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Abstract

The skip list is a list-based data structure introduced some years ago
by Pugh [12]. In [6] an optimized version of the skip list search algorithm
has been investigated and an asymptotic result on the variance of the
total unsuccessful search cost has been derived. Here we give the precise
asymptotics for the difference of the variance of this parameter and the
variance of the total successful search cost.

1 Introduction

The skip list is a list-based type of data structure that was introduced by Pugh
([12]). In the following we only give a very short description of this structure.
We refer to [11], [8], [9], [1], [7] and [6] for detailed descriptions and various
analyses on this subject.
A set of n elements is stored in a collection of sorted linear linked lists in the
following manner: all elements are stored in increasing order in a linked list
called level 1 and, recursively, each element which is included in the linked list
level i is included with independent probability q (0 < q < 1) in the linked list
level i + 1. The number of linked lists an element x belongs to is called the
level of the element. For each element in the skip list, we need a node to store
its key and as many pointers as its level indicates. The successor of x at the
list level i is given by the i-th pointer of x, also called i-th forward pointer of
x. A header refers to the first element in each of the linked lists and it also
holds the height of the skip list, which is the maximum level of all elements.
In [7] the asymptotic analysis of the total (successful) search cost or path
length, i.e. the sum of the successful search costs to find all the elements in
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x:= header(S); l:= height(S);

alreadyChecked:= NIL;

while l > 0 do

while (x^.forward [l] <> alreadyChecked) do

while(x^.forward[l]^.key < search_key) do

x:= x^.forward[l]

endwhile

endwhile;

alreadyChecked:= x^.forward[l];

l:= l - 1

endwhile

Figure 1: Optimized skip list search algorithm (see [11])

the data structure, was performed for the instance of the simplest form of the
search algorithm.

The paper [6] is devoted to the analysis of the total search cost of an optimized
version of the search algorithm proposed in [11], that reduces the number
of expensive key comparisons by guaranteeing that the search key will be
compared at most once with the key of any element in the skip list. To this
aim, the variable alreadyChecked is introduced. At the beginning this variable
is set to “NIL”. In the following loop we follow forward pointers as long as the
elements pointed to are different from alreadyChecked and the keys of those
elements are smaller than the search key. As soon as this horizontal traversal
ends, alreadyChecked is set to the element pointed to at this moment and
the search continues one level below (see Figure 1).

In [6] an explicit example for a search path in a skip list is depicted together
with a comparison of the number of key-to-key comparisons and pointer inspec-
tions in both the original and the optimized instance of the search algorithm.

It should be noted that we may also describe a skip list of size n as an n-tuple
(a1, . . . , an), where ai denotes the level of the i-th element. We adopt the
probabilistic model for random skip lists of being the outcome of n independent
identically distributed random variables. In particular, each ai ∈ IN is the
outcome of a geometric random variable Xi of parameter p, i.e. Prob{Xi =
k} = pqk−1, where q = 1− p. (Note that in some earlier papers the roles of p
and q are interchanged.)

Interestingly enough the search cost parameter, i.e. the number of key-to-key
comparisons, can be expressed in terms of order statistics: The number Cn,i of
key comparisons when searching for element i equals the number ln,i of strict
left-to-right maxima of the sequence (ai, . . . , an) plus the number ri of weak
right-to-left maxima of (a1, . . . , ai−1).
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Observe that for a fixed element i the two parameters are independent random
variables, but that this is no longer true for the total successful search cost
C̃n, which is given by the sum

∑n
i=1 Cn,i. This dependency is the reason that

the variance of C̃n cannot be gained by simply adding the variances of the two
parameters

∑
i ln,i and

∑
i ri, which where already computed in [7].

The number rn+1 of weak right-to-left maxima of (a1, . . . , an) is never counted
in C̃n =

∑n
i=1 Cn,i, which causes some kind of asymmetry of this parameter.

Therefore in [6] instead of C̃n the total unsuccessful search cost Cn was studied:

Cn =
∑

1≤i≤n+1

Cn,i. (1)

This parameter fulfills nice recurrence relations, and its expectation and vari-
ance were analyzed asymptotically in the cited paper. The variance of Cn is
of order n2, and it was shown that the difference of the variances fulfills

Var(Cn)− Var(C̃n) = O(n17/9+ε), any ε > 0, (2)

so that Var(C̃n) is of order n2, too. It was conjectured, that the difference
of the variances is of order n log2 n. In this paper we will prove that in fact
the order of the difference is n log n. We will give a precise asymptotic result,
which also allows to describe the asymptotics of the covariance of the two
random variables Cn and rn+1.
From the technical point of view we will make use of probability generating
functions, use a substitution that allows to express the desired coefficients
explicitly in terms of alternating sums and apply a technique due to S.O.Rice
to get the final asymptotics (compare the very recent article [2] on the latter
subject.)

2 Generating Functions and First Order Mo-

ments

We start with the following combinatorial decomposition of a skip list of height
m (compare [7, 6]): We split up the whole skip list according to the first
appearance of an element of height m into a skip list σ of height < m, the
partitioning element of height m and the remaining skip list τ of height ≤ m.
Observing that each successful or unsuccessful search starts with a comparison
of the search key with the key of the partitioning element we easily find

C(σmτ) = C(σ) + C(τ) + |S|+ 1,

C̃(σmτ) = C(σ) + C̃(τ) + |S|. (3)

We denote by P ∗(z, y) resp P̃ ∗(z, y) the bivariate generating functions where
the coefficient of znyk is the probability that a random skip list of size n has
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height fulfilling condition ∗ and the total unsuccessful resp. successful search
cost is equal to k. Then Eqs. (3) translate to the system of functional equations

P=m(z, y) = pqm−1zy2P<m(zy, y)P≤m(zy, y),

P̃=m(z, y) = pqm−1zyP<m(zy, y)P̃≤m(zy, y), m ≥ 1,

P=0(z, y) = P̃=0(z, y) = 1. (4)

It is convenient to use the bgf’s R∗(z, y) := zP ∗(z, y), R̃∗(z, y) := zP̃ ∗(z, y)
instead. In order to get the expectations we have to derive w.r.t. y and set
y = 1. We introduce the notations S∗(z) = R∗

y(z, 1) resp. S̃
∗(z) = R̃∗

y(z, 1) for
the generating functions of these partial derivatives as well as the abbreviations

Q := q−1, L := logQ, [[m]] := 1− z(1− qm)

and get

S=m(z) = pqm−1

[(
z

[[m− 1]]2
+ S<m(z)

)
z

[[m]]
+

(
z

[[m]]2
+ S≤m(z)

)
z

[[m− 1]]

]
,

S̃=m(z) = pqm−1

[(
z

[[m− 1]]2
+ S<m(z)

)
z

[[m]]

+

(
z

[[m]]2
−

z

[[m]]
+ S̃≤m(z)

)
z

[[m− 1]]

]
(5)

Since we know S≤m(z) from [6] we focus our attention on the difference

∆∗(z) = S∗(z)− S̃∗(z). (6)

Observing ∆=m(z) = ∆≤m(z) − ∆<m(z), we get from (5) a first order linear
recurrence relation for the sequence (∆≤m(z))m≥0, which has the solution

∆≤m(z) =
p

q

z2

[[m]]

m∑

i=1

qi

[[i]]
(7)

For m → ∞, this yields

∆(z) =
p

q

z2

1− z

∑

i≥1

qi

[[i]]
. (8)

Although we know already the asymptotics of the coefficients of ∆(z) from [10],
where, amongst other results, the expectation and the variance of the random
variable rn+1 = Cn−C̃n were derived, we want to sketch here again the method
used in [7, 6], since it may be well used for the asymptotic evaluation of the
much more complicated expressions for the differences of the second moments,
too. We start from the substitution

z =
w

w − 1
,
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which in terms of formal residue composition (compare e.g. [3]) reads

[zn]f(z) = (−1)n[wn](1− w)n−1f(w/(w − 1)).

In our instances the above substitution leads to harmonic sums

G(w) =
∑

i

aig(biw),

so that
[wn]G(w) =

∑

i

aib
n
i · [w

n]g(w),

which can be computed explicitly in all our cases. Proceeding in this manner
we find

q

p
[zn]∆(z) = [zn]

z2

(1− z)

∑

i≥1

qi

[[i]]
= (−1)n[wn]w(1− w)n−1

∑

i≥1

wqi

1− wqi

= (−1)n
n−1∑

k=1

(
n− 1

k

)
(−1)n−1−k[wk−1]

∑

i≥1

wqi

1− wqi

= −
n−1∑

k=1

(
n− 1

k

)
(−1)k

∑

i≥1

q(k−1)i[wk−1]
w

1− w

= −
n−1∑

k=1

(
n− 1

k

)
(−1)k

1

Qk − 1
. (9)

There are several techniques to evaluate the alternating sum. One of them
starts from the observation that according to Mittag Leffler’s Theorem the
meromorphic function 1

Qz−1
has a partial fraction decomposition in the complex

plane. This decomposition is surprisingly simple and follows from the well-
known result (compare e.g. [5] eqn.(7.10)-10)

2π

e2πz − 1
= −π +

1

z
+

∞∑

n=1

(
1

z − in
+

1

z + in

)
. (10)

Inserting the last result in eqn.(10) we arrive at alternating sums that may be
computed explicitly using the formula (compare e.g. [4] eqn.(5.41))

n∑

k=0

(
n

k

)
(−1)k

1

x+ k
=

n!

x(x+ 1) . . . (x+ n)
. (11)

In this manner we find with the abbreviation χj = 2jπi/L

E(Cn)− E(C̃n) = [zn+1]∆(z) = (Q− 1)


Hn

L
−

1

2
−

1

L

∑

j 6=0

Γ(−χj)Γ(n+ 1)

Γ(n+ 1− χj)


 .

(12)
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The third term can be rewritten using Euler’s classical formula

1

Γ(z)
= zeγz

∏

k≥1

[
(1−

z

k
)ez/k

]
(13)

in the form

1

L

∑

j 6=0

Γ(−χj)Γ(n+ 1)

Γ(n+ 1− χj)
=

1

L

∑

j 6=0

Γ(−χj)e
2jπi(Hn−γ)

L

∏

k≥n+1

[
(1−

2jπi

Lk
)e

2jπi

Lk

]
.

(14)
From this last expression we easily see that for n → ∞ the third term converges
towards a periodic function in logQ n, so that we have the asymptotic result
(compare [10])

E(Cn)− E(C̃n) = E(rn+1) = (Q− 1)
(
logQ n+

γ

L
−

1

2
+ δ(logQ n)

)
, (15)

where δ(x) = − 1
L

∑
j 6=0 Γ(−χj)e

2jπix is a continuous periodic function of period
1 and mean 0 with very small amplitude for reasonable values of Q.
If the alternating sums in consideration involve more complicated terms and
we are mainly interested in asymptotic results it is convenient to follow an ap-
proach attributed to S.O.Rice. The excellent survey [2] explains this method-
ology in detail. The basic idea is to express the alternating sum as a complex
contour integral:

n∑

k=a

(
n

k

)
(−1)kf(k) = −

1

2πi

∫

C
B(n+ 1,−z)f(z) dz, (16)

where B(x, y) =
Γ(x)Γ(y)
Γ(x+ y)

is the Beta function, C is a positively oriented closed

curve surrounding the points a, a+1, . . . , n and f(z) is an analytic continuation
of the discrete sequence f(k) to the complex plane, with no poles within the
region surrounded by C.
If f(z) decreases sufficiently fast towards ±i∞, the asymptotic evaluation of
this expression can be achieved by extending the contour of the integral to the
left and collecting the residues at the newly encountered poles. The residue
computations can often be performed automatically using a Computer algebra
system like MAPLE.

3 Second Order Moments

In this section, we will establish the asymptotic behavior of the difference
of the second factorial moments of Cn resp. C̃n, thereby getting the desired
asymptotics for the difference of the variances resp. the covariance of Cn and
rn+1.
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The generating functions for the second factorial moments are obtained by
deriving P ∗(z, y) resp. P̃ ∗(z, y) twice w.r.t. y and setting y = 1. Again we
use R resp. R̃ instead of P resp. P̃ . Denoting the generating functions of the
second partial derivatives by T ∗(z) := R∗

yy(z, 1) resp. T̃ ∗(z) := R̃∗
yy(z, 1) we

find, starting from eqs.(4), for the difference Φ∗(z) = T ∗(z)−T̃ ∗(z) the relation

Φ=m(z) =
pqm−1z

[[m− 1]]

(
Φ≤m(z) + 2z∆≤m

z (z) + 2S̃≤m(z) +
2z

[[m]]2
−

2z

[[m]]

)

+ 2pqm−1

(
z

[[m− 1]]2
+ S≤m−1

)(
z

[[m]]
+ ∆≤m(z)

)
. (17)

Inserting the functions ∆, S, S̃ explicitly, solving the first order linear recur-
rence for ∆≤m(z) and performing the limit m → ∞ we get the solution

Φ(z) =
2z2

1− z

p

q
{−S1 + (1 + pz)(S2 + S3)}

+
2z3

1− z

p2

q2
{−qS4 − S5 + (1 + pz)S6 − S7 + (2 + q)(S8 + S10) + S9 + pzS10}

+
2z4

1− z

p3

q3
{−S11 + (1 + q)S12} (18)

with the sums

S1(z) =
∑

i≥1

qi

[[i]]
, S2(z) =

∑

i≥1

qi

[[i]]2
, S3(z) =

∑

i≥1

qi

[[i]][[i− 1]]
, S4(z) =

∑

i≥1

q2i

[[i]]3
,

S5(z) =
∑

i≥1

q2i

[[i]][[i− 1]]2
, S6(z) =

∑

i≥1

q2i

[[i]]2[[i− 1]]
, S7(z) =

∑

1≤j≤i

qi+j

[[i]][[j]]
,

S8(z) =
∑

1≤j≤i

qi+j

[[i]]2[[j]]
, S9(z) =

∑

1≤j≤i

qi+j

[[i]][[j]]2
, S10(z) =

∑

1≤j<i

qi+j

[[i]][[i− 1]][[j]]
,

S11(z) =
∑

1≤j≤i

q2i+j

[[i]][[i− 1]]2[[j]]
, S12(z) =

∑

1≤j≤i
1≤h<i

qi+j+h

[[i]][[i− 1]][[j]][[h]]
. (19)

Proceeding as in Section 2 we gain the following explicit expression for the
coefficients of Φ(z) in terms of alternating sums:

[zn]Φ(z) = −2(Q− 1)2
n∑

k=2

(
n

k

)
(−1)k

Qk−1 − 1

{
−(1 + q) + (k − 1)(1−

q

Q− 1
)

+2

(
k − 1

2

)
+ q

k−2∑

m=1

m

Qm − 1
+ 2(1 + q)

k−2∑

m=1

1

Qm − 1
+ (k − 1)

k−2∑

m=1

1

Qm − 1

}

+ 2q(Q− 1)2
n−1∑

k=2

(
n− 1

k

)
(−1)kk

Qk−1 − 1
+ 2(n− 1) +
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− 2(Q− 1)2
n−1∑

k=1

(
n− 1

k

)
(−1)k

Qk − 1

{
−

1

Q− 1
+ k − 1 +

k−1∑

m=1

1

Qm − 1

}
. (20)

Applying Rice’s method described in Section 2 allows to obtain the asymptotics
of the coefficients now as

[zn]Φ(z) = 2(Q− 1)(Q− q)n log2Q n

+2(Q− 1)2n logQ n

(
−1 +

2(γ − 1)(1 + q)

L
+ δ1(logQ n)

)
+O(n),(21)

where δ1(x) =
1+q
L

∑
j 6=0(2+χj)Γ(−1−χj)e

2jπix. From this asymptotic formula
we can derive in straightforward manner the desired result:

Theorem 3.1. The difference of the variances of the total unsuccessful and

the total successful search cost of the optimized skip list search algorithm fulfills

Var(Cn)− Var(C̃n) = 2Cov(Cn, Cn − C̃n) +O(log n)

= −
2(Q− 1)(Q− q)

L
n logQ n + O(n).
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