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Abstract
A binomial identity ((1) below), which relates the famous Apéry num-

bers and the sums of cubes of binomial coefficients (for which Franel has
established a recurrence relation almost 100 years ago), can be seen as a par-
ticular instance of a Legendre transform between sequences. A proof of this
identity can be based on the more general fact that the Apéry and Franel
recurrence relations themselves are conjugate via Legendre transform. This
motivates a closer look at conjugacy of sequences satisfying linear recurrence
relations with polynomial coefficients. The rôle of computer-aided proof and
verification in the study of binomial identities and recurrence relations is
illustrated, and potential applications of conjugacy in diophantine approxi-
mation are mentioned.
This article is an expanded version of a talk given at the 29. meeting of the
Séminaire Lothringien de Combinatoire, Thurnau, september 1992.

1 Introduction

In this article I will discuss some general aspects related to the following beautiful
binomial identity:
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=
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(n ≥ 0) (1)

An interesting aspect of this identity is the fact that it relates the famous Apéry

numbers an :=
∑

k

(
n
k

)2(n+k
k

)2
, which played an important rôle in R. Apéry’s original

proof of the irrationality of ζ(3) (see the entertaining and instructive article [20]
by A. v.d. Poorten for an account of this), with the sums of cubes of binomial

coefficients fn :=
∑

k

(
n
k

)3
, for which J. Franel had found recurrences long ago ( [6],

see [4], [8], [11], [5] ), and which for that reason will be called Franel numbers in
this article.

This identity was brought to my attention early in 1992 as a conjecture by my
colleague B. Voigt from Bielefeld. The origin of it lies in the following question put
forward by A. L. Schmidt from Copenhagen:
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Let numbers ck (k ≥ 0), independent of n, be defined by

n∑
k=0

(
n

k

)2(
n+ k

k

)2

=
n∑
k=0

(
n

k

)(
n+ k

k

)
ck (n ≥ 0)

[It is easy to see (by induction) that these rational numbers are uniquely
determined.]
Is it then true that these numbers are always integers?
[This is not obvious from the definition, but an evaluation of the first
few hundred values clearly suggests that.]

It was soon observed by W. Deuber, W. Thumser and B. Voigt that the beginning
of the sequence

(ck)k≥0 = ( 1 , 2 , 10 , 56 , 346 , 2252 , 15184 , 104960 , 739162, . . . )

is the same as the beginning of the sequence of the Franel numbers fk =
∑k

j=0

(
k
j

)3
.

From this observation the above conjecture (1) was formulated. Since I could not
spot the conjectured identity in the relevant literature (e.g. [12], [8]), I tried to find
a proof for myself. In fact, there are now several different proofs available, none
of them really ”trivial”, and I will briefly mention below these diverse approaches
that I worked out. The ordering corresponds to the chronological ordering in which
these proofs were discovered. A detailed discussion of this affair will be given in
[18].

1. Identity (1) is hidden in a classical result, due to W.N. Bailey, from the theory
of hypergeometric functions. In fact, it can be pulled out of Bailey’s bilinear
generating function for the Jacobi polynomials ([2], [17], [19]) via a kind of
diagonalization. The special case where the Jacobi polynomials degenerate
into Legendre polynomials is sufficient for our identity, but the same trick can
be played in the general situation, so that (1) turns out to be a degenerate
case belonging to a family of binomial identities with two free parameters.

2. As has been shown by myself in [19], Bailey’s bilinear generating function can
be proved from a suitable combinatorial interpretation. This is somewhat
involved, and on the way of proving the full bilinear generating function I
established a certain family of binomial identities. It turned out that these
already include (1) (up to routine transformations) and its generalization
mentioned before. This answers positively the question about a possible
combinatorial proof of (1), but such a proof is more complicated than the
rather simple appearance of this identity might suggest.

3. By using the method of Legendre inverse pairs, as exposed in Riordan’s book
[12], the problem can be transformed into an equivalent one to which D.
Zeilberger’s method of constructing recurrence operators for definite hyper-
geometric sums (in the case of single sums) can be applied. This gives a
”computer-supported” proof, which can be turned into a ”conventional” one
- once the operators are known.
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4. The desired result can be obtained by a series of applications of hyperge-
ometric transforms (D. Stanton, Ch. Krattenthaler and G. Andrews have
provided comments on that approach). Once found, such a proof is routine
to check - finding the right track is the problem!

5. The Wilf-Zeilberger-method (see remarks below) for multiple hypergeometric
sums can be applied directly to the identity. Doron Zeilberger provided such
a completely ”machine-made” proof in june 1992.

6. Using the known recurrences for the Apéry numbers an =
∑

k

(
n
k

)2(n+k
k

)2
and

the Franel numbers fn =
∑

k

(
n
k

)3
one can give a short (partially computer

supported) proof of (1), using no sophisticated algorithms, but only standard
simplification capabilities of any reasonable computer algebra program. Such
a proof is outlined in the next section, and indeed, this kind of proof was the
motivation for writing the present note. Let me remark that a proof similar
to this one was found independently by A. L. Schmidt.

The following sections are organized as follows.
After illustrating the use (neither the principles, nor the theory behind) of

available implementations of algorithms for a computer-aided treatment of bino-
mial sums and sequences satisfying linear recurrence relations with polynomial
coefficients, I will present a short proof of (1) which is based on the (known) recur-
rence relations of the Apéry and Franel numbers. The crucial fact is this: identity
(1) claims that Franel’s and Apéry’s sequences are related via Legendre transform.
This concept has been used, with number-theoretic applications in mind, by A. L.
Schmidt, see [14], [15], [16], and, in particular, his most recent article is closely
related to the present one, and some of his results will be mentioned below. This
turns out to be an immediate consequence of the stronger fact that the linear recur-
rences (of second order, with polynomial coefficients) generating those sequences
are themselves conjugates via Legendre transform in a sense to be made precise
below. Once guessed correctly, a proof of this conjugacy relation is remarkably
simple (relative to a routine use of a machine-based simplification procedure).

In section 3 some notation will be developed in order to deal with this approach
from a more general perspective.

The situation of (reduced) Legendre transform is then studied in some detail
in section 4, and the question under which condition (and if so: how) recurrence
relations are transformed into recurrence relations via conjugation is answered com-
pletely in a particular case. It should become clear, however, that similar results
could be obtained by the same approach in related and more general situations.
Thus these results should be taken as exemplary - no complete treatment was
intended here, just an outline of how one may proceed.

In the final section I present some consequences in the field of diophantine
approximation which are directly related to identity (1) and the conjugacy relation
behind it. These results are taken from A. L. Schmidt’s recent article [16] mentioned
above - here they should be taken as a motivation showing that the study of
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binomial (or hypergeometric) identities and recurrences related to them might lead
to interesting applications in number theory.

2 A short proof of identity (1)

Two basic facts are used for a proof of (1) as presented here:

• [Franel, 1895] The Franel numbers fn =
∑

k

(
n
k

)3
satify the following second-

order recurrence with polynomial coefficients 1

(n+ 1)2fn+1 − (7n2 + 7n+ 2)fn − 8n2fn−1 = 0 (n ≥ 0) (2)

• [Apéry, 1978] The Apéry numbers fn =
∑

k

(
n
k

)2(n+k
k

)2
satify the following

second-order recurrence with polynomial coefficients2

(n+ 1)3an+1 −
(
(n+ 1)3 + n3 + 4(2n+ 1)3

)
an + n3an−1 = 0 (n ≥ 0) (3)

Note that even if one knows the recurrences beforehand, it can be rather tedious
to verify them. To illustrate this situation, let me cite (with a slight change in
notation)3 from A. v.d. Poorten’s article [20]:

... To convince ourselves of the validity of Apéry’s proof we need only
complete the following exercise:

Let an =
∑

k

(
n
k

)2(n+k
k

)2
, then a0 = 1, a1 = 5 and the sequence { an }

satisfies the recurrence (3).
... Neither Cohen nor I had been able to prove this in the intervening
two months ...

Then v.d. Poorten mentions that D. Zagier was able to provide a solution to this
problem with irritating speed by virtue of a technique called creative telescoping.
Actually, this technique, combined with the powerful algorithm for indefinite hy-
pergeometric summation due to W. Gosper [7], is at the heart of D. Zeilberger’s
method. Today, finding (and proving!) recurrences like (2) and (3) is a routine
application of Zeilberger’s algorithm for simple terminating hypergeometric sums,
in fact a matter of very few seconds (in these cases! In a case like the one men-
tioned above in 5., i.e. directly verifying that the right hand side of (1) satisfies the
same recurrence as the Apéry numbers do, application of Zeilberger’s algorithm
for hypergeometric multisums leads to nonnegligible computing time, even on fast
machines4. To illustrate this, I include input and output from an implementation

1Franel has also found a similar recurrence for
∑n
k=0

(
n
k

)4. It took quite a while until corre-
sponding recurrence relations for higher exponents were found, see the recent articles by Perlstadt
[11] and Cusick [5].

2Apéry has also found a similar recurrence for
∑n
k=0

(
n
k

)2(n+k
k

)
. See the article by van der

Poorten [20] and an article [1] by R. Askey and J. Wilson for illuminating remarks from the
hypergeometric viewpoint and a generalization.

3Actually, v.d. Poorten writes about two solutions of the recurrence, the other one, call it
{ bn } specified by initial values b0 = 0 and b1 = 6. This second solution will only appear in the
last section of this article. Note that the rôle of a and b has been interchanged w.r.t. [20].

4D. Zeilberger’s first direct verification of (1) took about 1500 sec.
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of Zeilberger’s algorithm which was programmed by J. Hornegger [9] in the context
of the AXIOM5 computer algebra system.

Recurrences for
∑n

k=0

(
n
k

)e
(e = 1, 2, 3)

k1 : Symbol := k
p1 : SMP(FRAC INT, Symbol) := n
p2 : SMP(FRAC INT, Symbol) := k
arg: FRAC SMP(FRAC INT, Symbol) := 1

Exponent e = 1:

(69) r1:= findrec(bin(p1, p2, n1, k1, 1), 1, arg, 1, n1, k1)

(69) - B + 2, 1

Type: Union(List FRAC SMP(FRAC INT,Symbol),...)
Time: 0.08 (IN) + 0.13 (EV) + 0.04 (OT) = 0.25 sec

The result consists of the recurrence operator (written as a polynomial in the shift
operator B and n) and the certificate provided by the method (plus informations
about typing and timing).

Exponent e = 2:

(71) r2:= findrec(bin(p1, p2, n1, k1, 2), 1, arg, 1, n1, k1)

(71) (B - 4)n + B - 2, - 3n + 2k - 1

Type: ...
Time: 0.08 (IN) + 0.31 (EV) + 0.05 (OT) = 0.44 sec

This result expresses the fact that
∑n

k=0

(
n
k

)2
=
(

2n
n

)
, because both sides are anni-

hilated by the recurrence operator.

Exponent e = 3:

(72) r3:= findrec(bin(p1, p2, n1, k1, 3), 1, arg, 1, n1, k1)

(72)

2 2 2 2
(B - 7 B - 8)n + (4 B - 21 B - 16)n + 4 B - 16 B - 8,

5 4 2 3
- 14n + (27k - 75)n + (- 18k + 111k - 161)n

+
3 2 2 3 2

(4k - 54k + 171k - 173)n + (8k - 54k + 117k - 93)n
+

3 2
4k - 18k + 30k - 20

5AXIOM is a trademark of NAG, Numerical Algoriths Group Ltd.,Oxford, England.
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/
3 2 2 3 2
n + (- 3k + 3)n + (3k - 6k + 3)n - k + 3k - 3k + 1

Type: ...

Time: 0.08 (IN) + 13.30 (EV) + 0.38 (OT) +4.15 (GC) = 17.91 sec

(73) factorCoefficients r3.1

2 2 2 16 2
(73) (n + 2) B - 7(n + 3n + --)B - 8(n + 1)

7

Type: SUP Factored SMP(FRAC INT,Symbol)
Time: 0.01 (IN) + 0.11 (EV) + 0.09 (OT) = 0.21 sec

This is Franel’s recurence. The certificate in factorized form:

(74) factorCertifyingFunction r3.2

(74)
2

- 14(n + 1)
*

3 27 47 2 9 2 57 53 2 3 9 2 15 10
(n + (- -- k + --)n + (- k - -- k + --)n - - k + - k - -- k + --)

14 14 7 14 14 7 7 7 7
/

3
(n - k + 1)

Type: FRAC Factored SMP(FRAC INT,Symbol)
Time: 0.04 (IN) + 0.78 (EV) + 0.48 (OT) + 1.50 (GC) = 2.80 sec

Now for Apéry’s recurrence (omitting the certificate):

a1: SMP(FRAC INT, Symbol):= n
a2: SMP(FRAC INT, Symbol):= k
a3: SMP(FRAC INT, Symbol):= a1 + a2

r:= recurrence findrec(bin(a1, a2, n1, k1, 2),
bin(a3, a2, n1, k1, 2), 1, 2, n1, k1)

3 2 2 3 2
(n + 6n + 12n + 8)B + (- 34n - 153n - 231n - 117)B +

3 2
n + 3n + 3n + 1

Type: SUP SMP(FRAC INT, Symbol)
Time: 0.20 (IN) + 13.71 (EV) + 0.23 (OT) = 14.14 sec

Here I will not give any further explanations w.r.t. Zeilberger’s method. The
interested reader may look into the numerous articles available (e.g. [25], [26],
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[21], [22], [24], [23], [3]), [10], [9]) describing the method, the algorithms, and their
applications.

As a side remark: I would like to take the occasion to point out another ap-
proach, experimental in character, which can be helpful in situations similar to the
one discussed here. There is now a nice set of tools available with which given the
first few coefficients of a generatin function, one may cleverly guess the generating
function (if it has a ”nice” closed form), or a linear differential equation satisfied
by it, or a linear recurrence relation satisfied by its coefficients. The mathematical
model behind it is that of holonomic functions of one variable (or equivalently:
D-finite power series, or P-recursive sequences), with important special cases such
as rational and algebraic generating functions. Even if these tools only provide
guesses and not proofs in the strict sense, they often can be used to obtain enough
information about a problem so that a strict solution becomes feasible. These
tools, written by B. Salvy and P. Zimmerman (INRIA, Paris) are available under
the Maple6 computer algebra system as a package named gfun in the Maple share
library 7. A rather comprehensive description [13] will soon be available from the
authors.

As an illustration, let us guess the recurrences (2) and (3) using gfun:

|\^/| MAPLE V
._|\| |/|_. Copyright (c) 1981-1990 by the University of Waterloo.
\ MAPLE / All rights reserved. MAPLE is a registered trademark of
<____ ____> Waterloo Maple Software.

| Type ? for help.

> readlib(gfun):with(gfun):

The Apéry numbers are defined:

a :=

〈
n 7→

n∑
k=0

(
n

k

)2(
n+ k

k

)2
〉

A list of the first few values:

> [a(i)$i=0..10];

[1, 5, 73, 1445, 33001, 819005, 21460825, 584307365,

16367912425, 468690849005, 13657436403073]

gfun does not find a ”nice” generating function:

> guessgf([a(i)$i=0..15],t);
FAIL

Eleven initial values are not sufficient for the recurrence:

6Maple is a trademark of Waterloo Maple Software, Waterloo, Canada.
7The Maple share library be accessed using anonymous ftp from daisy.uwaterloo.ca in

Waterloo (Canada) or neptune.inf.ethz.ch in Zurich (Switzerland).
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> listtorec([a(i)$i=0..10],A(n));
FAIL

but sixteen initial values are:

> listtorec([a(i)$i=0..15],A(n));

[
{
n3A(n) +

(
−5− 27n− 51n2 − 34n3

)
A(n+ 1)

+
(
1 + 3n+ 3n2 + n3

)
A(n+ 2), A(1) = 1, A(2) = 5

}
, ogf ]

We can get a differential equation from the recurrence:

> rectodiffeq("[1],A(n),aa(z));

[ D(aa)(0) = 1, D(2)(aa)(0) = 10,(
3 z4 − 51 z3

) d2

dz2
aa(z) +

(
z + z3 − 10 z2

) d
dz

aa(z) + (5 z − 1) aa(z)

−5A(0)z +A(0) + z5 d
3

dz3
aa(z) +

(
d3

dz3
aa(z)

)
z3 − 34

(
d3

dz3
aa(z)

)
z4 , ogf ]

Now we consider sums of cubes of binomial coefficients:

f :=

〈
n 7→

n∑
k=0

(
n

k

)3
〉

> [f(i)$i=0..10];

[1, 2, 10, 56, 346, 2252, 15184, 104960, 739162, 5280932, 38165260]

Too few initial values will not lead to a differential equation:

> listtodiffeq([f(i)$i=0..10],F(z));
FAIL

> listtodiffeq([f(i)$i=0..15],F(z));

{
(−2− 8 z)F (z) +

(
1− 14 z − 24 z2

) d
dz
F (z) +

(
z − 7 z2 − 8 z3

) d2

dz2
F (z),

D(F )(0) = 2, F (0) = 1
}

From the differential equation we get the Franel recurrence:

> diffeqtorec(",F(z),ff(n));

{
(
−7n− 2− 7n2

)
ff (n) +

(
n2 + 2n+ 1

)
ff (n+ 1)− 8ff (n− 1)n2,

ff (0) = 1,ff (1) = 2 }

Let us now return to the proposed proof of (1). It will be presented in matrix
form. To begin with, let us define a doubly infinite tridiagonal matrix F = (fi,j)i,j≥0

representing the difference operator of the Franel recurrence (2) :

fi,j = fi−j(i) where fk(z) :=


(z + 1)2 if k = −1
−(7z2 + 7z + 2) if k = 0
−8z2 if k = 1
0 if |k| > 1
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so that

F =


f0(0) f−1(0) f−2(0) . . .
f1(1) f0(1) f−1(1) . . .
f2(2) f1(2) f0(2) . . .

...
...

...
. . .

 =


−2 1 0 0 . . .
−8 −16 4 0 . . .
0 −32 −44 9 . . .
0 0 −72 −86 . . .
...

...
...

...
. . .


If we denote by f = (fn)n≥0 the infinite column vector with the Franel numbers

fn =
∑

k

(
n
k

)3
as entries, then Franel’s result (2) is equivalent to

F · f = 0

where 0 denotes the zero column vector.
Similarly, the difference operator occuring in the Apéry recurrence (3) has ma-

trix form

A =


a0(0) a−1(0) a−2(0) . . .
a1(1) a0(1) a−1(1) . . .
a2(2) a1(2) a0(2) . . .

...
...

...
. . .

 =


−5 1 0 0 . . .
1 −117 8 0 . . .
0 8 −535 27 . . .
0 0 27 −1463 . . .
...

...
...

...
. . .


where

ai,j = ai−j(i) where ak(z) :=


(z + 1)3 if k = −1
−(z + 1)3 − z3 − 4(2z + 1)3 if k = 0
z3 if k = 1
0 if |k| > 1

Then Apéry’s recurrence can be written as

A · a = 0

where a = (an)n≥0 is the vector of the Apéry numbers, an =
∑

k

(
n
k

)2(n+k
k

)2
.

Finally we introduce the doubly infinite, lower triangular matrix P = (pi,j)i,j≥0

of the Legendre transform:

P =

((
i

j

)(
i+ j

j

))
i,j≥0

=


1 0 0 0 . . .
1 2 0 0 . . .
1 6 6 0 . . .
1 12 30 20 . . .
...

...
...

...
. . .


Note that the n-th row of this matrix contains the coefficients of the Legendre
polynomials Pn, if written as

Pn(z) =
n∑
k=0

(
n

k

)(
n+ k

k

)(
z − 1

2

)k
9



Using this notation, it becomes clear that A.L. Schmidt’s question mentioned in
the beginning asks for the inverse image of the sequence of Apéry’s numbers under
the Legendre transform, and that the conjectured identity (1) claims that Apéry’s
sequence a is the image of Franel’s sequence f under the Legendre transform, i.e.
a = P · f . Put into matrix terms, what we would like to show is that

A ·P · f = 0

Obviously, we would be done if we could exhibit a matrix X such that

A ·P = X · F

Computing initial segments of this unknown (infinite) matrix X leads to the fol-
lowing (surprising?) guess:

X = D ·P and hence A = D ·P · F ·P−1 (4)

where D = (di,j)i,j≥0 is a diagonal matrix given by di,i = 4i+ 2 (i ≥ 0).

It remains to prove this claim which not only says that the Franel and the Apéry
sequences are related via the Legendre transform, but also that the associated
difference operators are related in the sense of conjugation via Legendre transform
(up to multiplication with a diagonal matrix). Interestingly, even though we have to
deal with infinite matrices containing binomial coefficients, i.e. nonrational terms,
the proof can be established by rational arithmetic alone. For this to see, let us
write the assertion (4) to be proved in the form:

A ·P = D ·P · F

Consider the (i, j)-entry on both sides of this equation. Since both A and F are
tridiagonal matrices, every such term involves three summands only. Write this as

lhs = a1(i) pi−1,j + a0(i) pi,j + a−1(i) pi+1,j

rhs = (4i+ 2) [pi,j−1 f−1(j − 1) + pi,j f0(j) + pi,j+1 f1(j + 1)]

where now i and j are treated as variables. Now ask for simplification of lhs− rhs.
The Maple command

expand(lhs - rhs)

gives back an expression of considerable size. Of course, simplification could be
done by hand, but this tedious task is better accomplished by your computer
algebra system8:

8The subtle point here is this: the simplification algorithm must recognize the fact that even
though there are binomial coefficients with symbolic entries around, the problem is essentially
one of rational arithmetic because of the hypergeometric nature of binomial coefficients: walking
along rows and columns in the Pascal triangle can locally be performed via multiplication with
suitable rational functions of the locations, hence rational normalization is possible as soon as
only bounded neighbourhoods have to be taken into account. Here the tridiagonal structure of
the matrices A and F is important.
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simplify(expand(lhs - rhs))

0

To conclude this section, let us summarize the above discussion

Theorem 1 The Franel recurrence operator F and the Apéry recurrence operator
A are Legendre conjugates in the following sense:

A = D ·P · F ·P−1

with A,F,D,P as above.

The binomial identity (1) we started with is just one of the consequences of this
general fact - perhaps the most interesting one. In section 5 it will be shown how
this conjugacy relation can be further exploited.

Note that in the proof of the theorem we essentially used the fact that the
matrices A and F are tridiagonal matrices with ”polynomial values along the diag-
onals”, and that the matrix of the Legendre transform P has a similar structure9.
It is therefore natural to ask under which conditions a conjugation operation (with
a nonsingular, lower triangular matrix such as P) will transform matrices repre-
senting linear recurrence operators with polynomial coefficients into matrices of the
same kind. I will not try to give a definitive answer to this question in generality.
Instead, I will look into the case of the (reduced) Legendre transform and show
how, at least for recurrence operators of low order and with low degree polynomial
coefficients, such a question can be attacked.

3 Notation and some generalities

Let Φ = (φi(z))i∈Z be a family of functions defined on the integers. With this
family we will associate a doubly-infinite matrix DΦ = (di,j)i,j≥0 = (φi−j(i))i,j≥0,
i.e.

DΦ =


φ0(0) φ−1(0) φ−2(0) . . .
φ1(1) φ0(1) φ−1(1) . . .
φ2(2) φ1(2) φ0(2) . . .

...
...

...
. . .


In the previous section, we have seen the matrices A and F belonging to the Apéry
and the Franel recurrence, respectively, when written in this form, are defined by
polynomial families (ai(z))i∈Z and (fi(z))i∈Z (with three nonzero members in each
case). The matrix P of the Legendre transform does not belong to a polynomial

9No quite, actually: the values ”along the diagonals” are no longer polynomial, but still
hypergeometric. That is why in section 4 we will pass to a related transform, called reduced
Legendre transform, which is polynomial and thus behaves a bit nicer.
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family, simply because i 7→
(

2i
i

)
does not grow polynomially. (One might use the Γ-

function in order to represent the matrix by a family of analytic functions. Instead,
we will pass to a related polynomial family below).

In particular, if Φ = (ti(z))i∈Z is such that ti = 0 for i < 0 and t0(j) 6= 0 for all
j ∈ N, i.e. DΦ is an invertible lower triangular triangular matrix, then its inverse
matrix (DΦ)−1 can be written as DΨ where the family Ψ = (t′i(z))i∈Z is given by
t′i(z) = 0 for i < 0, t′0(j) = 1/t0(j) for all j ∈ N, and for i > 0, (−1)it′i(z) is given
by:

det


t1(z − i+ 1) t0(z − i+ 1) 0 0 . . . 0
t2(z − i+ 2) t1(z − i+ 2) t0(z − i+ 2) 0 . . . 0

...
...

...
...

. . .
...

ti−1(z − 1) ti−2(z − 1) . . . . . . . . . t0(z − 1)
ti(z) ti−1(z) ti−2(z) ti−3(z) . . . t1(z)


t0(z − i) · . . . · t0(z)

This shows in particular: if Φ is a polynomial family in the sense that all ti(z)
are polynomials, and if in addition t0(z) is a non-vanishing constant, then the
inverse family Ψ is of the same kind. Moreover, if deg ti(z) ≤ i for all i ≥ 0, then
expansion of the determinant shows that t′i(z) is a sum of terms of degree ≤ i,
hence deg t′i(z) ≤ i for i ≥ 0.

Now take a function g(z) and δ ∈ Z. The singleton family Γg,δ = (gi(z))i∈Z

is given by gδ(z) = g(z) and gi(z) = 0 for i 6= δ. Then consider the family
Λ = (hd(z))d∈Z given by conjugation

DΦ ·DΓ · (DΦ)−1 = DΛ

with a ‘triangular’ family Φ = (ti(z))i∈Z as before. It is easy to see that hd(z) = 0
for d < δ, and that for d ≥ δ one gets

hd(z) =
∑

0≤k≤d−δ

tk(z) · g(z − k) · t′d−δ−k(z − k − δ) (5)

which can be written in determinantal form (and thus avoiding explicit reference
to the inverse family t′i(z)) as

hd(z) =
detM(Φ, g, δ, d)

t0(z − d) · . . . · t0(z − δ)

where the square matrix M(Φ, g, δ, d) of size d− δ + 1 is given by
td−δ(z) · g(z − d+ δ) td−δ−1(z) · g(z − d+ δ + 1) . . . t0(z) · g(z)

t1(z − d+ 1) t0(z − d+ 1) . . . 0
t2(z − d+ 2) t1(z − d+ 2) . . . 0

...
...

. . .
...

td−δ(z − δ) td−δ−1(z − δ) . . . t0(z − δ)
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Either of these presentations shows that for a polynomial g(z) and δ ∈ Z the
family Λ = (hi(z))i∈Z obtained via conjugation with a polynomial family Φ =
(ti(z))i∈Z is again polynomial (and vanishes for indices d < δ).

By superposition and linearity, if Γ = (gi(z))i∈Z is a family of polynomials
such that gi(z) = 0 for all i less than some integer K, and if Φ is as before, than
conjugation

DΦ ·DΓ · (DΦ)−1

is well-defined and gives a family of polynomials Λ = (hd(z))d∈Z which vanishes for
d < K, and for d ≥ K its members are given by

hd(z) =
∑

K≤δ≤d

∑
0≤k≤d−δ

tk(z) · gδ(z − k) · t′d−δ−k(z − k − δ)

In general, if the family Γ = (gi(z))i∈Z has a finite number of nonzero terms -
and hence corresponds to a linear difference operator with polynomial coefficients
- the same will not be true for the members of the conjugate family Λ = (hi(z))i∈Z,
as the case of a singleton family Γg,δ clearly shows. We also expect the degree of
the conjugate polynomials hi(z) to be higher than the degrees of the gj(z). Thus
it will come rather as an exception if the conjugate under Φ-transform of a finite
polynomial family Γ (in the above sense) is again of the same type.

In the next section we will study this situation with respect to a variant of the
Legendre transform.

4 (Reduced) Legendre transform preserves de-

grees

We consider now the matrix P = (pi,j)i,j≥0 belonging to the Legendre transform,
i.e.

pi,j =

(
i

j

)(
i+ j

j

)
=

(
2j

j

)(
i+ j

i− j

)
which corresponds to a family Π = (pk(z))k∈Z whose members do not behave
polynomially. Since it is slightly more convenient to work with polynomials only,
we will write

P = Q ·∆
where

Q = (qi,j)i,j≥0 with qi,j =

(
i+ j

i− j

)
and ∆ = diag

((
2i

i

))
i≥0

(6)

The matrix Q belongs to the polynomial family Φ = (qk(z))k∈Z where qk(z) =(
2z−k
k

)
(k ≥ 0). Note that the family Φ′ = (q′k(z))k∈Z belonging to the inverse

matrix Q−1 is given by

q′k(z) = (−1)k
[(

2z

k

)
−
(

2z

k − 1

)]
= (−1)k

(
2z

k

)
2z − 2k + 1

2z − k + 1
(7)

13



so that q0(z) = q′0(z) = 1 and deg qk(z) = deg q′k(z) = k (k ≥ 0). The transfor-
mation provided by the matrix Q and its inverse will be called reduced Legendre
transform. Since it differs from the Legendre transform just by multiplication with
the diagonal matrix ∆, it will be easy to carry over results from one situation to
the other.

Let us now take singleton families Γg,δ as above, with polynomial g(z) and
δ ∈ Z, and study their reduced Legendre transform. Let Λ = (hd(z))d∈Z be the
conjugate family obtained from (reduced) Legendre transform, i.e.

DΛ = DΦ ·DΓg,δ · (DΦ)−1

Below I will sketch a proof of

Proposition 2 With the notions introduced, one has deg hd(z) ≤ deg g(z) for all
d ≥ δ, and hence the same result holds by linearity for any (summable) combination
of such singleton families

The proof will only given as a sketch, technical details will be left out. Note
that the assertion is robust under linear transformations of the z-variable, so free
use can be made of this fact.

From (5),(6), and (7) we know that we have to evaluate

hd(z) =
n∑
k=0

g(z − k)

(
2z − k
k

)
(−1)n−k

(
2(z − k − δ)

n− k

)
2(z − δ − n) + 1

2(z − δ)− n− k + 1

where n = d− δ ≥ 0. By expanding and linear transformation it turns out that it
is sufficient to show that for t ≥ 0 a sum like

n∑
k=0

(−1)n−k kt
(
z + d− k

k

)(
z − 2k

n− k

)
z − 2n+ 1

z − n− k + 1

is a polynomial of degree ≤ min(n, t) in z. Now, this follows from

Lemma 3 For each integer t ≥ 0

rn,t(z, d) =
n∑
k=0

(−1)n−kk(k − 1) . . . (k − t+ 1)

(
z + d− k

k

)(
z − 2k

n− k

)
z − 2n+ 1

z − n− k + 1

is a polynomial in z and d with:

1. rn,t(z, d) = 0 for 0 ≤ n < t (trivially);

2. for n ≥ t, rn,t(z, d) is a polynomial of total degree n, and its terms of highest
degree are given by

1

(n− t)!
(z + d)t · dn−t

14



3. the degree in z of rn,t(z, d) is always ≤ t, and in particular

rn,0(z, d) =

(
n+ d− 1

n

)
For our purposes, we are only interested in the assertion about the z-degree.

The proof of this lemma can be reduced to the proof of a similar assertion for sums
like

n∑
k=0

(−1)k kt
(
z + d− k

k

)(
z − 2k

n− k

)
or

n∑
k=0

(−1)k
(
k

t

)(
z + d− k

k

)(
z − 2k

n− k

)
for nonnegative integer values of t.

Let us now consider a bit more generally sums like

n∑
k=0

(−1)k
(
k

t

)(
x+ λ k

k

)(
y + µ (n− k)

n− k

)
(8)

Note that the above sums show up when specializing:

x = z + d , y = z − 2n , λ = −1 , µ = 2

For t > n it is clear, that the sum vanishes, since every summand equals zero.
For 0 < t < n, the first t terms of (8) vanish, and this together with rewriting of
binomial coefficients and linear transformation of the variables makes it possible
to replace the sum by a similar one in which the range 0 . . . n has been replaced
by 0 . . . n− t. (Some care has to be taken to see that the inductive argument goes
through in this situation).
The critical case which remains to be treated and which can be eventually be made
responsible for the cancellation phenomenon is then the case t = 0. Here we can
use:

Lemma 4

n∑
k=0

(−1)k
(
x+ λk

k

)(
y + µ(n− k)

n− k

)
can be written as a polynomial in (x− y), provided λ+ µ = 1.

In particular, if we replace x by z + a and similarly y by z + b, for some a, b
independent of z and k, the the sum is a constant w.r.t. z.

Let us now take a tridiagonal matrix G associated with polynomials of second
degree, i.e. G = DΓ where Γ = (gi(z))i∈Z s. th.

15



g−1(z) = a0 + a1 z + a2 z
2

g0(z) = b0 + b1 z + b2 z
2

g1(z) = c0 + c1 z + c2 z
2

gk(z) = 0 if |k| > 1

(9)

Let Λ = (hd(z))d∈Z be the conjugate family obtained from Γ via reduced Leg-
endre transform. We know from the above considerations, that for d ≥ −1 the
polynomials hd(z) are polynomials of degree 2 if we take the coefficients a0, . . . , c2

as indeterminates. What we are interested in is the question: under which condi-
tions will the matrix DΛ again be a tridiagonal matrix, (i.e. hd(z) = 0 for |d| > 1)
? It should be clear that the occurence of this phenomenon is expressible as a linear
condition in the indeterminates. So let us use the above formulas and calculate the
first few values of hd(z) = λd,0 + λd,1 z + λd,2 z

2

d λd,0 λd,1 λd,2
−1 a0 a1 a2

0 −2a0 + a1 − a2 −4a1 + 4a2 + b1 −6a2 + b2

1 a0 − 5a1 + 11a2 7a1 − 26a2 17a2 − 4b2 + c2

+b1 − b2 + c0 −2b1 + 4b2 + c1

2 12a1 − 54a2 −8a1 + 48a2 −32a2 + 8b2 − 2c2

−3b1 + 9b2 +2b1 − 18b2

2c0 + c1 − c2 +4c2

3 −20a1 + 170a2 8a1 − 188a2 48a2 − 12b2 + 3c2

+5b1 − 35b2 −2b1 + 44b2

+3c0 − c1 + 7c2 c1 − 10c2

4 28a1 − 406a2 −8a1 + 340a2 −64a2 + 16b2 − 4c2

−7b1 + 91b2 +2b1 − 82b2

+4c0 + 2c1 − 20c2 +20c2

5 −36a1 + 810a2 8a1 − 540a2 80a2 − 20b2 + 5c2

+9b1 − 189b2 −2b1 + 132b2

+5c0 − 2c1 c1 − 32c2

Either via manipulation of formulas (tedious) or interpolation from the first few
values we can find the following explicit general form for the polynomials hd(z) as
functions of the indeterminates a0, . . . , c2:

hd(z) = (−1)d
{

[−16a2 + 4b2 − c2] d z2 + +

[
24a2 − 6b2 +

3

2
c2

]
d2 z

+ [−16a2 + 4b2 − c2] d z + [−8a1 + 20a2 + 2b1 − 2b2] z

+

[
−8a2 + 2b2 −

1

2
c2

]
d3 +

[
12a2 − 3b2 +

4

2
c2

]
d2

+

[
8a1 − 24a2 − 2b1 + 3b2 + (−1)dc0 +

1

2
c1

]
d
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+ [−4a1 + 10a2 + b1 − b2]}+
1− (−1)d

2

[
c1 +

1

2
c2

]
(z − 1

2
)

From this we conclude that for h(d) to vanish identically for d ≥ 2 it is necessary
and sufficient to have

c2 = −16a2 + 4b2

c1 = −1

2
c2 = 8a2 − 2b2

c0 = 0

b1 = 4a1 + 10a2 + b2

(10)

and the parameters a0, a1, a2, b0, b2 may be chosen independently. (Actually,
rank consideration show that the vanishing of h2(z) and h3(z) is sufficient to impose
these conditions, whereas vanishing of h2(z) or h3(z) alone is not).

Let us note that under the mentioned conditions the polynomials h−1(z), h0(z)
and h1(z) turn out to be:

h−1(z) = g−1(z) = a1 + a1 z + a2 z
2

h0(z) = (−6a2 + b2)z2 + (−6a2 + b2)z − 2a0 + a1 + a2 + b0

= (−6a2)z2 + (4a2 − 4a1)z − 2a0 + a1 − a2 + g0(z)

h1(z) = a2 z
2 + (2a2 − a1)z + a0 − a1 + a2

= a2(z + 1)2 − a1(z + 1) + a0 = g1(−z − 1)

(11)

Thus we have shown:

Theorem 5 For any tridiagonal matrix G = DΓ as specified in (9), the matrix
H = DΛ obtained via reduced Legendre transform, i.e.

H = Q ·G ·Q−1

is again tridiagonal if and only if the conditions in (10) are satisfied.
In this case, the family Λ is given by (11).

Note that a verification of the if-part of this result is just as easy as the verifi-
cational proof of identity (4). Again, we can verify

H ·Q = Q ·G

by comparing the (i, j)-entries of the matrices on both sides with i and j as inde-
terminates. The same remarks as made at the end of section 3 apply.

The result of theorem 5 can be rephrased in terms of the original Legendre
transform. Let

G̃ = ∆−1 ·G ·∆
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with ∆ = diag
((

2k
k

))
k≥0

. Then G̃ = DΓ̃ where Γ̃ = (g̃k(z))k∈Z is given by

g̃k(z) =


4z+2
z+1

g−1(z) if k = −1
g0(z) if k = 0
z

4z−2
g1(z) if k = 1

0 else

If we impose conditions (10) and furthermore require that z + 1 | g−1(z) (which
introduces a further linear constraint: a0 = a1 − a2), then we find:

Corollary 6 Legendre transform

H = P · G̃ ·P−1

maps the polynomials

g̃−1(z) = Az2 +B z + C

g̃0(z) = (A+D) z2 + (−A+B +D) z + E

g̃1(z) = D z2

onto

h−1(z) =
z + 1

4z + 2

(
Az2 +B z + c

)
h0(z) =

1

2
[(2D − A) z(z + 1) + 2E − C]

h1(z) =
z

4z + 2

[
Az2 + (2A−B) z + (A−B + C)

]
Note that the translation is given by A = 4a2, B = −2a2 + 4a1, C = 2(a1 − a2),
D = c2/4 and E = b0.

This is essentially the contents10 of theorem 1 in [16], where a rather different
proof using creative telescoping is given. Note that the situation of the Franel-Apéry
conjugacy is given by the particular values A = C = 1, B = 2, D = −8, E = 2.
Schmidt’s article contains a number of further examples illustrating this transfor-
mation.

5 A brief look at diophantine approximation

In this final section I would like to draw attention to an application of the foregoing
to diophantine approximation. The results mentioned here are adapted from [16].

As mentioned in the beginning, Apéry’s surprising proof of the irrationality of
ζ(3) is based on the recurrence relation for the Apéry numbers. In a few words,
his idea of proof goes as follows (see [20]):

10The equivalence is not complete, because the additional linear relation introduced here reduces
the number of free parameters by one. But this is a technical matter that can be dealt with.
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Consider the two sequences

(an)n≥0 = ( 1 , 5 , 73 , 1445 , 33001 , . . . )

(bn)n≥0 = ( 0 , 6 ,
351

4
,

62531

36
,

11424695

288
, . . . )

satisfying both Apéry’s linear recurrence relation

n3 un − (34n3 − 51n2 + 27n− 5)un−1 + (n− 1)3un−2 = 0 (12)

The surprising fact about (an)n≥0 is that all its terms are integers, which is con-
tained in (3), but by no means obvious from (12) alone. The terms of (bn)n≥0 are
rational numbers, where the denominator of bn divides 2 lcm(1, 2, . . . , n)3. This
follows from

bn =
n∑
k=0

(
n

k

)2(
n+ k

k

)2

cn,k

where

cn,k =
n∑

m=1

1

m3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)
and this also shows that

lim
n→∞

bn
an

= ζ(3)

The joint recurrence (12) for numerator and denominator of this recurrence allows
for an estimate of the rate of convergence:

ζ(3)− bn
an

=
∞∑

k=n+1

ak bk+1 − ak+1 bk
ak ak+1

= O

(
1

a2
n

)
since

an−1 bn − an bn−1 =
a0 b1 − a1 b0

n3
=

6

n3

The sequences (pn)n≥0 and (qn)n≥0 with

pn = 2 lcm(1, 2, . . . , n)3 bn and qn = 2 lcm(1, 2, . . . , n)3 an (n ≥ 0)

respectively, are integer sequences with

lim
pn
qn

= lim
bn
an

= ζ(3)

and from an estimate of the growth rate of (an)n≥0 (which is obtained from co-

efficients of the recurrence (12)) one can show that the convergence of
(
pn
qn

)
n≥0

towards ζ(3) is rapidly enough (in terms of the growth of the qn) so as to establish
non-rationality of the limit.
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In terms of our matrix notation, writing A for the matrix representing the
Apéry recurrence, a for the (column)-vector of the an (n ≥ 0) and similarly for b,
we have

A · a = 0 and A · b =

[
6

0

]
where on the right we have a vector with a 0 in all positions, except a 6 in the top
position.

As to the Franel recurrence, it has been remarked by Cusick (see a footnote in
[20]) that both sequences

(fn)n≥0 = (1, 2, 10, 56, 346, . . .)

(gn)n≥0 = (0, 3, 12,
208

3
,
1280

3
, . . .)

satisfying the Franel recurrence, which we may write as

F · f = 0 and F · g =

[
3

0

]
lead to a diophantine approximation:

lim
gn
fn

=
π2

8
(13)

We have seen above that the equation

A · a = 0 and F · f = 0

are related via Legendre conjugacy. Now conjugacy provides us with a solution
of an inhomogeneous Franel recurrence associated to the second solution b of the
(homogeneous) Apéry recurrence:

A · b =

[
6

0

]
vs. F · h = k

where h and k are vectors belonging to the sequences

(hn)n≥0 = ( 0 , 3 ,
93

8
,

1217

18
,

239429

576
, . . . )

(kn)n≥0 = ( 3 , −3

2
, 1 , −4

3
, . . . , (−1)n

3

n+ 1
, . . . )

Similarly, the second solution g of the (homogeneous) Franel recurrence provides
us with a solution of an inhomogeneous Apéry recurrence:

F · g =

[
3

0

]
vs. A · c = d
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where c and d are vectors belonging to the sequences

(cn)n≥0 = ( 0 , 6 , 90 ,
5348

3
,

122140

3
. . .)

(dn)n≥0 = ( 6 , 18 , 30 , . . . , 3 (4n+ 2) , . . . )

As a result, we get the approximations

lim
n→∞

hn
fn

= ζ(3) and lim
n→∞

cn
an

=
π2

8

i.e. one approximation of ζ(3) in terms of Franel-recursive sequences, and one of
π2/8 in terms of Apéry-recursive sequences. From this, one may hope for a proof
of independence of { 1 , π2/8 , ζ(3) } over the rationals.
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