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0. Initiated by Sekanina [6], in the sixties and more intensively in the
seventies there were considered powers of undirected graphs with special re-
spect to their Hamiltonian behaviour. These investigations have resulted in a
lot of interesting and partly very profound propositions; we only remind of the
(simple) result of Sekanina [6] that the cube of every finite connected graph
is Hamiltonian connected, or of the famous theorem of Fleischner [1] that the
square of any nontrivial block is Hamiltonian. For directed graphs (digraphs),
the situation is completely different; till not long ago nobody was seriously
engaged in studying the analogous problem for digraphs (see [4]). The main
reason for this situation is that for digraphs, these questions become much
more complicated than in the undirected case. This paper intends to discuss
some of the difficulties arising in the case of digraphs and to present some
beginning results. All digraphs are supposed to be finite.

1. Let G = (V,E) be a simple digraph with vertex set V (G) = V and edge
set E(G) = E; then every (directed) edge can be written as an ordered pair
of uniquely determined different vertices, and (directed) paths and (directed)
cycles are denoted by the associated sequences of their vertices. Now, such
properties of G as to be traceable, Hamiltonian, r-Hamiltonian (r = 1, 2, ...),
Hamiltonian connected are defined in the same way as for undirected graphs by
taking paths and cycles as directed ones, and this can also be done regarding
the construction of higher powers of G, namely: The k-th power Gk of G is
the digraph Gk = (Vk, Ek) with

Vk := V and Ek := {(x, y) : x, y ∈ V ∧ 1 ≤ dG(x, y) ≤ k},

k = 1, 2, ..., where dG(x, y) denotes the distance from x to y in G, that is the
length of a shortest path from x to y in G if there is any and ∞ otherwise.

In spite of these analogous definitions the Hamiltonian properties of powers
of undirected and directed graphs are essentially different. A first difference
is rather evident: For an undirected connected graph G on n ≥ 3 vertices,
G3 is Hamiltonian. For a connected digraph G, however, it may happen that
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dG(x, y) = ∞ for some x, y ∈ V ; then it follows that dGk(x, y) = ∞ for every
k = 1, 2, ..., and no power Gk can become a Hamiltonian digraph. Therefore,
if we want to improve the Hamiltonian behaviour of a digraph G by raising
G to higher powers and to obtain Hamiltonicity we have to suppose G to be
strongly connected. Notwithstanding, even under this suppositon it is not valid
that G3 (or any other power Gk) is Hamiltonian for every such G, but it holds:

For every k ≥ 1 and every n ≥ 2k + 4 there is a strongly connected digraph G
on n vertices such that Gk is not traceable.

For the proof, we consider the digraphG consisting of the path (x0, x1, ..., xr, y0)
with r ≥ k and of the t paths (y0, yi, x0), i = 1, ..., t, with t ≥ k + 2; obviously,
G is a strongly connected digraph on r + t+ 2 ≥ 2k + 4 vertices and Gk does
not contain any Hamiltonian path.
This fact makes clear that for digraphs, we cannot expect to get results be-
ing satisfactory or simple in a similar way as for undirected graphs. On the
other hand, for every strongly connected digraph G there is a k such that Gk

is the complete digraph and therefore, has the Hamiltonian properties men-
tioned above. Thus it is sensible to define the following invariants for strongly
connected digraphs G :
The Hamiltonicity exponent eH(G) by

eH(G) := min{k ≥ 1 : Gk is Hamiltonian } (if |V | ≥ 2),

and analogously, the traceability exponent eT (G), the r-Hamiltonicity expo-
nent er−H(G), r = 1, ..., |V | − 2, and the Hamiltonian connectedness exponent
eHC(G).
Clearly, eT (G) ≤ eH(G) ≤ eHC(G) ≤ |V | − 1 and er−H(G) ≤ |V | − 1, i.e.
we have trivial upper bounds for these invariants. Now a first task will be to
find nontrivial upper bounds for these exponents, and animated by the satis-
factory results for powers of undirected graphs we are especially interested in
such upper bounds not depending on the vertex number. We have just seen
that the latter kind of bounds does not exist for the whole class of all strongly
connected digraphs, and therefore, we have to look for suitable subclasses. A
very simple subclass - and the only one having been studied in this connection
hitherto - is the class of directed cacti. Before changing over into considering
such cacti besides, we point out to the following fact:
For the strong connectivity cs(G) of a digraph G it holds (cf. [4])

cs(G
k) ≥ min(kcs(G), |V | − 1), k = 1, 2, ...;

in view of this formula it may be expected that the strong connectivity of G
will have effects also on the Hamiltonian properties of higher powers of G. As
an example for first results in this direction we mention that

eH(G) ≤
⌈
|V |
2r

⌉
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can be proved (cf. [7]) for every strongly r-connected digraph G with |V | ≥
2, r ≥ 1.

2. A directed cactus (or dicactus) is defined to be a strongly connected finite
simple digraph G every edge of which is contained in at most one (and there-
fore, in exactly one) cycle in G. Among the properties of dicacti we emphasize
the following one which is important for the proofs of our main results.

Lemma 2.1: For every (directed) cycle c in a dicactus G, after deleting the
edges of c each component of the resulting digraph G′ contains exactly one ver-
tex in common with c and is a (possibly trivial) dicactus itself.

P r o o f: Let H be a component of G′, x ∈ V (c) ∩ V (H) and e′ = (x′, x) ∈
E(c), e” = (x, x”) ∈ E(c). Consider a maximal strongly connected subgraph
H ′ of H with x ∈ V (H ′). Then H ′ cannot contain any y ∈ V (c) with y 6= x,
because otherwise there would be an x, y-path in H ′ and therefore, a cycle
c′ 6= c in G containing e′.
Assume H ′ 6= H; then there is an edge (a′, a) ∈ E(H) with a′ ∈ V (H ′), a /∈
V (H ′) or an edge (b, b′) ∈ E(H) with b′ ∈ V (H ′), b 6∈ V (H ′), and in G there
exists a path p from a to x (resp., from x to b). Assume that not all edges
of p belong to H, and let e1 = (y, z) be the first (resp., e1 = (z, y) the last)
edge on p not belonging to H. Then e1 ∈ E(c), and y, z ∈ V (c) and y 6= x.
Further we have a subpath p′ of p in H with p′ = (a, ..., y) (resp., p′ = (y, ..., b))
and therefore, a path p1 = (x, ..., a′, a, ..., y) (resp., p1 = (y, ..., b, b′, ..., x)) in
H because H ′ is strongly connected. Hence it follows that there exists a cycle
c′ 6= c in G containing e′ (resp., a cycle c” 6= c in G containing e”); this is a
contradiction in either case.
Thus, p is a path in H, and the digraph H ′ ∪ p ∪ e∗ with e∗ = (a′, a) (resp.,
e∗ = (b, b′)) is a strongly connected subgraph of H containing x, in contradic-
tion to the maximality of H ′. This yields H ′ = H, and the asserted properties
of H are proved.2
Using Lemma 2.1 and induction to the number of cycles in G we can prove
(cf. [4])

Lemma 2.2: Let G be a dicactus; then for every e = (x, y) ∈ E(G) there is a
Hamiltonian path h = (y, y′, ..., x′, x) in G3 with dG(y, y′), dG(x′, x) ∈ {1, 2} .

As immediate consequences of Lemma 2.2 we obtain

Corollary 2.3 (cf. [4]): For every dicactus G on at least two vertices, eH(G) ≤
3,

Corollary 2.4 (cf. [5]): For every dicactus G on at least three vertices,
e1−H(G) ≤ 3.
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Lemma 2.2 is also an important tool for proving the following statement which
improves Corollary 2.3.

Theorem 2.5 (cf.[4]): For every dicactus G, eHC(G) ≤ 3.

Obviously, the upper bound 3 is best possible in Corollary 2.3 and therefore,
in Corollary 2.4 and Theorem 2.5. (It is sufficient to take the dicactus arising
from an undirected 3-star by replacing at first every edge by an undirected
path of length 2 and then every edge by a directed cycle of length 2.)

3. The results just mentioned give rise to the question which subclasses of di-
cacti have a Hamiltonian (or 1-Hamiltonian or Hamiltonian connected) square.
For this end we consider dicacti with the following property:
A dicactus G is said to fulfil the 2-degree-condition iff every cycle in G contains
a vertex of degreee (= valency) 2 in G (i.e. a vertex x with v(x : G) = v+(x :
G) + v−(x : G) = 2).
By induction to the number of edges we obtain (cf. [5])

Lemma 3.1: For every dicactus G fulfilling the 2-degree-condition and any
edge e = (x, y) ∈ E(G) there is a Hamiltonian path h = (y, ..., x) in G2.

This yields immediately

Corollary 3.2: For every dicactus G on at least two vertices fulfilling the
2-degree-condition, eH(G) ≤ 2.

However, the suppositions in Corollary 3.2 are not sufficient for G to have a
1-Hamiltonian square or a Hamiltonian connected square; this can be easily
seen by simple examples. (For instance, let Gr be the cycle (0, 1, ..., 4r − 1, 0)
of length 4r, r = 1, 2, ...; then there is no Hamiltonian path in G2

r from 0 to 2r.
Similarly, for the dicactus G consisting of the three cycles (x, y, z, x), (y, a, y),
(z, b, z), the digraph G2 − x is not Hamiltonian.) By a more detailed proof
exhausting the suppositions on G most accurately one can improve Lemma 3.1
and obtain further statements (cf. [5]); after all, many problems concerning
dicacti with 2-degree-condition remain open.

4. In this final section let us consider dicacti of the simplest shape, namely
those having at most one cycle of length greater than 2. If all cycles in G are
of length 2 (Case 1) it follows that G is a bidirected simple connected digraph
without cycles of length > 2. Replacing every cycle of length 2 in G by an
undirected edge we get the associated undirected graph Gu which is obviously
a tree. Of course, if |V (G)| ≥ 3 (the case |V (G)| = 2 is trivial), G2 is Hamil-
tonian iff G2

u is Hamiltonian, and this occurs iff the tree Gu is a caterpillar,
according a result in [2]. Thus, we obtain a simple characterization of the
dicacti of Case 1 satisfying eH(G) ≤ 2.
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A dicactus G containing exactly one cycle of length ≥ 3 (Case 2) is called
a unicyclic dicactus. Denote (in such a G) this cycle by c = (x0, x1, ..., xl =
x0), l ≥ 3, and the l components of the digraph G−E(c) by G1, ..., Gl where
xj ∈ V (Gj), j = 1, ..., l. Then every Gj is a dicactus of Case 1, and using
these denotations we can show (cf.[4]) the following theorem characterizing all
unicyclic dicacti fulfilling eH(G) ≤ 2.

Theorem 4.1: For a unicyclic dicactus G, it holds eH(G) ≤ 2 iff the following
conditions are satisfied:
(1) Every undirected graph (Gj)u, j = 1, ..., l, is a caterpillar (with at least 3
vertices), a path of length 1 or a trivial graph (i.e. a point graph);
(2) if (Gj)u − xj for some j ∈ {1, ..., l} has two nontrivial components then
there is an xi on the cycle c, i ∈ {1, ..., l}, such that Gi − xi is empty (i.e.
without any vertex) and for every vertex xt 6= xj, t ∈ {1, ..., l}, belonging to
the directed path on c from xj to xi at most one component of (Gt)u − xt is
nontrivial;
(3) if (Gj)u − xj for some j ∈ {1, ..., l} has a nontrivial component then xj
either belongs to the path gj arising from (Gj)u by deleting all vertices of degree
1, or it has degree 1 in (Gj)u and is a neighbour of an endvertex of this path
gj.

The sufficiency is proved by construction: Every (Gj)u, j = 1, ..., l, is a caterpil-
lar (possibly degenerated), and we can construct suitable Hamiltonian paths
in (Gj)

2
u by Neuman’s Theorem on trees [3] and so in G2

j ; these paths are
composed to a Hamiltonian cycle in G2. The proof of the necessity is straight-
forward, indeed, it is rather complicated in the details.
One of the most essential tasks of further investigations on this subject will
be to find other suitable subclasses of strongly connected digraphs and good
upper bounds for their Hamiltonian exponents.
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