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EULERIAN CALCULUS, IV : SPECIALIZATIONS

BY

Robert J. CLARKE AND Dominique FOATA (∗)

ABSTRACT. — Further excedance and descent statistics can be defined on each re-
arragement class and their generating functions explicitly calculated. Those generating
functions coincide with the classical ones when the rearrangement class is a permutation
group, but differ as soon as the class involves repeated elements.

1. Introduction. — In our previous three papers on Eulerian Calculus
[ClFo94, ClFo95a, ClFo95b] we have investigated further constructions
of transformations on the symmetric group and related structures, and
derived explicit formulas for classical order statistics on those structures.
Let (a; q)n denote the q-ascending factorial

(a; q)n =
{

1, if n = 0;
(1− a)(1− aq) . . . (1− aqn−1), if n ≥ 1 ;

Also let (u1, . . . , uj), (v1, . . . , vk) be two sequences of commuting variables
and c = (c1, . . . , cj) and d = (d1, . . . , dk) be two vectors with non-negative
integer components. Write c = c1 + · · · + cj , d = d1 + · · · + dk, then uc

for uc11 . . . u
cj
j and vd for vd1

1 . . . vdkk , finally (u; q)s+1 and (−qv; q)s for the
two products

(u1; q)s+1 . . . (uj ; q)s+1 and (−qv1; q)s . . . (−qvk; q)s,

respectively. In our third paper [ClFo95b] we have considered the identities
of the form∑

c,d

ucvd

(t; q)1+c+d
Ac,d(t, q) =

∑
s≥0

ts
(−qv; q)s
(u; q)s+1

,(1.1)

∑
c,d

ucvd

(t; q)1+c+d
AIc,d(t, q) =

∑
s≥0

ts
1

(u; q)s+1(qv; q)s
,(1.2)

∑
c,d

ucvd

(t; q)1+c+d
AIIc,d(t, q) =

∑
s≥0

ts(−u; q)s+1(−qv; q)s,(1.3)

∑
c,d

ucvd

(t; q)1+c+d
AIIIc,d (t, q) =

∑
s≥0

ts
(−u; q)s+1

(qv; q)s
,(1.4)

(∗) Supported in part by the E.E.C Programme on Algebraic Combinatorics, 1994-95.
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and showed that the coefficients Ac,d(t, q), AIc,d(t, q), AIIc,d(t, q) and
AIIIc,d (t, q) were generating polynomials for words that are rearrangements
of the word v = y1y2 . . . ym = 1c1 . . . jcj (j + 1)d1 . . . rdk by pairs of the
following statistics.

Call R(c,d) the class of those words and let w = x1x2 . . . xm be a word
in this class. We say that the word w has a k-excedance at i (1 ≤ i ≤ m),
if either xi > yi, or xi = yi and xi large. We also say that w has a k-
descent at i (1 ≤ i ≤ m), if either x > xi+1, or xi = xi+1 and xi large. [By
convention, xm+1 = ?, where ? is an extra letter which is bigger that the
small letters 1, 2, . . . , j, but smaller than the large letters (j + 1), . . . , r.]
The numbers of k-excedances and k-descents of a word w are denoted by
exck w and desk w. The k-major index of a word w is also defined to be
the sum, majk w, of all i such that i is a k-descent in w.

The other three pairs of statistics are defined as follows :

(1.5)I the word w = x1x2 . . . xm has a k-descent of type I at i (1 ≤ i ≤ m),
if either 1 ≤ i ≤ m− 1 and xi > xi+1, or i = m and xm is large. Thus in
case (I) only strict descents are counted within the word together with a
descent at the end if the last letter is large. The number of k-descents of
type I in w and the sum of all i such that i is a k-descent of type I are
respectively denoted by desIk w and majIk w.

(1.5)II the word w = x1x2 . . . xm has a k-descent of type II at i (1 ≤ i ≤
m), if either 1 ≤ i ≤ m − 1 and xi ≥ xi+1, or i = m and xm is large.
Thus in case (II) only usual descents and equalities xi = xi+1 are counted
within the word and one descent at the end if the last letter is large. In
the same manner, we define desIIk w and majIIk .

(1.5)III the word w = x1x2 . . . xm has a k-descent of type III at i
(1 ≤ i ≤ m), if one of the two conditions (1), (2) holds : (1) 1 ≤ i ≤ m−1,
xi > xi+1 and xi large, or xi ≥ xi+1 and xi small ; (2) i = m and xm is
large. Thus in case (III) strict descents are taken into account together
with equalities xi = xi+1 when xi is small, with a descent at the end if
the last letter is large. In the same manner, we define desIIIk and majIIIk .

One of the results of our third paper was to prove the following theorem.

Theorem 1.1. — The coefficients Ac,d(t, q) occurring in identity (1.1)
are the following generating polynomials

Ac,d(t, q) =
∑
w

tdesk wqmajk w (w ∈ R(c,d)),

with analogous results for AIc,d(t, q), AIIc,d(t, q) and AIIIc,d (t, q) concerning
identities (1.2), (1.3) and (1.4), respectively.
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We proved Theorem 1.1 in three different ways : first, by finding
recurrence relations for the generating polynomials Ac,d(t, q) that imply a
system of q-difference equations for their factorial generating functions,
a system that can be intregrated to yield (1.1) – (1.4) ; second, by
using a standard rearrangement technique for biwords that goes back
to MacMahon, the celebrated MacMahon Verfahren ; third, by using the
symmetric function technique and especially the Cauchy identity for Schur
functions.

Now if we let q = 1 in identities (1.1) – (1.4), we obtain

∑
c,d

ucvd

(1− t)1+c+d
Ac,d(t) =

∑
s≥0

ts
(1 + v)s

(1− u)s+1
,(1.6)

∑
c,d

ucvd

(1− t)1+c+d
AIc,d(t) =

∑
s≥0

ts
1

(1− u)s+1(1− v)s
,(1.7)

∑
c,d

ucvd

(1− t)1+c+d
AIIc,d(t) =

∑
s≥0

ts(1 + u)s+1(1 + v)s,(1.8)

∑
c,d

ucvd

(1− t)1+c+d
AIIIc,d (t) =

∑
s≥0

ts
(1 + u)s+1

(1− v)s
,(1.9)

where Ac,d(t) stands for Ac,d(t, q)
∣∣
q=1

with analogous expressions for the
other polynomials and where (1+v)s stands for (1+v1)s . . . (1+vk)s with
an analagous expression for (1− v)s+1.

The purpose of this paper is to reprove identities (1.6) – (1.9) by using
a fourth technique based on the MacMahon Master Theorem. As there is
no q-analogue (so far ?) of this theorem, such a technique is not available
for proving their q-versions (1.1) – (1.4).

We conclude the paper by showing the the polynomials Ac,d(t), AIc,d(t)
and AIIc,d(t) also have combinatorial interpretations in terms of excedances.

2. Determinantal expressions. — For each j and each k such that
(0 ≤ j, k ≤ r) and j + k = r denote by Bk and B′j the following two
r × r matrices. The matrix Bk has only 1’s under the diagonal and only
t’s above, but its diagonal, diagBk, is made of j 1’s, followed by k t’s, i.e.,

(2.1) diagBk = (1, . . . , 1,t, . . . , t)︸ ︷︷ ︸︸ ︷︷ ︸
j times k times

In the matrix B′j the diagonal entries consists of j t’s followed by k 1’s,
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i.e.,

(2.2) diagB′j = (t, . . . , t,1, . . . , 1)︸ ︷︷ ︸︸ ︷︷ ︸
j times k times

and the other entries consist of t’s above the diagonal and 1’s under it.
Notice that Br = B′r and B0 = B′0, a matrix that has t’s above the
diagonal and 1’s on and under the diagonal.

Let the infinite series occurring in the right-hand sides of (1.6), (1.7),
(1.8) and (1.9) be denoted by A(u,v, t), AI(u,v, t), AII(u,v, t) and
AIII(u,v, t), respectively. Furthermore, let U be the diagonal matrix
U = diag(u1, . . . , uj , v1, . . . , vk). We first prove the identities :

(1− t)A(u(1− t),v(1− t), t) =
1

det(Ir −BkU)
;(2.3)

(1− t)AI(u(1− t),v(1− t), t) =
(1− v(1− t))
det(Ir −B0U)

;(2.4)

(1− t)AII(u(1− t),v(1− t), t) =
(1 + u(1− t))
det(Ir −BrU)

;(2.5)

(1− t)AIII(u(1− t),v(1− t), t) =
(1 + u(1− t))(1− v(1− t))

det(Ir −B′jU)
.(2.6)

Identity (2.3) has been derived in [ClFo94]. The same technique applies
for the other three identities. Let us simply prove (2.4). First, it is routine
to derive

det(Ir −B0U)
= 1− e1(u,v) + (1− t)e2(u,v)− · · ·+ (−1)r(1− t)r−1er(u,v),

where the ei(u,v)’s are the elementary symmetric function in the variables
u1, . . . , uj , v1, . . . , vk. Hence

(1− t) det(Ir −B0U)
= (1− t)− e1(u(1− t),v(1− t)) + e2(u(1− t),v(1− t))

− · · ·+ (−1)rer(u(1− t),v(1− t)).

= −t+ (1− u(1− t))(1− v(1− t)),
and then

(1− v(1− t))
det(Ir −B0U)

= (1− t)
∑
s≥0

ts
1

(1− u(1− t))s+1(1− v(1− t))s

= (1− t)AI(u(1− t),v(1− t), t).
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As we will make full use of the MacMahon Master Theorem [Mac15, p. 97]
to exploit identities (2.3) - (2.6), it is appropriate to restate this theorem
now :

Let B = (b(i, j)) (1 ≤ i, j ≤ r) be a square matrix with coefficients in a
commutative ring and let X∗ be the free monoid generated by X = [ r ]. If
w = x1x2 . . . xm is a word in X∗ whose non-decreasing rearrangement is
v = y1y2 . . . ym = 1c1 . . . jcj (j + 1)d1 . . . rdk , define

β(w) = b(y1, x1)b(y2, x2) . . . b(ym, xm) and u(w) = ucvd.

Then the following identity holds

(2.7)
1

det(Ir −BU)
=
∑
w

β(w)u(w),

where Ir is the identity matrix and where the sum is over all words w ∈ X∗.

Make the substitution B ← Bk in identity (2.7). Then the monomial
β(w) is simply equal to texck w, so that the MacMahon Master Theorem
yields the identity

(2.8)
1

det(Ir −BkU)
=
∑
w

texck wucvd.

With the substitution B ← B′j we get the identity

(2.9)
1

det(Ir −B′jU)
=
∑
w

texcj wucvd,

where

(2.10) excj w is the number of i such that 1 ≤ i ≤ m and either xi > yi,
or xi = yi and xi ≤ j.

Thus the inverses of the denominators occurring on the right-hand
sides of (2.3) - (2.6) are interpreted in terms of excedences. To get an
interpretation in terms of descents we need to recall the construction of
the transformation that maps excedences onto descents.

3. Descents. — In our first paper [ClFo94] we have constructed a
bijection Φk of each rearrangement class R(c,d) onto itself such that

(3.1) desk w = exck Φk(w)
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for each word w in R(c,d). Hence (2.8) and (3.1) imply

(3.2)
1

det(Ir −BkU)
=
∑
w

tdesk wucvd =
∑
c,d

ucvdAc,d(t)

To do the counterpart for identity (2.9) and write

(3.3)
1

det(Ir −B′jU)
=
∑
w

tdesj wucvd,

we need an appropriate definition for “desj” and a new transformation Ψj

of R(c,d) onto itself having the property

(3.4) desj w = excj Ψj(w).

For “desj we take the definition

(3.5) Let w = x1x2 . . . xm be a word ; then desj w is the number of i such
that 0 ≤ i ≤ m − 1 and either xi > xi+1, or xi = xi+1 and xi ≤ j. [By
convention, x0 = x1.]

As for Ψj we take the conjugate of Φk in a sense that will be made more
precise. First, recall the construction of Φk using a running example (see
[ClFo94, § 5]).

Suppose j = 2, k = 4, r = 6 and let ? be an extra letter between 2 (the
largest small letter) and 3 (the smallest large letter). Next consider the
word

w = 2, 1, 1, 3, 1, 3, 3, 5, 5, 2, 3, 3, 2, 1, 4, 5, 4, 6, 6, 1, 3.

(a) Add ? at the end of w :

w? = 2, 1, 1, 3, 1, 3, 3, 5, 5, 2, 3, 3, 2, 1, 4, 5, 4, 6, 6, 1, 3, ?;

(b) cut w before each left to right upper record :

w? = | 2, 1, 1 | 3, 1 | 3 | 3 | 5 | 5, 2, 3, 3, 2, 1, 4 | 5, 4 | 6 | 6, 1, 3, ? | ;

(c) change the mutual orders of all factors beginning with the same large
letter (here 3, 5, 6) :

w′ = | 2, 1, 1 | 3 | 3 | 3, 1 | 5, 4 | 5, 2, 3, 3, 2, 1, 4 | 5 | 6, 1, 3, ? | 6 | ;

(d) form the following biword where the top word in each factor is simply
equal to bottom factor shifted to the left, the first letter being moved to
the end :(

∆w′

w′

)
=
(

1 1 2
2 1 1

∣∣∣∣ 3
3

∣∣∣∣ 33
∣∣∣∣ 1 3

3 1

∣∣∣∣ 4 5
5 4

∣∣∣∣ 2 3 3 2 1 4 5
5 2 3 3 2 1 4

∣∣∣∣ 5
5

∣∣∣∣ 1 3 ? 6
6 1 3 ?

∣∣∣∣ 66
)

;

6



EULERIAN CALCULUS, 4

(e) remove the vertical bars and rearrange the columns of the latter biword
in such a way that the top row is non-decreasing and the mutual order of
all the biletters having the same top letter is preserved :(

. . .
Φ(w′)

)
=
(

1 1 1 1 1 2 2 2 ? 3 3 3 3 3 3 4 4 5 5 5 6 6
2 1 3 2 6 1 5 3 3 3 3 1 2 3 1 5 1 4 4 5 ? 6

)
;

(e′) cut the biword before each change of top letter :(
. . .

Φ(w′)

)
=
(

1 1 1 1 1
2 1 3 2 6

∣∣∣∣ 2 2 2
1 5 3

∣∣∣∣ ?3
∣∣∣∣ 3 3 3 3 3 3
3 3 1 2 3 1

∣∣∣∣ 4 4
5 1

∣∣∣∣ 5 5 5
4 4 5

∣∣∣∣ 6 6
? 6

)
;

(f) within each factor of the biword whose top word has only (equal) large
letters reverse (i.e., take the mirror-image of) the bottom word :(

. . .
w′′

)
=
(

1 1 1 1 1
2 1 3 2 6

∣∣∣∣ 2 2 2
1 5 3

∣∣∣∣ ?3
∣∣∣∣ 3 3 3 3 3 3
1 3 2 1 3 3

∣∣∣∣ 4 4
1 5

∣∣∣∣ 5 5 5
5 4 4

∣∣∣∣ 6 6
6 ?

)
;

(g) remove the vertical bars, delete ? that necessarily occurs at the end
of the bottom word ; the remaining bottom word is, by definition, Φk(w),
i.e., Φk(w)? = w′′ :(

. . .
Φk(w)

)
=
(

1 1 1 1 1 2 2 2 3 3 3 3 3 3 4 4 5 5 5 6 6
2 1 3 2 6 1 5 3 3 1 3 2 1 3 3 1 5 5 4 4 6

)
.

In particular, desk w = exck Φk(w) = 12.
Furthermore, let c = c1 + · · · + cj , d = d1 + · · · + dk and let x

be the last letter of w, so that w = w1x. Then, Φk(w1x) admits the
factorization (w2, x, w3), where w2 and w3 are words of length l(w2) = c
and l(w3) = d− 1. (If d = 0, l(w2) = c− 1.) Thus

(3.5) the last letter of w is equal to the (c+ 1)-st letter of Φk(w).

In particular,

(3.6) Φ0(w2x) = w3x and Φr(w2x) = xw4.

The construction of Ψj will also be given by means of an example with
j = 4, k = 2, r = 6.

(a) start with a word w5 = z1z2 . . . zm in R(c,d) (remember that all the
letters are taken from the alphabet [ r ]) and for each i = 1, 2, . . . ,m define

xi = r + 1− zm+1−i and form the word w6 = x1x2 . . . xm.
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Clearly desk w5 = desk w6. Under this transformation the image of

v = 4, 6, 1, 1, 3, 2, 3, 6, 5, 4, 4, 5, 2, 2, 4, 4, 6, 4, 6, 6, 5

is precisely the word w in the preceding example.

(b) apply Φk to w6 to get(
. . .

Φk(w)

)
=
(
w7

w7

)
=
(

1 1 1 1 1 2 2 2 3 3 3 3 3 3 4 4 5 5 5 6 6
2 1 3 2 6 1 5 3 3 1 3 2 1 3 3 1 5 5 4 4 6

)
;

(c) replace each entry z in the above biword by (r + 1− z) to obtain

α =
(

6 6 6 6 6 5 5 5 4 4 4 4 4 4 3 3 2 2 2 1 1
5 6 4 5 1 6 2 4 4 6 4 5 6 4 4 6 2 2 3 3 1

)
(d) consider the above biword as a circuit in the terminology developed in
[CaFo69]. Such a circuit can be expressed as a product of true cycles, and
the factorization is unique except for the order of the factors (see [CaFo69,
chap. 4, Proposition 4.1]). The true cycles are sorted out to the left one
by one. With the running example we get :[

6 5
5 6

][
6
6

][
4
4

][
6 4
4 6

][
2
2

][
2
2

][
4
4

][
5 2 3 4
2 3 4 5

][
6 5 4
5 4 6

][
4
4

][
6 1 3
1 3 6

][
1
1

]
;

(e) take the inverse of each true cycle, i.e., exchange top and bottom words
within each true cycle :[

5 6
6 5

][
6
6

][
4
4

][
4 6
6 4

][
2
2

][
2
2

][
4
4

][
2 3 4 5
5 2 3 4

][
5 4 6
6 5 4

][
4
4

][
1 3 6
6 1 3

][
1
1

]
;

(f) suppress the brackets in the above product and reorder the columns
to get a circuit whose top row is non-decreasing, i.e.,(

w8

w8

)
=
(

1 1 2 2 2 3 3 4 4 4 4 4 4 5 5 5 6 6 6 6 6
6 1 2 2 5 2 1 4 6 4 3 5 4 6 4 6 5 6 4 4 3

)
.

The bottom word is by definition Ψk(v).
It is readily verified that exck w7 = exck w6, and so desk v = desk w6 =

exck Ψk(w6) (= exck w7) = exck w8 = exck Ψk(v). In the running example
all those quantities are equal to 12.

Thus (3.4) is verified and identity (3.3) holds.

4. The proofs of (1.6) - (1.9). — Identity (1.6) is a consequence of
(2.3) and (3.2).
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For the proof of (1.7) we proceed as follows. Let des = des0 and
D = det(Ir −B0U). Then (1/D)vk =

∑
w t

deswu(w)vk by (3.2) for k = 0.
As r is the maximum letter of the alphabet, it does not create a descent,
if it is placed at the end of a word : deswr = desw. But w 7→ wr is
a bijection of the set X∗ of all words onto the set X∗r of words ending
with r. Therefore,

1
D
− 1
D
vk =

∑
w

tdeswu(w)−
∑
w

tdeswu(w)vk

=
∑
w

tdeswu(w)−
∑
w

tdeswru(wr) =
∑

w∈X∗\X∗r

tdeswu(w),

where the last summation is over all words not ending with r.
In the same manner, (1/D)tvk is the generating function for words

ending with r by “1 + des.” Define

des′ w =
{

1 + desw, if w ends with r ;
desw, otherwise.

Then

(4.1)
1− vk(1− t)

D
=

1
D
− 1
D
vk +

1
D
tvk =

∑
w

tdes′ wu(w).

Now continue with other factors :

(1− vk−1(1− t))(1− vk(1− t))
D

=
(∑
w

tdes′ wu(w)
)

(1− vk−1 + tvk−1).

In the same manner, w 7→ w(r− 1) maps X∗ onto the set X∗(r− 1) of all
words ending with (r− 1). Furthermore, des′ w = des′ w(r− 1), for, either
w ends with r and its last letter is counted as a descent, or w ends with a
letter ≤ (r − 1) and no other descent is created. Again,∑

w

tdes′ wu(w)−
∑
w

tdes′ wu(w)vk−1 =
∑

w∈X∗\X∗(r−1)

tdes′ wu(w)

and the factor
(∑

w t
des′ wu(w)

)
tvk−1 adds back all the words ending with

(r − 1) and an extra descent is to be counted for all those words. Define

des′′ w =
{

1 + des′ w, if w ends with (r − 1) ;
des′ w, otherwise ;

or, in an equivalent manner,
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des′′ w =
{

1 + desw, if w ends with (r − 1), r ;
desw, otherwise.

Then
1− vk−1(1− t)(1− vk(1− t))

D
=
∑
w

tdes′′ wu(w).

More generally, let

(4.2) desI w =
{

1 + desw, if w ends with a large letter ;
desw, if w ends with a small letter ;

and let
(7.11) AIc,d(t) =

∑
w

tdesI w (w ∈ R(c,d)).

Then, by induction, we can prove the identity

(4.3)
∑
c,d

ucvdAIc,d(t) = (1−t)AI(u(1−t),v(1−t), t) =
(1− v(1− t))
det(Ir −B0U)

,

i.e., we have proved (1.7).
Next, 1/(det(Ir−BrU)) is the generating function for X∗ by “desr” and

the statistic “desr” always includes one descent at the end of each non-
empty word w. In the same manner, the product (1 − tu1 + u1) . . . (1 −
tuj + uj) may be regarded as an operator that kills the ultimate descent
in each non-empty word, if the last letter is small.

Hence if we let

AIIc,d(t) =
∑
w

tdesIIw (w ∈ R(c,d)),

the following identity holds∑
c,d

ucvdAIIc,d(t) = (1− t)AII(u(1− t),v(1− t), t) =
(1 + u(1− t))
det(Ir −BrU)

,

i.e., identity (1.8) is proved.

Now 1/det(Ir−B′jU) =
∑
w t

desj wu(w). The numerator of the fraction
on the right-hand side of (2.6) is an operator that kills a descent at the
beginning of a non-empty word w, if its first letter is small, but adds a
descent at the end if its last letter is large.

Let
AIIIc,d (t) =

∑
w

tdesIIIw (w ∈ R(c,d))

Then the following identity holds :∑
c,d

ucvdAIIIc,d (t) = (1− t)AIII(u(1− t),v(1− t), t) =
∑
s≥0

ts
(1 + u)s+1

(1− v)s
,

and this proves (1.9).
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5. Excedance statistics. — The final problem is to associate ex-
cedance statistics to those descent statistics. We will only do it for desI

and desII . Let Φ = Φ0.
It follows from (3.1) and (1.5)I that

desI w′x =
{

1 + desw′x = 1 + exc Φ(w′x) = 1 + excw1x, if x is large ;
desw′x = exc Φ(w′x) = excw1x, if x is small.

We are then led to define

(5.1) excI w =
{

1 + excw, if the last letter of w is large ;
excw, if the last letter of w is small.

We have then proved the following proposition

Proposition 5.1. — The transformation Φ also satisfies excI Φ(w) =
desI w, and consequently

AIc,d(t) =
∑
w

tdesI w =
∑
w

texcI w (w ∈ R(c,d)).

Now using (3.6), desII w′x is equal to{
desr w′x− 1 = excr Φr(w′x)− 1 = excr xw2 − 1, if x is small ;
desr w′x = excr Φr(w′x) = excr xw2, if x is large.

Again, for each word w = x1x2 . . . xm whose non-decreasing rearrangement
is w = y1y2 . . . ym, we are led to define

(5.2) excII w to be the number of i such that 1 ≤ i ≤ m and xi ≥ yi,
minus one if x1 is small.

We have then the following result.

Proposition 5.2. — The transformation Φr also satisfies

excII Φr(w) = desII w,
and consequently

AIIc,d(t) =
∑
w

tdesII w =
∑
w

texcII w (w ∈ R(c,d)).

Remark. — Keep the same notations, in particular, consider the letters
1, . . . , j as being small, and the other letters large. Furthermore, keep the
natural ordering on [ r ]. When restricted to permutations, the statistics
“desI ,” “desII” “desIII” coincide with the definition of “desk.” However
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“exck,” “excI ,” and “excII” differ from one another. Consequently, Φk, Φ
and Φr provide three different bijections that map the same “desk” onto
three different excedance statistics.

In the following table we have displayed the actions of those three
transformations on the elements of S3 with one small letter (j = 1) and
two large letters 2 and 3 (k = 2) The letters giving rise to excedances in
the various cases have been printed in bold-face.

w des2 w Φ2 Φ Φ3

1, 2, 3 1 1,3, 2 1, 2,3 3, 1, 2
1, 3, 2 2 1,2,3 1,3,2 2, 1,3
2, 1, 3 2 2,3, 1 2, 1,3 3,2, 1
2, 3, 1 1 3, 1, 2 3, 2, 1 1,3, 2
3, 1, 2 2 3,2, 1 3, 1,2 2,3, 1
3, 2, 1 2 2, 1,3 2,3, 1 1,2,3
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tation et réarrangements. — Berlin, Springer-Verlag, 1969 (Lecture Notes in
Math., 85).

[ClFo94] Robert J. Clarke and Dominique Foata. — Eulerian Calculus, I : univariable
statistics, Europ. J. Combinatorics, vol. 15, , p. 345–362.

[ClFo95a] Robert J. Clarke and Dominique Foata. — Eulerian Calculus, II : an extension
of Han’s fundamental transformation, Europ. J. Combinatorics, vol. 16, ,
p. 221–252.

[ClFo95b] Robert J. Clarke and Dominique Foata. — Eulerian Calculus, III : The ubiquitous
Cauchy formula, to appear in Europ. J. Combinatorics, .

[Mac15] (Major) P.A. MacMahon. — Combinatory Analysis, vol. 1. — Cambridge,
Cambridge Univ. Press,  (Reprinted by Chelsea, New York, ).

Robert J. Clarke,
Pure Mathematics Department,
University of Adelaide,
Adelaide, South Australia 5005, Australia
email : rclarke@maths.adelaide.edu.au

Dominique Foata,
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