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Basically, this talk reports the main result from [5].

A well-known result of Kuratowski says that for every Baire mapping
A : X » YV between separable metric spaces there exists a meager set

M such that the restriction A]X\M 1is continuous.

Here we investigate the metric space [w]” of infinite subsets of w,
endowed with the usual Tychonoff product topology, cf., [2].

From Louveau and Simpson [3] it follows that for every Borel measurable
mapping A : [w]® » X, where X is a metric space, there exists an A € [u]”
such that the restriction AJ[A]Y 1is continuous.

But this is not yet the end of the story. We show that for every continuous

mapping A : [w]” - X there exists an A€ [w]” and there exists a continuous

mapping T : [A]Y - [A]S” with 1(B) < B such that for all B,C € [A]" it
g —

]

follows that a(B) = a(C) iff r(B) = r(C). So, the image A(B) is deter-

mined by a subset of B,viz., I'(B).
In a sense, this generalizes the Erdds/Rado canonization theorem [1]. Also,
this extends a result of Pudlak and Rodl [4], which is the particular case

dealing with continuous mappings 4 : [w]” > N.
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Additionally, we show that T is determined by a mapping Y : [A]™" - (0,1}

in such a way that T1(B) = {keBIY(Bnk) = 1} for all B € [A]"Y.
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