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1 Introduction

Consider a field K of characteristic zero. The shift operator E on K(x) is defined by Ef(x) :=
f(x + 1) for all f ∈ K(x). The (forward) difference operator is defined by ∆ := E − 1, where
1 operates identically. Then the problem of indefinite summation of rational functions can be
stated as follows.
Problem: Given a proper rational function f ∈ K(x), find h, r ∈ K(x) such that

f = ∆h+ r (1)

and the denominator of r has minimal degree among all such decompositions. We call the pair
(h, r) a solution of the indefinite summation problem for f and call r a bound for f .

Each solution (h, r) in (1) corresponds to the following decomposition

g(a, b) :=
b∑

k=a

f(k) = h(b+ 1)− h(a) +
b∑

k=a

r(k) (2)

In particular, a solution of (1) with remainder r = 0 provides a closed form for g as a rational
expression in a and b, namely g(a, b) = h(b+ 1)− h(a).

Several algorithms are known for computing solutions of the indefinite rational summation
problem (see [2, 1, 3]). Note that giving an “Ansatz” for the denominators of h and r reduces
equation (1) to a polynomial equation, which can be solved by coefficient comparison.

Here we describe such candidates for the denominators of h and r which depend only on the
denominator of f . For a certain class of rational summands f the given estimates are precise.

Solutions (h, r) are not uniquely determined by f . For instance, the decompositions

∆
(
−1

4
2x+ 1
x(x+ 1)

)
− 1

2(x2 + 4x+ 4)
and ∆

(
−1

4
2x3 + 7x2 + 5x+ 2

x2(x+ 1)2

)
− 1

2x2

are different solutions for the same rational summand f = 1
x(x+2)2 . As one can see, the degree of

the denominator of h can vary considerably among solutions. For this reason we are interested
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in solutions (h, r) with both h and r of minimal degree in the denominator. Our observations
prove that the modification of Abramow’s algorithm proposed in [4, 5] produces such minimal
solutions for a certain class of rational summands.

In the following we make use of known results due to Abramow and Paule (see [1, 3]), to
which we refer for an extensive treatment of the subject.

We say that two polynomials p1 and p2 are shift equivalent if p1 = Ekp2 for some integer k.
In this case we write p1 ∼ p2. Consider, for a polynomial p ∈ K[x], the complete factorization
(over K) p = αpe11 p

e2
2 · · · pemm , where all pi are irreducible and monic and e1 · · · em 6= 0, α ∈ K.

Then an equivalence class of the set of irreducible factors {p1, . . . , pm} of p under the relation
∼ is called a shift class of p. A factor p̃ = p

ei1
i1
· · · peilil of p is called a shift component of p if the

set {pi1 , . . . , pil} is a shift class of p.

Example 1 Consider the polynomial p ∈ Q[x] given by the following factorization

p(x) = (x2 + 3)(x2 + 2x+ 4)x(x+ 1)2(x+ 3)(x+ 5)2

then the set {x, x+ 1, x+ 3, x+ 5} is a shift class of p and p̃ = x(x+ 1)2(x+ 3)(x+ 5)2 is the
corresponding shift component.

Define on the polynomials in a shift class the order < by: q < q′ if there exists a positive
integer k such that Ekq = q′. We can represent graphically the shift structure of a shift class.
For instance Fig. 1 represents the situation for p̃ of Example 1.

Figure 1: Shift structure of x(x+ 1)2(x+ 3)(x+ 5)2

We draw d squares at the i-th position on a line when the polynomial Eiq0 arises with
multiplicity d as a factor of p̃, where q0 denotes the smallest polynomial w.r.t. the order < in
the shift class.

Definition 1 The dispersion of a polynomial p is the maximal integer distance between roots of
p and is denoted by dis(p).

For a proper rational function given by a reduced representation f = p/q, i.e. p and q are
relatively prime polynomials, we define dis(f) = dis(q). In Example 1 we have dis(p) = 5, viz.
the maximal distance between stacks.

Lemma 1 For f ∈ K(x) let h, r ∈ K(x) be such that f = ∆h+ r holds. Then r is a bound for
f if and only if dis(r) = 0.

This means that the problem of indefinite summation is solved for decompositions f = ∆h+r
where dis(r) = 0, i.e. where each shift component of the denominator of r has only one stack of
boxes in the corresponding diagram.
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As we saw, solutions of the indefinite summation are not uniquely determined. In the next
theorem, due to Paule, uniqueness up to integer shifts of the denominator of the remainders is
stated.

Theorem 1 Let r, r′ ∈ K(x) be bounds for f ∈ K(x), given by the reduced representations
r = p/q, r′ = p′/q′. If q = qe00 · · · qemm is the complete factorization of q over K, then q′ =
(El0qe00 ) · · · (Elmqemm ) for some integers l0, . . . , lm.

2 The Shift-Structure of the Denominator of ∆h

In the next section we will discuss the shift-structure of the denominators of (h, r) in equation
(1). In anticipation of this, we will now explicitly make some remarks on the denominator of
the rational function ∆h for a given h.

In the following let h ∈ K(x) be given by a reduced representation h = γ/δ. Then we have

∆h = E
γ

δ
− γ

δ
=

δ

τ
Eγ − γEδ

τ
τ0

δEδ

ττ0

=

δ

τ
Eγ − γEδ

τ
τ0

lcm(δ, Eδ)
τ0

(3)

where τ = gcd(δ, Eδ) and τ0 = gcd( δτEγ−γ
Eδ
τ , lcm(δ, Eδ)) and the right hand side is in reduced

form.

Remark 1 In equation (3) we have τ0|τ .

Proof. We know τ0|δEδ. Assume now that there exists a non trivial factor τ1 of τ0 such that
τ1|δ and τ1 - Eδ. Then τ1| δτ and τ1 -

Eδ
τ . This is a contradiction to (3), for τ0|( δτEγ− γ

Eδ
τ ) must

hold and γ, δ are relatively prime. The case τ1|Eδ and τ1 - δ is analogous. �

From this remark one easily obtains the following property.

Lemma 2 Each shift-component πm0 · · · (El−1π)ml−1 of length l in δ corresponds to a shift-
component πm

′
0 · · · (Elπ)m

′
l of length l + 1 in the denominator of ∆h. Furthermore m0 = m′0

and ml−1 = m′l holds.

Proof. Consider a shift-component of δ, viz. πm0(Eπ)m1 · · · (El−1π)ml−1 for some irreducible
polynomial π and non-negative integers m0, . . . ,ml−1 with m0ml−1 6= 0. Then obviously
(Eπ)m0(E2π)m1 · · · (Elπ)ml−1 is a shift-component of Eδ and

(Eπ)min(m0,m1)(E2π)min(m1,m2) · · · (El−1π)min(ml−2,ml−1)

is a shift-component of gcd(δ, Eδ), while

πm0(Eπ)max(m0,m1) · · · (El−1π)max(ml−2,ml−1)(Elπ)ml−1
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is a shift-component of lcm(δ, Eδ). From Remark 1 we know τ0| gcd(δ, Eδ), so π - τ0 and Elπ - τ0.
This implies the statement. �

Now we give a more precise description of the factors of τ0.

Lemma 3 For all non-trivial factors σ of gcd(δ, Eδ) we have: σ|τ0 ⇒ σ - δτ and σ - Eδτ

Proof. Assume σ|τ0 and σ| δτ . Notice that then σ -
Eδ
τ immediately follows. From σ|τ0 we

know σ| δτEγ − γ
Eδ
τ , so σ|γEδτ . As δ and γ are relatively prime, we have σ|Eδτ . This implies

gcd(Eδτ ,
δ
τ ) 6= 1, a contradiction to τ = gcd(δ, Eδ). Similarly for the assumption δ|τ0 and σ|Eδτ .

�

In other words, if π is a factor of τ0, then π and E−1π arise with same multiplicity in δ.
This fact implies that the reduced denominator of ∆h might differ from lcm(δ, Eδ) only at those
places where we have repeated multiplicities in the corresponding shift-component of δ.

Example 2 Consider a rational function, whose denominator has the shift-structure as repre-
sented in the left part of Fig. 2. Then the shift-structure of τ0 will be contained in the diagram
in the right part of Fig. 2.

Figure 2: Upper bound for τ0

Let us define a particular kind of shift structure which will play an important role in the
following section.

Definition 2 Let the shift structure of the polynomial q be given by one shift component

q = πm0(Eπ)m1 · · · (Elπ)ml

where l > 0 and m0ml > 0. We call such a shift structure safe if for all 0 ≤ i < j ≤ l such that
mi = mj one of the following conditions holds

1. i = 0 and j = l

2. ∃k : i < k < j and mk > mi

3. ∃k1, k2 : k1 < i < j < k2 and mk1 > mi and mk2 > mj

This means that if two stacks in the shift structure have the same number of boxes, then
there must be an higher stack between them or they have to be enclosed between two higher
stacks (or they are the endpoints). The definition naturally generalizes to polynomials with
several shift components, i.e. each shift component is supposed to be safe.
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3 The j-Shift-Saturation

In order to say more about the shift structure of the denominator polynomials of the solutions,
we need the following definition.

Definition 3 Let q ∈ K[x] be given by one shift component q = πm0(Eπ)m1 · · · (Elπ)ml. For all
nonnegative integers j ≤ l we call the polynomial

ShiftSatj(q) := πt0(Eπ)t1 · · · · · · (El−1π)tl−1

j-shift-saturation of q, where ti = max{m0, . . . ,mi} for i = 0, . . . , j and ti = max{mi+1, . . . ,ml}
for i = j, . . . , l − 1.

The definition can be extended to j < 0 or j > l assuming mi = 0 for all i < 0 and i > l.
One can visualize the last definition as follows. Fix the j-th stack in the diagram correspond-

ing to the shift structure of the polynomial, then do a saturation from the left of the stacks left
of j and a saturation from the right of the stack right of j. After this, one simply erases the
j-th stack and shifts the right boxes one step to the left.

In the following theorem the importance of the ShiftSatj(q) for our problem is explained.

Theorem 2 Let f = p/q ∈ K(x) be such that the shift structure of q consists of a unique shift
component q = πm0(Eπ)m1 · · · (Elπ)ml with m0ml 6= 0 and l > 0. Then for all integers j there
exist solutions h = γ/δ, r = ε/η of f = ∆h+ r such that

δ = Shiftj(q) and η = Ejπm

holds, where m = max{m0, . . . ,ml}. Furthermore, if the shift structure of q is safe, then γ/δ is
already a reduced representation.

Proof. The existence of a solution for η = (Elπ)m is consequence of Theorem 3 in [3]. Consider
now the decomposition

ε

(Elπ)m
= − Eε

(El+1π)m
+

ε

(Elπ)m
+

Eε

(El+1π)m

This means that also h′ = h − r and r′ = Er form a solution to the indefinite summation
problem, so a solution with η = (Ejπ)m exists for all j (and with Theorem 1 all possible η have
this form).

Let (h, r) be a solution with η = (Ejπ)m for a certain j. For simplicity we consider only
0 < j < l, but the proof can be easily extended to the remaining cases. As a consequence of
Lemma 2 we know that the denominator δ of the rational part consists of a class of length l− 1,
starting with the same factor as q, i.e.

δ = πd0(Eπ)d1 · · · (El−1π)dl−1

and d0 = m0. We now consider the multiplicities of the factors Eπ,E2π, . . . , Ej−1π of δ. The
multiplicity of Eπ in Eδ is d0 = m0, while the multiplicity in q is m1. One of the following must
hold.
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1. m1 < d0. From the considerations after Remark 3 this can happen only if we have repeated
multiplicities, so d1 = d0 must hold.

2. m1 > d0. This means that d1 = m1, for this is the only way to increase the multiplicity.

3. m1 = d0. This may happen only if d1 ≤ d0.

In the example in Fig. 3 we have d0 = m0 = 1 and m1 = 2, so it follows that d1 = 2. In any case
we have d1 ≤ max{d0,m1} = max{m0,m1}. These comparisons go step by step until we reach
the j − th position. From this follows that for all 0 ≤ k < j it holds dk ≤ max{m0, . . . ,mk}.

Now consider the right endpoint of the class. Similarly dl−1 = ml, as Elπ does not arise as
factor of δ. Now we have to compare the (l − 1)-st column, i.e. dl−2, dl1 and ml−1. The only
possible cases are

1. ml−1 < dl−2. Again, after Remark 3 we need the same multiplicity of El−1π in Eδ, so we
have dl−2 = dl−1.

2. ml−1 > dl−2. This implies that dl−2 = ml−1

3. ml−1 = dl−2. This means that dl−2 ≤ dl−1.

In the example in Fig. 3 we have d5 = m5 = 1 and m4 = 0, so it follows that d4 = 1. Again we
can iterate until the multiplicity dj is determined. For all j ≤ k < l, dk ≤ max{mk+1, . . . ,ml−1}
holds.
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Figure 3: Determining δ

The steps on the multiplicities can be explained as follows. Going from left to the right we
always take the maximal multiplicity ariseng so far. Similarly from the right to left. So δ is a
divisor of the j-shift-saturation of q. On the other side, two of the cases above give no freedom
of choice (the first and the second). One can easily see that if the denominator of f has a safe
shift structure the third case never arises for any choice of j. For such f the rational part γ/δ
is already reduced.

In fact, the third case arises only when in q two multiplicities with same value arise as
“maxima” in the saturation. In other words, in order to have say mk = dk−1 for a k < j there
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must be mk+i = mk for some positive i but no mk+h > mk with h > 0. Such a structure is
unsafe. �

The fact that for safe shift structures the denominator δ of the rational part h is precisely
ShiftSatj(q) allows us to compute a solution, where also δ has minimal degree. It is sufficient
to choose j such that the corresponding j-shift-saturation is minimal in the degree, i.e. take j
where the maximal multiplicity arises.

4 Concluding Remarks

In this note we discussed the shift structure of the denominators of solutions h, r ∈ K(x) to the
problem of indefinite rational summation for a given f ∈ K(x).

In Theorem 2 we gave polynomials which were multiples of the denominators of h and r,
respectively. We proved that for a certain class of summands the given estimates are precise.
This description depends only on the structure of the denominator of the summand f and it is
not reasonable to expect lower estimates without considering the numerator of the summand.

Provided ShiftSatj(q) can be computed by some effective algorithm, Theorem 2 leads to an
algorithmic solution of the problem. In fact, knowing the denominators of h and r corresponds to
reducing equation (1) to a polynomial equation, which can be solved by coefficient comparison.

In addition, our observations prove that the modification of Abramow’s algorithm (see [1])
that we proposed in [4, 5] often yields a solution where both h and r are minimal in the degree
of the denominator.
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