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During the past decade numerous fruitful contributions to the theory of the free Lie algebra
have been made. Results and methods in this area are characterized by a subtle interplay between
algebraic and combinatorial ideas. The quantity and the wealth of the material accumulated
in the last years might be accompanied by the certainly undesired side-effect of concealing its
own roots and history. We have therefore decided to restrict ourselves to a concise approach to
some specially chosen topics. It is essentially self-contained and takes its course starting from a
completely elementary source. At the same time the attempt is made to duly provide the reader
with appropriate references for the various contributions involved. We take the opportunity to
refer to [18] as a useful supplement to this article.

In the first section we describe certain aspects of the theory and a number of known results.

In the second section we show that these are different branches of the same key result (Ind)

for which we then give a proof, by means of elementary combinatorial reasoning, in the third

section. The underlying idea of our approach is to transfer problems on free Lie algebras into

the area of group rings of symmetric groups. On the one hand, this provides a powerful tool to

solve those problems. On the other hand, the arising questions are a challenging contribution to

the classical representation theory of the symmetric group: By passing from the free Lie algebra

to group rings, several notions are focused which apparently have not been considered as of

central importance before. A most interesting problem in this sense is to analyze the role of

the Solomon algebra in the general representation theory of the symmetric group. In our fourth

section we introduce this algebra and add some hints in that direction.

1 Free Lie algebras

In the following we write N0 for the set of all non-negative integers and set N := N0\{0}, n :=

{k | k ∈ N, 1 ≤ k ≤ n} for all n ∈ N0.

Let R be a commutative unitary ring, n ∈ N, F be the monoid generated freely by

n letters x1, . . . , xn. Any element xi1 · · ·xim ∈ F is called a word (over {x1, . . . , xn}), the
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number m its length or degree. If the number of all r ∈ m such that xir = xj is denoted

by kj (j ∈ n ), then k1 + · · · + kn = m, and (k1, . . . , kn) is called the multidegree of

xi1 · · ·xim .

Let AR be the free R-module with basis F . The multiplication in F extends canonically

to AR which thus becomes an associative R-algebra generated freely by {x1, . . . , xn}. For

all m ∈ N0 let AR,m be the R-submodule of AR generated by all words of length m, and

for all (k1, . . . , kn) ∈ Nn0 let AR(k1, . . . , kn) be the R-submodule of AR generated by all

words of multidegree (k1, . . . , kn). Then

(1)

AR =
⊕
m∈N0

AR,m

AR,m =
⊕

k1+···+kn=m

AR(k1, . . . , kn) (m ∈ N0).

The standard Lie product,

a ◦ b := ab− ba for all a, b ∈ AR,

turns AR into a Lie algebra over R. By [31], [6, II, §3, Theorem 1], {x1, . . . , xn} generates

freely a Lie subalgebra of AR which will be denoted by LR. A Lie monomial in AR

is an element of the ◦-closure of {x1, . . . , xn}. A Lie monomial of the particular form

(· · · (xi1 ◦ xi2) ◦ · · ·) ◦ xi` is called left-normed. For simplicity, we shall use for it the

bracket-free notation xi1 ◦ xi2 ◦ · · · ◦ xi` . It is easy to see that the R-module LR is

generated by the set of all left-normed Lie monomials. Surprisingly, no R-basis of LR

consisting of left-normed Lie monomials is known. Set LR,m := LR ∩ AR,m for all m ∈
N0, LR(k1, . . . , kn) = LR ∩ AR(k1, . . . , kn) for all (k1, . . . , kn) ∈ Nn0 . The multidegree of a

Lie monomial a 6= 0 in AR is the unique n-tuple (k1, . . . , kn) such that a ∈ LR(k1, . . . , kn).

We have

(2)

LR =
⊕
m∈N0

LR,m

LR,m =
⊕

k1+···+kn=m

LR(k1, . . . , kn) (m ∈ N0).

By [6, II, §2.5], the following holds:

1.1 Proposition. The mapping

{x1 . . . , xn} → R⊗
Z

LZ

xj 7→ 1⊗ xj
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extends uniquely to a Lie R-algebra isomorphism φR of LR onto R⊗
Z

LZ. In particular,

LR,mφR = R⊗
Z

LZ,m for all m ∈ N0, and LR(k1, . . . , kn)φR = R⊗
Z

LZ(k1, . . . , kn) for all

(k1, . . . , kn) ∈ Nn0 .

As an abelian group, LZ(k1, . . . , kn) is torsion-free and finitely generated (for ex-

ample, by the set of all Lie monomials in AZ of multidegree (k1, . . . , kn)). Therefore,

LZ(k1, . . . , kn) is a free Z-module of finite rank. As a consequence, LR(k1, . . . , kn) is a free

R-module of the same rank. This rank is known to be the so-called necklace number as

has been proved by Witt [31]. By 1.1, it is justified to specialize R, and for our purposes

it is convenient to put R := C. Subsequently we simply write A (L resp.) for AC(LC

resp.), similarly Am (A(k1, . . . , kn) resp.) for the space AC,m (AC(k1, . . . , kn) resp.) of all

homogeneous elements of degree m (of multidegree (k1, . . . , kn) resp.), etc. Now Witt’s

Dimension Formula reads as follows:

(WDF) dim L(k1, . . . , kn) =
1

m

∑
d|k1,...,kn

µ(d)
m
d

!
k1

d
! · · · kn

d
!

where m = k1 + · · · + kn. The necklace number on the right-hand side of (WDF) is the

number of Lyndon words in F of multidegree (k1, . . . , kn). In group theoretic terms, it

is the number of orbits of length m of the subgroup 〈(1 . . .m)〉 of the symmetric group

Sm with respect to its left action on the set of left cosets of a Young subgroup of Sm of

isomorphism type Sk1 × · · · × Skn .

Putting (xi1 · · ·xi`)◦ := xi1 ◦ · · · ◦ xi` for all i1, . . . , i` ∈ n , we obtain a vector space

epimorphism ◦ : A → L, sometimes called the Dynkin mapping. Grün (see [20, footnote

12]) expressed this mapping by means of the Weyl action of Sm on the space Am: By the

rule

σxi1 · · ·xim := xi1σ · · ·ximσ (i1, . . . , im ∈ n , σ ∈ Sm),

Am is made into a CSm-left module. Obviously, the spaces A(k1, . . . , kn) where k1 + · · ·+
kn = m are CSm-submodules of Am. Let

Xm := {π | π ∈ Sm, 1π > 2π > . . . > 1 < . . . < (m− 1)π < mπ}

and

ωm :=
∑
π∈Xm

(−1)1π−1−1π ∈ CSm.

Then

(3) a◦ = ωma for all a ∈ Am.
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The important criterion by Dynkin [8], Specht [25], Wever [29] characterizes the Lie

elements of Am by means of the Dynkin mapping:

(DSW) a ∈ Lm ⇐⇒ a◦ = ma, for any a ∈ Am.

Putting νm := 1
m
ωm, we have, by (3),

(4) νmAm = Lm,

as the Dynkin mapping is onto. Hence the essential content of (DSW) is the following:

(5) ν2
m = νm.

In the special case of m = n, (4) implies that

(6) νnA(1, . . .
n
, 1) = L(1, . . .

n
, 1).

As an operator, every φ ∈ CSn such that φA(1, . . .
n
, 1) = L(1, . . .

n
, 1) maps the space of

all homogeneous elements of degree n of an arbitrary free associative algebra onto its

subspace of homogeneous Lie elements of degree n. This is due to the fact that A is free

over {x1, . . . , xn}.
We now fix n ∈ N and choose a primitive n-th root of unity ε. An element φ ∈ CSn

is called a Lie idempotent if φA(1, . . .
n
, 1) = L(1, . . .

n
, 1) and φ2 = φ. By (5) and (6),

νn =
1

n

∑
π∈Xn

(−1)1π−1−1π

is a Lie idempotent. Using (5), it is easy to check, for an arbitrary element φ ∈ CSn, that

(7) φ is a Lie idempotent if and only if φνn = νn, νnφ = φ.

This is a first example of the general phenomenon that significant notions in the theory

of free Lie algebras may be characterized by means of formally simple equations in the

group ring CSn. Applying (7), we have:

(8)

The Lie idempotents in CSn are the idempotent generators of the right ideal νnCSn.

A second important example of a Lie idempotent was given by Klyachko in 1974. For

every σ ∈ Sn set

ind σ :=
∑
{j | j ∈ n− 1 , jσ > (j + 1)σ}

(called the (major) index of σ, [19, sect. III, VI, 104.]). Then

λn :=
1

n

∑
σ∈Sn

εind σσ
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is a Lie idempotent ([16], [2,3.4.3]). 1)

Starting from any Lie idempotent, an analysis of [3, 1st Theorem 2.3] yields a simple

method of constructing a family of related Lie idempotents:

1.2 Proposition. Let K be a subfield of C, φ =
∑
σ∈Sn

cσσ ∈ KSn be a Lie idempotent,

B be a Q-basis of K such that 1 ∈ B. For all b ∈ B let φb ∈ QSn such that φ =
∑
b∈B

bφb.

(Almost all φb are 0.) Then

φ1 +
∑

b∈B\{1}

dbφb

is a Lie idempotent, for every choice of the coefficients db ∈ C.

Proof. As νn ∈ QSn, (7) implies that φ1νn = νn, φbνn = 0 for all b ∈ B\{1}, and

νnφb = φb for all b ∈ B. But these equations imply our claim, again by (7). �

Of course, new Lie idempotents are obtained by means of (7) only if not all the

coefficients cσ of φ are rational. The case of φ := λn, K := Q(ε), B := {1, ε, ε2, ε3, . . .}
has been considered in [3, (2.20)].

In 1986, Reutenauer discovered a further Lie idempotent; it has rational coefficients:

For every σ ∈ Sn we define the defect set of σ by

D(σ) := {j | j ∈ n− 1 , jσ > (j + 1)σ},

and the defect of σ by

d(σ) := |D(σ)|.
1For any variable t we have the identity

(9)
∑
σ∈Sn

tind σσ =
n∏
j=1

(id+ tτj + t2τ2
j + · · ·+ tj−1τ j−1

j )

where τj = (j . . . 1). This yields a product representation of λn if we put t := ε. Furthermore,
if Φ is a representation of the group ring of Sn over the field C(t), then (9) implies that

∑
σ∈Sn

tind σΦ(σ) =
n∏
j=1

(Φ(id) + tΦ(τj) + t2Φ(τj)2 + · · ·+ tj−1Φ(τj)j−1).

In the special case of the 1-dimensional representations this reduces to the following identities:∑
σ∈Sn

tind σ =
∏n
j=1(1 + t+ t2 + · · ·+ tj−1) ([27, 4.5.9]),∑

σ∈Sn
sgn(σ)tind σ =

∏n
j=1(1 + (−1)j+1t+ t2 + (−1)j+1t3 + · · ·+ (−1)j+1tj−1) resp.
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Then

ρn :=
1

n

∑
σ∈Sn

(−1)d(σ)(
n−1
d(σ)

) σ
is a Lie idempotent ([21, (1.4)]).

We have an easy characterization of the elements π ∈ Xn which occur in νn, in terms of

defect sets: Let π ∈ Sn and r := d(π). Then the following three statements are equivalent:

(10)
π ∈ Xn
D(π) = r

π = (j1 . . . 1) · · · (jr . . . 1) for some j1, . . . , jr ∈ n such that j1 > j2 > . . . > jr > 1.

The equation π = (j1 . . . 1) · · · (jr . . . 1) where j1 > j2 > . . . > jr > 1 implies that j` = `π

for all ` ∈ r , hence D(π)π = {j1, . . . , jr}. In particular, we have:

(11) For every C ⊆ n \{1} there exists a unique π ∈ Xn such that D(π)π = C.

The mapping π 7→ D(π)π is a bijection of Xn onto the power set of n \{1}.

The following three simple properties of the elements π ∈ Xn will be useful at a later

stage:

(12) D(π−1) = D(π)π − 1

(In particular, the inverses of any two distinct elements of Xn have distinct defect sets.)

For k, ` ∈ n we have

(13) If k < ` and kπ > `π, then k ∈ D(π).

(14) If k < ` and kπ < `π, then ` 6∈ D(π).

Moreover, by (10),

(15) νn =
1

n

∑
π∈Xn

(−1)d(π)π =
1

n
(id− (n . . . 1))(id− (n− 1 . . . 1)) · · · (id− (21)).

This last description of νn as a product has first been noted by Magnus [20].

The coefficients of any Lie idempotent have a remarkable property which was discov-

ered by Wever [30, Satz 4] in the case of the particular Lie idempotent νn (see also [13],

[5]). The following general version of this result is due to Garsia [10, Proposition 5.1]:
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1.3 Theorem. Let φ=
∑
σ∈Sn

cσσ ∈CSn be a Lie idempotent. Then for any conjugacy class

C of Sn ∑
σ∈C

cσ =

{
µ(d)
n

if d | n and (1 . . . n)
n
d ∈ C

0 otherwise
.

By (8), φCSn = νnCSn for all Lie idempotents φ ∈ CSn. Hence the general statement 1.3

is implied by Wever’s special result by means of the following proposition due to Frobenius

[9, §1], [7, §9, exerc. 16]:

(16)

If φ =
∑
σ∈Sn

cσσ, ψ =
∑
σ∈Sn

dσσ are idempotent elements of CSn, then

φCSn ∼=
CSn

ψCSn if and only if
∑
σ∈C

cσ =
∑
σ∈C

dσ for all conjugacy classes C of Sn.

We now turn to another aspect of the theory which concerns representations of gen-

eral linear groups. The vector space An may be identified with the n-fold tensor product

V ⊗ . . .
n
⊗V where V = A1. Therefore, in a natural way, An is a GL(V )-(right) module. In

his doctoral thesis of 1901 [22] and in a famous paper of 1927 [23], Schur described the de-

composition of An into irreducible GL(V )-modules in terms of irreducible representations

of Sn: If p is a partition of n (p ` n) and Up is an irreducible CSn-module corresponding to

a Young diagram of shape p, then Up ⊗
CSn

An is either 0 or is an irreducible GL(V )-module.

An is a direct sum of modules of this type, and the multiplicity of Up ⊗
CSn

An in An is the

number of standard Young tableaux of shape p, denoted by stp. That is,

(17) An ∼=
GL(V )

⊕
p`n

stp(Up ⊗
CSn

An).

Obviously, Ln is a GL(V )-submodule of An. More than fifty years ago, the question

was raised as to how the GL(V )-module structure of Ln could be described [28]. In the

meantime, various contributions to this problem have been achieved, but a satisfactory

answer in the spirit of Schur’s result (17) was discovered only recently. Let us first recall

a module isomorphism of preliminary character proved by Klyachko in 1974. We write

Cn for the eigenspace of the cycle (1 . . . n) in An with respect to the eigenvalue ε.

1.4 Proposition ([16, Proposition 1]). Ln ∼=
GL(V )

Cn.

The desired decomposition of Ln into GL(V )-irreducible constituents was finally ob-

tained in 1987: For every Young tableau T put

maj T :=
∑
{j | j ∈ n− 1 , j + 1 is in a lower row of T than j}
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(called the major index of T ). For p ` n and i ∈ n, let stpi be the number of all standard

Young tableaux T of shape p such that maj T ≡ i mod n. The main result on the

GL(V )-module structure of Ln is the following:

1.5 Theorem (see [10, 8.]). Ln ∼=
GL(V )

⊕
p`n

stp1(Up ⊗
CSn

An).

2 On (Ind), a key result

A proof of 1.5 is obtained by means of two non-trivial results which are interesting in

their own right (2.1 and (Ind)).

For every j ∈ n ∪ {0} let Mj be a 1-dimensional 〈(1 . . . n)〉-module over C such that

the character of (1 . . . n) is εj. The first result to be mentioned here is the following:

2.1 Theorem (Kraskiewicz, Weyman [17], (see also Springer [26, 4.5]))

MSn
j
∼=
CSn

⊕
p`n

stpjU
p for every j ∈ n ∪ {0}.

As for the second result, we remark first that the natural action of Sn on {x1, . . . , xn}
gives rise to a CSn-right module structure on the spaces A(1, . . .

n
, 1) and L(1, . . .

n
, 1). We

observe

(18) A(1, . . .
n
, 1) is a regular CSn-right module,

and

(19) Ln ∼=
GL(V )

L(1, . . .
n
, 1) ⊗

CSn
An.

The following statement proves to be a key result for the whole context as the discus-

sion in this section will show. An equivalent form of it is already contained in Wever’s

paper [30, Satz 5] and was rediscovered in 1974 by Klyachko [16, Corollary 1]:

(Ind) L(1, . . .
n
, 1) ∼=

CSn
MSn

1 .

The induced CSn-module MSn
1 is obviously isomorphic to the right ideal of CSn gen-

erated by the following idempotent element:

ζn :=
1

n

n−1∑
i=0

ε−i(1 . . . n)i.

Hence MSn
1 ⊗
CSn

An is GL(V )- isomorphic to the eigenspace Cn.
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(a) Now 1.4 is a consequence of the isomorphisms

Ln ∼=
GL(V )

L(1, . . .
n
, 1) ⊗

CSn
An ∼=

GL(V )
MSn

1 ⊗
CSn

An

which follow from (19) and (Ind).

(b) Applying 2.1 (where j = 1), we obtain 1.5.

(c) Theorem 1.3, too, follows easily from (Ind): Let φ ∈ CSn be any Lie idempotent.

By (18), A(1, . . .
n
, 1) ∼=

CSn
CSn, hence

φCSn ∼=
CSn

φA(1, . . .
n
, 1) = L(1, . . .

n
, 1) ∼=

CSn
MSn

1
∼=
CSn

ζnCSn.

Therefore, by (16), the property stated in the formula of 1.3 for the coefficients of φ

follows once it is verified for the coefficients of ζn. But for ζn it is an easy consequence of

well-known properties of roots of unity.

(d) Finally, we sketch a short proof of (WDF) exploiting (Ind) (see [4,2.] for more

details). Let k1, . . . , kn ∈ N0 and m = k1 + · · · + kn. Let Y be a Young subgroup of

type Sk1 × · · · × Skn of Sm, χ be the character of the CSm-right module L(1, . . .
m
, 1), and

ψ be a faithful irreducible character of 〈(1 . . .m)〉. Now (Ind) implies that (χ, 1Sm
Y )Sm =

(ψSm , 1Sm
Y )Sm . But

(χ, 1Sm
Y )Sm = (χ |Y , 1Y )Y = dim CL(1,...

m
,1)(Y )

which is equal to the dimension of L(k1, . . . , km), and

(ψSm , 1Sm
Y )Sm = (ψ, 1Sm

Y |<(1...m)>)<(1...m)>

which is the number of orbits of length m of the subgroup 〈(1 . . .m)〉 of Sm with respect

to its left action on the set of left cosets of Y .

3 A self-contained approach

We now present an elementary combinatorial approach to the theory by giving self-

contained proofs of (5) and (Ind). For every D ⊆ n− 1 we call

Sn(D) := {σ | σ ∈ Sn,D(σ) = D}

the defect class of D in Sn and put

δD :=
∑

σ∈Sn(D)

σ ∈ CSn.
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Any defect class contains exactly one of the inverses of the elements of Xn (cf. (12)).

The following basic lemma by F. Bergeron, N. Bergeron, and Garsia [3,(1.11)] reveals

a surprising connection between the concept of the Lie multiplication and that of the

defect of permutations:

3.1 Lemma. δDνn = (−1)|D|νn for all D ⊆ n− 1 .

A direct simple proof of 3.1 would be of interest, as has been remarked already in [3].

We propose to proceed as follows: For every σ ∈ Sn we put D0(σ) := D(σ) ∪ {0},

Pσ := D(σ)\(1 + D0(σ)),

Tσ := (1 + D0(σ))\D(σ) (= (1 + D0(σ))\D0(σ)),

and call the elements of Pσ the peaks, the elements of Tσ the troughs of σ. Let j ∈ n .

Then

j ∈ Pσ if and only if j 6= 1, j 6= n, and (j − 1)σ, (j + 1)σ < jσ

and

j ∈ Tσ if and only if j = 1 and 2σ > 1σ, or j = n and (n− 1)σ > nσ,

or 1 < j < n and (j − 1)σ, (j + 1)σ > jσ.

By (10), we have

(20) σ ∈ Xn ⇐⇒ Pσ = ∅ ⇐⇒ Tσ = {1σ−1}. 2)

2As an easy consequence, we mention a further characterization: σ ∈ Xn if and only if kσ−1

is an interval, for every k ∈ n.
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3.2 Proposition. Let σ ∈ Sn, D ⊆ n− 1 , L := (1 + (D\D(σ))) ∪ (D(σ)\D). (Then

Tσ ∩ L = ∅.)
a) There is an element π ∈ Xn such that D(σπ−1) = D if and only if Pσ ⊆ (D\(1 +D))∪
((1 +D)\D).

b) Suppose that there is an element ψ ∈ Xn such that D(σψ−1) = D. Let π ∈ Xn. Then

D(σπ−1) = D if and only if Lσ ⊆ D(π)π ⊆ (Tσ ∪ L)σ.

Proof. For all A,B ⊆ Z it is straightforward to verify that

(21) ((1 + (A\B))∪ (B\A))\((1 + (A∪B))\(B ∩A)) = (B\(1 +B))\((A\(1 +A))∪ ((1 +

A)\A)),

(22) ((1 + (A ∪B))\(A ∩B))\((1 + (A\B)) ∪ (B\A)) = (1 +B)\B.

Set A := D ∪ {0}, B := D0(σ), R := (1 + (A ∪ B))\(A ∩ B). Obviously, L =

(1 + (A\B)) ∪ (B\A). Now (21) and (22) easily imply that L\R = Pσ\((D\(1 + D)) ∪
((1 +D)\D)), R\L = Tσ. Hence

(23) R = Tσ ∪ L⇐⇒ L ⊆ R⇐⇒ Pσ ⊆ (D\(1 +D)) ∪ ((1 +D)\D).

The main step of our proof is to show the following, for all π ∈ Xn:

(24) D(σπ−1) = D ⇐⇒ L ⊆ D(π)πσ−1 ⊆ R.

Suppose first that D(σπ−1) = D. For every i ∈ L, one of the following two statements

holds:

〈
i 6= 1, iσπ−1 < (i− 1)σπ−1, and (i− 1)σ < iσ

i 6= n, iσπ−1 < (i+ 1)σπ−1, and (i+ 1)σ < iσ
.

By (13), iσπ−1 ∈ D(π). Hence L ⊆ D(π)πσ−1. Furthermore, for every i ∈ n\R, one of

the following two statements holds:

〈
i 6= 1, iσπ−1 > (i− 1)σπ−1, and (i− 1)σ < iσ

i 6= n, iσπ−1 > (i+ 1)σπ−1, and (i+ 1)σ < iσ
.

By (14), iσπ−1 6∈ D(π). Hence D(π)πσ−1 ⊆ R.

Conversely, suppose that L ⊆ D(π)πσ−1 ⊆ R. We show, for all i ∈ n− 1 , that

(25) i ∈ D(σπ−1)⇐⇒ i ∈ D.

Suppose first that i ∈ D(σ). Then (i+ 1)σ < iσ. By hypothesis, D(σ)\D ⊆ D(π)πσ−1 ⊆
n\(D(σ) ∩D), and therefore

i ∈ D ⇐⇒ i 6∈ D(π)πσ−1 ⇐⇒ iσπ−1 6∈ D(π)⇐⇒ iσπ−1 > (i+ 1)σπ−1,
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by (13) and (14). Similarly, if i 6∈ D(σ), then iσ < (i+1)σ. By hypothesis, 1+(D\D(σ)) ⊆
D(π)πσ−1 ⊆ 1 + (D ∪D0(σ)), and therefore

i ∈ D ⇐⇒ i+ 1 ∈ D(π)πσ−1 ⇐⇒ (i+ 1)σπ−1 ∈ D(π)⇐⇒ iσπ−1 > (i+ 1)σπ−1,

by (14) and (13). Thus in both cases (25) holds. The proof of (24) is complete.

As Lσ ⊆ n\{1}, the statements (24) and (11) imply that

(26) (∃π ∈ Xn D(σπ−1) = D)⇐⇒ L ⊆ R.

By (23), this implies a). Under the hypothesis of b), (26) implies that L ⊆ R, hence

R = Tσ ∪ L, by (23). By means of (24), we obtain b). �

3.3 Corollary. Let σ ∈ Sn, D ⊆ n− 1 , X (σ,D) := {π|π ∈ Xn, D(σπ−1) = D}.
a) If σ ∈ Xn, then X (σ,D) contains exactly one element π, and we have (−1)d(π) =

(−1)|D|+d(σ).

b) If σ 6∈ Xn, then
∑

π∈X (σ,D)

(−1)d(π) = 0.

Proof. a) If σ ∈ Xn, then (20) implies that Pσ = ∅ and Tσ = {1σ−1}. By 3.2a), X (σ,D) 6=
∅. If π ∈ X (σ,D), then Lσ ⊆ D(π)π ⊆ {1} ∪ Lσ by 3.2b), hence D(π)π = Lσ. By (11),

X (σ,D) = {π}. Furthermore, D(σ) = d(σ), and therefore (1+(D\D(σ)))∩(D(σ)\D) = ∅.
Hence

d(π) = |L| = |D\D(σ)|+ |D(σ)\D| ≡ |D|+ |D(σ)| mod 2.

b) If σ 6∈ Xn, then |Tσ| ≥ 2 by (20). By 3.2b) and (11), there is a 1-1 correspondence

between X (σ,D) and the power set of Tσ\{1σ−1}. Hence∑
π∈X (σ,D)

(−1)|D(π)| = (−1)|L| ·
∑

S⊆Tσ\{1σ−1}
(−1)|S| = 0. �

Proof of 3.1. For all D ⊆ n− 1 we have, by 3.3,

δDωn =
∑

σ∈Sn(D)

∑
π∈Xn

(−1)d(π)σπ =
∑
ρ∈Sn

∑
π∈Xn

D(ρπ−1)=D

(−1)d(π)ρ =
∑
ρ∈Xn

(−1)|D|+d(ρ)ρ = (−1)|D|ωn.

�

As a first application of 3.1, we obtain a simple proof of (5): For every π ∈ Xn we

have d(π) = 1π−1 − 1, and therefore

(27) ωn =
n−1∑
d=0

(−1)dδd

(cf. [3, Theorem 1.1]). Hence ν2
n = 1

n

n−1∑
d=0

(−1)dδdνn = 1
n

n−1∑
d=0

(−1)2dνn = νn. �
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A further immediate consequence of 3.1 is the following:

(28)
∑

D⊆n−1

tΣDδdνn =
n−1∏
j=1

(1− tj)νn (t a variable),

where
∑
D :=

∑
i∈D

i ([3, Theorem 2.1], [4, (9)]). Putting t := ε we obtain

(29) λnνn = νn.

This equation leads to a short proof of (Ind) and, simultaneously, of the fact that λn is

a Lie idempotent:

By a direct calculation one has the equation λnζn = λn ([16, Lemma 2, 1)], [2,3.4.3]).

Hence, by (29), νnCSn = λnζnνnCSn ⊆ λnζnCSn. Now dim λnζnCSn ≤ dim ζnCSn =

dim MSn
1 = (n− 1)!, and dim νnCSn = dim νnA(1, . . .

n
, 1) = dim L(1, . . .

n
, 1) by (18) and

(6). It is well known that the Lie monomials x1 ◦ x2σ ◦ · · · ◦ xnσ (σ ∈ StabSn(1)) form a

basis of L(1, . . .
n
, 1) (cf., e.g., [2, 4.8.1]). Hence dim νnCSn = |StabSn(1)| = (n− 1)!.3) We

conclude that

(30) νnCSn = λnζnCSn = λnCSn,

and the left multiplication by λn induces a CSn-right module isomorphism of ζnCSn onto

νnCSn. This yields (Ind). �

As νn is an idempotent, (30) implies that

(31) νnλn = λn.

Now (29) and (31) show that λn is a Lie idempotent, by (7). �

We conclude this section by a further application of 3.2:

3.4 Corollary. LetD ⊆ n− 1 , 0 ≤ k < n. For all S ⊆ n− 1 set bS :=
( |S\(1+S0)|
k−|(1+(D\S))∪(S\D)|

)
where S0 := S ∪ {0}. Then

δDδk =
∑
S

bSδS

where the sum ranges over all S ⊆ n− 1 such that S\(1+S0) ⊆ ((1+D)\D)∪(D\(1+D)).

3Alternatively, we may use the fact that νn is an idempotent to derive this formula for
dim νnCSn from a result due to Frobenius [9]: The coefficient of id in νn is 1

n . Hence, if χ is the
character of the CSn-module νnCSn, then

∑
σ∈Sn

1
n = χ(id) = dim νnCSn.
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Proof. For every σ ∈ Sn put X k(σ,D) := {π|π ∈ Xn, D(σπ−1) = D and d(π) = k}. We

show:

(32)

If σ ∈ Sn such that S\(1 + S0) ⊆ ((1 +D)\D) ∪ (D\(1 +D)) (where S := D(σ)),

then |X k(σ,D)| = bS.

By 3.2a), the hypothesis of (32) implies that there exists an element π ∈ Xn such that

D(σπ−1) = D. By 3.2b) there is then a 1-1 correspondence between X k(σ,D) and the set

of all subsets of order k of (L ∪ Tσ)\{1σ−1} containing L. Therefore

|X k(σ,D)| =
(
|Tσ| − 1

k − |L|

)
= bS,

as |S\(1 + S0)| = |(1 + S0)\S| − 1. This shows (32). We conclude that

δDδk =
∑

ρ∈Sn(D)

∑
π∈Xn
d(π)=k

ρπ =
∑
σ∈Sn

|X k(σ,D)|σ =
∑

bD(σ)σ,

where the last sum ranges over all σ ∈ Sn such that Pσ ⊆ ((1 +D)\D) ∪ (D\(1 +D)).�

We summarize the logical structure of the principal parts of the preceding sections by

means of the following diagram:
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(WDF)

1.3 1.4

1.5

(Ind)

(29)
(5) (∼ (DSW))

3.1

3.2

(via 2.1)

4. Some remarks about Solomon’s descent algebra

Let ∆n be the subspace of CSn generated by all elements δS (S ⊆ n− 1 ). A particular

aspect of 3.4 is that for every D ⊆ n− 1 , 0 ≤ k < n, the product δDδk is contained in

∆n. This is a special case of the following result due to Solomon [24]:

4.1 Theorem. ∆n is multiplicatively closed.

Hence ∆n is a subalgebra of CSn, called the Solomon algebra (with respect to n ). It

should be noted that all Lie idempotents mentioned before (νn, λn, ρn) are elements of ∆n.

The equations in (5), 3.1, (29), (31), 3.4 may be viewed as details of the multiplicative

structure of ∆n. Garsia and Reutenauer proved a remarkable characterization of the

Solomon algebra: By means of certain Lie terms, they defined a set of subspaces of the

free associative algebra which are normalized by an element γ ∈ CSn if and only if γ ∈ ∆n

([12, Theorem 4.5]).
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In the following we give two rather different but equally simple proofs of 4.1. In the

first one we introduce a graph structure on the set of points Sn. The second one will

consist in showing 4.3.

We define a lexicographic ordering on Sn by putting π <
lex
ρ if π 6= ρ and iπ < iρ for

the smallest i ∈ n such that iπ 6= iρ (π, ρ ∈ Sn).

An element σ∗ ∈ Sn is called a neighbour of σ ∈ Sn if there is a number k ∈ n− 1

such that

σ∗ = σ(k, k + 1) and |kσ−1 − (k + 1)σ−1| 6= 1.

The relation on Sn defined in this manner is obviously symmetric and hence yields a non-

oriented graph structure on the set of vertices Sn. We denote by [σ] the component of σ.

Then we have D(ρ) = D(σ) for every ρ ∈ [σ]. This observation is the trivial part of the

following result:

4.2 Proposition. Let D ⊆ n− 1 , σ ∈ Sn(D). Then [σ] = Sn(D).

Proof. For all ` ∈ N0 we put M` := {µ|µ ∈ S`, (i + 1)µ = iµ− 1 for all i ∈ D(µ)}. The

following statement is easily seen:

(33) Let λ ∈ Sn, k := nλ. Then λ ∈Mn if and only if (k + j)λ = n− j for all

j ∈ n− k ∪ {0}

and λ|k−1 ∈Mk−1.

As a consequence, we show

(34) For every T ⊆ n− 1 there exists a unique element µTn ∈Mn ∩ Sn(T ),

in other words, Mn is a set of representatives for the defect classes in Sn. In order to prove

(34) by induction on n, we put k := max((n− 1 ∪ {0})\T ) + 1. Then we may assume

that Mk−1 ∩ Sk−1(T ∩ k − 1 ) contains a unique element µ. By (33), Mn ∩ Sn(T ) contains

the permutation

λ :=

(
1 . . . k − 1 k k + 1 . . . n− 1 n

1µ . . . (k − 1)µ n n− 1 . . . k + 1 k

)

as its only element.

Our next step is to prove

(35) If ρ ∈ Sn\Mn, then there exists a neighbour ρ∗ of ρ such that ρ∗ <
lex
ρ.
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We have to show that there is a number k ∈ n− 1 such that kρ−1 − (k + 1)ρ−1 > 1 as

then the element ρ∗ := ρ(k, k + 1) has the required properties. By hypothesis we have

iρ − (i + 1)ρ ≥ 2 for some i ∈ n− 1 . Now it suffices to put k := min{j|(i + 1)ρ ≤ j ≤
iρ, jρ−1 ≥ i} − 1.

By (34), Mn ∩ [ρ] ⊆ Mn ∩ Sn(D(ρ)) = {µD(ρ)
n } for all ρ ∈ Sn. The assumption that

µ
D(ρ)
n 6∈ [ρ] leads, by (35), to the contradiction that [ρ] is infinite. Hence µ

D(ρ)
n ∈ [ρ] for all

ρ ∈ Sn. In particular, µDn ∈ [ρ] ∩ [σ] for all ρ ∈ Sn(D). �

Proof of 4.1. For any σ, σ∗ ∈ Sn which are neighbours of each other we set

N1
σ,σ∗ := {(ξ, ρ)|ξ, ρ ∈ Sn, ξρ = σ, (σ∗σ−1)ξ is a neighbour of ξ},

N2
σ,σ∗ := {(ξ, ρ)|ξ, ρ ∈ Sn, ξρ = σ, ρ(σ−1σ∗) is a neighbour of ρ}.

Let k ∈ n− 1 such that σ−1σ∗ = (k, k + 1). If ξ, ρ ∈ Sn such that ξρ = σ, then

ξ(kρ−1, (k + 1)ρ−1) = ξρ(k, k + 1)ρ−1 = σ(k, k + 1)ρ−1 = σ∗σ−1ξ. Hence σ∗σ−1ξ is a

neighbour of ξ if and only if |kρ−1 − (k + 1)ρ−1| = 1, i.e., if and only if ρσ−1σ∗ is not a

neighbour of ρ. We write Πσ for the set of all pairs (ξ, ρ) ∈ Sn × Sn such that ξρ = σ.

Then it follows that

(36) Πσ is the disjoint union of N1
σ,σ∗ and N2

σ,σ∗ .

It is straightforward to verify the following, for any ξ, ρ ∈ Sn:

(37) (ξ, ρ) ∈ N1
σ,σ∗ =⇒ (σ∗σ−1ξ, ρ) ∈ N1

σ∗,σ,

(38) (ξ, ρ) ∈ N2
σ,σ∗ =⇒ (ξ, ρσ−1σ∗) ∈ N2

σ∗,σ.

By symmetry, we conclude that, in particular, |N j
σ,σ∗| = |N j

σ∗,σ| (j = 1, 2). We observe

that the mapping

(ξ, ρ) 7→
{

(σ∗σ−1ξ, ρ) if (ξ, ρ) ∈ N1
σ,σ∗

(ξ, ρσ−1σ∗) if (ξ, ρ) ∈ N2
σ,σ∗

is a bijection of Πσ onto Πσ∗ . In (37), we have D(ξ) = D(σ∗σ−1ξ), and in (38), similarly,

D(ρ) = D(ρσ−1σ∗). As a consequence, we obtain

(39) |Πσ ∩ (Sn(D)× Sn(D′))| = |Πσ∗ ∩ (Sn(D)× Sn(D′))| for all D,D′ ⊆ n− 1 .

Up to this point our hypothesis was that σ, σ∗ were neighbours of each other. But 4.2

shows now that (39) holds, in fact, for any σ, σ∗ ∈ Sn such that D(σ) = D(σ∗). Hence

δD · δD′ =
∑
σ∈Sn

|Πσ ∩ (Sn(D)× Sn(D′))|σ =
∑

T⊆n−1

|ΠσT ∩ (Sn(D)× Sn(D′))|δT

17



where, for T ⊆ n− 1 , the element σT is an arbitrary representative of Sn(T ). �

It is obvious that the coefficient of the basis element δT in the representation of δD ·δD′
must necessarily be the one given in the last formula of the proof once it is known that

δD · δD′ is contained in ∆n. Therefore, the essential statement which yields the claim is

not that formula but the foregoing assertion (39) and its subsequent comment.

We now describe another basis of ∆n and prove a formula for the product of any two of

its elements as a linear combination of basis elements whose coefficients, by contrast, turn

out to be combinatorially interesting and not obvious at all (4.3). This formula, in a more

general context, is essentially due to Solomon ([24, Theorem 1]). A simple application of

Coleman’s lemma [15, 4.3.7] suffices to gather from Solomon’s result the special version

which is of interest here. It has been stated explicitly by Garsia and Reutenauer in [12,

Proposition 1.1] who refer to [11]. We give an independent elementary proof.

If q1, . . . , q` ∈ N such that q1 + · · · + q` = n, the `-tuple q = (q1, . . . , q`) is called a

decomposition of n, and we write q |= n. We define the length of q by |q| := `. Then

D(q) := {q1, q1 + q2, . . . , q1 + · · ·+ q`−1} is a subset of n− 1 . The mapping q 7→ D(q) is

a bijection from the set of all decompositions of n onto the power set of n− 1 . We put

Ξq :=
∑

T⊆D(q)

δT .

Then {Ξq|q |= n} is a basis of ∆n. For r = (r1, . . . , rk), q = (q1, . . . , q`) |= n let Mr,q be

the set of all (k × `)-matrices M = (mij) over N0 such that∑
j∈`

mij = ri for all i ∈ k ,∑
i∈k

mij = qj for all j ∈ ` .

In short, summing up the rows (columns resp.) of M gives r (q resp.). Furthermore, let

w(M) be the sequence of all non-zero entries of M written according to the natural order

of its rows. More formally, if t is the number of all non-zero entries of M and s ∈ t , we

set ws := mij if mij 6= 0 and if there exist exactly s− 1 entries mx,y 6= 0 such that (x, y)

is lexicographically smaller than (i, j). Then w(M) = (w1, . . . , wt).

4.3 Proposition. Ξr · Ξq =
∑

M∈Mr,q

Ξw(M) for all r, q |= n.

The sum on the right is equal to
∑
s|=n

cr,q,sΞ
s where cr,q,s is the number of all M ∈Mr,q such

that w(M) = s. Obviously, 4.1 is an immediate consequence of 4.3. We will derive 4.3 from

our next lemma for which we need some more preparations. For every q = (q1, . . . , q`) |= n,

the standard partition relative to q is defined to be the `-tuple P q := (P q
1 , . . . , P

q
` ) where

P q
j := (q1 + · · ·+ qj−1) + qj (j ∈ ` ).
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The stabilizer of P q in Sn is a Young subgroup Y q of Sn of type Sq1×· · ·×Sq` . Every coset

Y qσ (σ ∈ Sn) contains a lexicographically smallest element. The set Sq of these elements

is called the Solomon system of Y q in Sn. We have the following obvious characterization:

(40) σ ∈ Sq if and only if σ|P qj is increasing, for all j ∈ ` .

This implies that

Ξq =
∑
σ∈Sq

σ for all q |= n.

For every r, q |= n and M = (mij) ∈Mr,q we put (following the main idea of Coleman’s

lemma [15, 4.3.7])

Sr(M) := {ρ|ρ ∈ Sr, |P r
i ∩ P

q
j ρ
−1| = mij for all i ∈ k , j ∈ ` }

where k = |r|, ` = |q|. We have the following remark:

(41) P r
i ∩ P

q
j ρ
−1 is an interval, for all i ∈ k , j ∈ ` , ρ ∈ Sr.

For, if x, y ∈ P r
i ∩ P

q
j ρ
−1 and z ∈ N such that x < z < y, then z ∈ P r

i and, by (40),

xρ < zρ < yρ. Now xρ, yρ ∈ P q
j , hence zρ ∈ P q

j , i.e., z ∈ P q
j ρ
−1. 4)

4.4 Lemma.5) Let r, q |= n and M ∈ Mr,q. Then the product mapping (ρ, σ) 7→
ρσ (ρ, σ ∈ Sn) induces a bijection of Sr(M)× Sq onto Sw(M).

Proof. Let M = (mij), k := |r|, ` := |q|. For all (i, j) ∈ k × ` we put

Rij :=

 ∑
(x,y)∈i−1 ×`

mx,y +
∑
y∈j−1

mi,y

+mij .

Up to empty sets (which arise if mij = 0), the sequence (R11, R12, . . . , Rk`) is the standard

partition of n relative to w(M). As |P r
i | =

∑
j

mij =
∑
j

|Rij|, we have

(42) P r
i =

⋃
j

Rij for all i ∈ k .

Next we prove

(43) P r
i ∩ P

q
j ρ
−1 = Rij for all i ∈ k , j ∈ ` , ρ ∈ Sr(M).

4The proof shows that (41) holds for arbitrary intervals I, J instead of P ri , P
q
j whenever ρ|I

is increasing or decreasing.
5D. B.
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We have P r
i =

⋃
j

(P r
i ∩ P

q
j ρ
−1) and, by definition of Sr(M), |P r

i ∩ P
q
j ρ
−1| = mij = |Rij|.

Hence it suffices to show that for any j1, j2 ∈ ` such that j1 < j2 every element x1 ∈
P r
i ∩ P

q
j1
ρ−1 is smaller than every element x2 ∈ P r

i ∩ P
q
j2
ρ−1. But for such elements x1, x2

we have x1ρ ∈ P q
j1
, x2ρ ∈ P q

j2
, hence x1ρ < x2ρ as P q is a standard partition of n . This

implies, by (40), that x1 < x2.

In particular, (43) implies that

(44) P q
j =

⋃
i

Rijρ for all j ∈ ` , ρ ∈ Sr(M).

Now we show that

(45) ρσ ∈ Sw(M) for all ρ ∈ Sr(M), σ ∈ Sq.

By (43) and (40), ρσ|Rij is the composition of two increasing functions, hence is increasing.

Therefore, ρσ induces an increasing function on every part of the standard partition of n

relative to w(M). Now (45) follows from (40).

Let τ ∈ Sw(M). If ρ ∈ Sr(M), σ ∈ Sq such that ρσ = τ , then, by (44), we have

(46) P q
j σ =

(⋃
i

Rij

)
τ for all j ∈ ` .

Hence σ is the uniquely determined permutation of n which maps P q
j increasingly onto(⋃

i

Rij

)
τ , for all j ∈ ` . The uniqueness of σ implies that of ρ as ρ = τσ−1. On the

other hand, to prove existence, we note first that

|P q
j | =

∑
i

mij = |
⋃
i

Rij| = |(
⋃
i

Rij)τ | for all j ∈ ` .

Hence there exists an element σ ∈ Sq with the property (46). Let ρ := τσ−1. We claim

(47) ρ ∈ Sr.

Let i ∈ k and x1, x2 ∈ P r
i such that x1 < x2. By (42), there exist j1, j2 ∈ ` such that

j1 ≤ j2 and x1 ∈ Ri,j1 , x2 ∈ Ri,j2 . By definition of σ we have (46), hence xhτ ∈ Ri,jhτ ⊆
P q
jh
σ (h = 1, 2). If j1 = j2, then x1τ < x2τ as τ ∈ Sw(M), hence

(48) x1ρ = x1τσ
−1 < x2τσ

−1 = x2ρ,
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since σ ∈ Sq. Finally, if j1 < j2, then again (48) holds, because xhρ = xhτσ
−1 ∈ P q

jh
(h =

1, 2). This proves (47).

Furthermore, (46) and (42) imply that P r
i ∩P

q
j ρ
−1 = P r

i ∩P
q
j στ

−1 =
⋃
g

Rig ∩
⋃
h

Rh,j =

Rij. This and (47) show that ρ ∈ Sr(M). �

Proof of 4.3. Using 4.4, we obtain that for all r, q |= n,

Ξr · Ξq =
∑
ρ∈Sr

ρ ·
∑
σ∈Sq

σ =

( ∑
M∈Mr,q

∑
ρ∈Sr(M)

ρ

)
·
∑
σ∈Sq

σ

=
∑

M∈Mr,q

( ∑
ρ∈Sr(M)

ρ ·
∑
σ∈Sq

σ

)
=

∑
M∈Mr,q

∑
τ∈Sw(M)

τ =
∑

M∈Mr,q

Ξw(M). �

There is a strong connection between the Solomon algebra and the character theory

of Sn. For every q |= n we write ξq for the Young character with respect to Y q, that is,

ξq = (1Y q)
Sn . If q, r |= n such that ξq = ξr (or, equivalently, Y q is conjugate to Y r in Sn),

we write q ≈ r.

It is well known that the same rule as in 4.3 holds for the (tensor) product of two

Young characters ξr, ξq if the Ξ’s are replaced by ξ’s ([14, 2.9.16]). Hence

Ξq 7→ ξq (q |= n)

extends linearly to an algebra epimorphism c of ∆n onto the character ring Cl(Sn) of Sn

over C. Solomon [24] showed that its kernel is the Jacobson radical of ∆n:

(49) ker c = J(∆n).

This may be seen as follows: By the semisimplicity of Cl(Sn) we know that J(∆n) ⊆ ker c.

On the other hand, ker c is the linear span of the elements Ξq−Ξr where q ≈ r. Exploiting

the multiplication rule 4.3, the nilpotency of ker c is readily seen (see the proof of Theorem

3.4 in [1]). Hence ker c is a nilpotent ideal, and (49) follows.

Moreover, Atkinson has shown that the nilpotency index of J(∆n) is n− 1 ([1, 3.5]).

If ξ ∈ Cl(Sn) and C is a conjugacy class of Sn, we write ξ(C) for the unique value

of ξ on C. The conjugacy classes of Sn may be indexed by the partitions of n. More

precisely, we define Cp (where p ` n) to be the set of all elements of Sn which have a cycle

decomposition of type p. We note:

(50) The linear mappings cp (where p ` n) such that

cp(Ξq) = ξq(Cp) for all q |= n
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are a full set of irreducible representations for ∆n.

(For a different description see [1,3.].) To prove (50) it suffices to define dp(ξ) := ξ(Cp)

for all ξ ∈ Cl(Sn), p ` n, and to observe that the mappings dp are a full set of irreducible

representations of Cl(Sn). Since cp is the composition of c and dp, this yields (50), in view

of (49).

Furthermore, it should be mentioned here (without proof) that c(δD) is the character

of a certain skew representation of Sn, for every D ⊆ n− 1 .

We conclude this exposition by some remarks about the ideal of ∆n generated by all

Lie idempotents in ∆n. Using (7) and 3.1, this is easily seen to be νn∆n. Moreover, the

ideal νn∆n ∩ J(∆n) has codimension 1 in νn∆n, and the coset νn + (νn∆n ∩ J(∆n)) is the

set of all Lie idempotents in ∆n. We state, without giving details here:

4.5 Proposition. The dimension of νn∆n is the number of all decompositions of n which

are Lyndon words over the alphabet N.

(A proof of this result and related topics will be given in a forthcoming paper.)
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