 6 0


r6 =


0 0 0 0
0 6 0 6
0 6 6 0
0 0 6 6

 r7 =


0 0 0 0
0 6 0 6
0 0 0 0
0 6 0 6
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extension. However, the factor system depends on a choice of coset representatives listed in
table 8. This choice corresponds to the gauge transformation [2], which is connected with
equivalent extensions.
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