Publ. .LR.M.A. Strasbourg, 1993, 461/5-24
Actes 24° Séminaire Lotharingien, p. 99-111

THE ¢-STIRLING NUMBERS, CONTINUED FRACTIONS AND
THE ¢-CHARLIER AND ¢-LAGUERRE POLYNOMIALS
By
Jiang ZENG

Abstract. — We give a simple proof of the continued fraction expansions of the ordinary
generating functions of the ¢-Stirling numbers of both kinds. By generalizing the method of
Touchard [To] and Milne [Mil] we obtain the explicit formulas and measure of one set of
the polynomials whose moments are the g-Stirling numbers.

1. Introduction
For ¢ € R such that |¢| < 1 define

g —1
o= L5
Forn>0let [z]o =1, [2g]n = [zg][z = 1] - [z —n + 1] and [n]! = [n]n. Also, for

n > k > 0 define
[n] I
k| [k)![n — k]!

Recall that the two related ¢-Stirling numbers of the second kind [Go, WW]
may be defined by recurrence as :
(11 Sl](n+1’k+1):Sq(n7k)+[k+1]sq(nak+1),

2 Sy (0,k) = boks  S4(n,0) = bn;

and

s Sy(n+1,k+1)=q"Sy(n, k) + [k + 1)8,(n, k + 1),
( ’ ) S'q(O,k) = 60 ks gq(n,O) = 6n0.

Note that §,(n, k) = ¢(2)S(n, k).
Similarly, the ¢-Stirling numbers of the first kind c,(n, k) [Go] can be defined
by

cg(n+ 1,k +1) = ¢4(n, k) + [nleg(n, k + 1),

(1.3} cg(0,k) = b0k, cq(n,0) = dno-
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q-Stirling numbers

For convenience, we shall take Sty k) = " "*c,(n, k) as our ¢-Stirling numbers
of the first kind.

Our first purpose is to give a short proof of the continued fraction expansions
of the ordinary generating functions of the forementioned three ¢-Stirling
numbers.

THEOREM 1. — In the ring of formal power series ofx, the following identities
hold :

(1.4) 1+Zzn:5q[n,k]akx”= : - ;

77.21 k=1 1 —ar —

where by, = ag* + [k], A4y = ag* 1k +1] for k > 0;

(1.5) 1+ Z i Sqln, Klakz™ = = )

2
n>1 k=1 1 = qp— a(l—f—a(q—l))x

B 2
1—-bpz— s

where b, = ag®* + [k](1 + ag*~1(¢-1)), Ak+1 = ag®* [k +1)(1 + ag®(q¢—1)) for
k22 0z

(1.6) 1+ ) Zn: se(n, k)a*z™ = - - s

n>1k=1 1—ar — ot b

/\k+1 II)Z

1—bp2—

where by = (a + ¢[k])q* + g k], Aey1 = (a+ qlk)[k + 1]¢®**! for k> 0.

We should point out that all the above formulas are valid only in the formal
sense (cf. [Fl]). Actually the Hamburger moment problems assocated with the
orthogonal polynomials corresponding to the above continued fractions are not
always determinated, see for exemple [Ch, p. 197-198] or [Is]. We refer the
reader to [Ch, p. 6-10] for the formal defintion of orthogonality.

It is well-known [Ch, p. 85] that Theorem 1 can be restated in terms of
orthogonal polynomials as follows.

100



J. ZENG

THEOREM 2
a) The polynomials Ur(aa)(w;q) orthogonal to the moments ,A})(q) :

(1.7) pD(g) =Y Sqln, kla*,
k=1

are defined by Uéa)(x; q) =1, Ul(a)(:v;q) =z —a and forn > 1 by

U (1) = (x — ag” — [F)USD (z59) — ag" " [RIUR2: (230)

b) The polynomials V,Ea)(:v; q) orthogonal to the moments ,uglz)(q) .

(1.8) 1D (q) = 5yln, kla*,
k=1

are defined by Vo(a)(:c; g) =1, Vl(a)(m;q) =gz —a and forn >1 by

VA, (2;9) = (& — ba)V{P(230) — AaVi2i(250),

where b, = ag?*+[n](14+aq" *(¢—1)), and Apt1 = ag®*[n+1)(1+ag™(¢—1)).
¢) The polynomials W,(La)(m; q) orthogonal to the moments R

n

(1.9) va(g) = ) sq(n, Kat,

k=1

are defined by Wéa)(:v;q) =1, Wl(a)(a:;q) =z —a and forn > 1 by

W, (2:9) = (2 — ba) WS (2;0) — MWy (259),

where b, = (a+q+---+¢")q" +¢"[n], and An = (a+q+-+¢" Dl

We note that if ¢ = 1, the polynomials in a) and b) reduce to the Charlier
polynomials, and the polynomials in c) reduce to the Laguerre polynomials
[Ch]. The polynomials in a) and b) can then be regarded as two g-analogs of the
Charlier polynomials, while the polynomials in c) as g-analogs of the Laguerre
polynomials.

Conversely, if we first establish Theorem 2, we automatically get Theorem
1. Actually, IsMAIL and STANTON [St] have earlier noticed that the polynomials
in part a) are a rescaled version of the Al-Salam-Carlitz polynomials [Ch, p.
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q-Stirling numbers

197-198]. So we can also prove part a) by using the moments of the latter
polynomials.

Parts b) and c) have been presented by the author at the 27th session of
the Séminaire Lotharingien in 1991. Part b) was proved by using the methods
developed in this paper, while part ¢) was derived from a more general result
in [Ze].

Recently, DE MEDICIS and VIENNOT [DV] have given a bijective proof of
part ¢) and noticed that the polynomials in part c) are a special case of the
“little” g-Jacobi polynomials introduced by HAHN (see [GR, p. 166]). Hence
part ¢) can also be derived from the known measure of the “little ¢-Jacobi”
polynomials as the ¢-Charlier polynomials. Finally, after writing an earlier
version of this paper, STANTON [St] informed us that the polynomials in b) are
a rescaled version of the classical ¢-Charlier polynomials (see [GR, p. 187]). So
part b) can also be derived from the explicit measure of the classical g-Charlier
polynomials.

In contrast with the other proofs, the three expansions of Theorem 1 are
proved from scrath by means of the same method, inspired by the work of
RoGERs [Ro]. The continued fraction method used to proving Theorem 2 has
the merit to be short and elementary.

In section 2 we shall first prove Theorem 1 and Theorem 2 from scratch.
In section 3 we comments on the combinatorial interpretations of the q-
Stirling numbers. In section 4 we give an explicit formula and measure of
the polynomials V,Sa)(a:; q) by generalizing the method of ToucHARD [To] and
MILNE [Mi1]. These polynomials turn out to be arescaled version of the classical
¢-Charlier polynomials [GR, p. 187].

2. Continued fractions expansions
We first expand the ordinary generating functions of the ¢-Stirling numbers
as Stieltjes continued fractions.

LEMMA 3. — The following identities hold :

2.1) 1+ 3 S,(n, k)ake™ = . :
n,k>1 1 =
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where Aop—1 = aq™ ™, \yp = [n] forn > 1;

(2.2) 1+ Y Sy(n,k)aka" = ! ;

nk>1 a-r

1_(1+a(q—1))-x

An " T
1—

where Aon—1 = aq®™, dan = [n](1 +ag™ (g —1)) forn > 1;
(2.3) 1+ Z s¢(n, E)aFz™ = ! )

n,k>1 1— g%

where Agn—1 = (a+ g+ +¢"" )¢, Aan =[n] g™ forn > 1.

ProoF. — Let f(a,z) be the left-hand side of (2.1). It then follows from
(1.1) that

akzk

(2.4) fla,2) =) (1-[1z)1 - [2z)--- (1 - [K]z)

k>0

ax a qz
=1 - y
T l—xf(q’l—x>

Assume that
1
ci(a)z
ca(a)z

c3(a)z

(2.5) fla,z) =

1-—
1-—
1-—

Contracting the continued fraction (2.5) starting from the first row and the

second row yields respectively
(2.6)

fla,z) =1+ cila)s

cz(a)es(a) x?

cs(a)cs(a) z?

1—(c1(a) + c2(a))z —
1—(c3(a) + cs(a))z —
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¢-Stirling numbers

and
(2.7) fla, )= -
c1(a)er(a) 22
t-afa)e - cz(a)cq(a)z?
L= (e2(a) + e3(a))r — —————
Therefore

(2.8) 1“_x$f (a, 1‘-’_‘1) -

1= (14 gei(a))z —

ax

ci1(a)ez(a)q? z?

L= (14 gea(a) + ges(a))e — LD

Now substitute (2.6) and (2.8) in the functional equation (2.4) and identify
the corresponding terms. We successively obtain that

ci(a) =a
c1(a) + c2(a) = 1 4 ge(a/q) = c(a) =1
@ c2(a)es(a) = e1(a/g)ea(a/q)q? = c3(a) = ag

cs(a) + c(a) = 1 + gea(a/q) + ges(a/q) = caa) =1+¢

............

One can show by induction
(2.9) Can—y(a) = ag™, can(a) =[n], n>1.

Putting the above values in (2.3) yields formula (2.1). Now let g(a,z) be the
left-hand side of (2.2). It then follows from (1.2) that

_ a*q(2)zk
(2.10) 9(a,z) = Igo (1= [e)(1 - [2]z)--- (1 = [k]2)

az qx
=1 .
* l—a:g<a’1—a:)

If we replace f(a,z) by 9(a, ) in (2.5)-(2.8), we get from (2.10) that

ci(a) =a
ci(a) + cz(a) = 1 4 gey(a) = cz2(a) =1+a(qg—1)
(I ex(a)es(a) = e1(a)ea(a/q)g? = c3(a) = ag®

¢3(a) +ea(a) = 14 gez(a) + ges(a) = eq(a) = (1+ )(1 + aq(q — 1))
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and more generally

(2.11)

C2n—1(a) = aq2(n—l), c2n(a) = [n](l S aqn—l(q - 1))3 n 2 L.

Finally, it follows from (1.3) that

n

S sql(n k)ak = a(a+q) - (a+ g+ "),
k=0

Therefore, if we let h(a,z) be the left-hand side of (2.3), we have

(2.11)h(a,z) =14 az + a(a + )zt +ala+q)a+q+ )z + -

= 1+az (14 (1+a/g)(gz) + (1 +a/a)(1 +a/q+q)(q2)’)
=1+ azh(l +a/q,qz)

Similarly, if we replace f(a,z) by h(a,z) in (2.5)-(2.7), we get from (2.11) that

(111)

ci(a) =a
c1(a) + ca(a) = (1 + a/q)q = ca(a) =¢
ea(a)es(a) = er(1 + a/q)ea(1 + a/q)g” = c3(a) = (a+q)q

c3(a) + ca(a) = gea(1 +a/q) +gea(l +a/q) = cq(a) = (1+ q)¢*

............

and more generally

(2.12)

con-1(a)=(a+q+:--+ qn—-l)qn—l, czn(a) =[nl¢", n2=1.

Thus we have completed the proof of the theorem. [

Remark : ROGERS [Ro] seems to be the first to have used the “contracting”
and “functional equation” techniques to derive continued fraction expansions

of power series. DUMONT [Du] has proved Lemma 3 in the case ¢ = 1.

By contraction of the continued fractions in lemma 3 (cf. (2.7)) we get

immediately Theorem 1.

3. Remarks on the combinatorial interpretations of the moments

Let &, be the set of permutations of {1,2,...,n}. For any permutation
o =0a(1)a(2) - o(n), a left-right maximum is a o(4) such that o(i) > o(j) for
all j < i, and an inversion is a pair (0(2),0(j)) where o(1) > o(y) for all pairs

(3,7) such that 1 <1 < j < n. Denote by Irm o and inv o the numbers of the
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¢-Stirling numbers

left-right maxima and inversions of . From the inversion table we immediately
obtain

(3.1) D @GN =a(atq)-(at g h et g,
UEGn

Thus from (1.10)
(32) b= Y gme.

c€S, (k)
where &,,(k) denotes the set of permutations of {1,2,...,n} with & left-right
maxima. The interpretation (3.1) seems to appear first in [Ge].

Let II,,(k) be the set of ordered partitions into %k blocks of {1,2,...,n}, ie,
the blocks of each partition are arranged in increasing order of their minima,
Let m = (By, B,, ..., By) be a such partition. An inversion of 7 is a pair (b;, Bj)
such that b; € B; where i < 7 and b; > min B;. A dual inversion of 7 is a pair
(Bi, b;) such that bj € B; where i < j and min B; < bj. Let inv o and inv o be
the number of inversions and dual inversions of o. It is easy to see, by verifying
the recursions (1.7) and (1.8), that

(3.3) Sink)= 3 g,

well, (k)
(3.4) S,(n, k) = > g
w€ll, (k)

These inv interpretations are due to MILNE [Mi2]. As pointed out by WacHs
and WHITE [WW], but calling inv(7) = Ib(7) and invr = Is(7), the above
combinatorial interpretations of the ¢-Stirling numbers of the second kind
are “easy” and there are also some “hard” statistics on the set of partitions,
which also have the ¢-Stirling numbers of the second kind as their generating
functions. However it is not easy to verify this fact. STANTON raised the question
how this “hard” statistics could be the same as the easy ones, and WacHs and
WHITE [WW] proved it by constructing an explicit bijection between these
“hard” statistics and the easy ones. Once established Theorem 1, we can also
derive this result as follows, According to a theorem due to FLAJOLET [F1] we
can rewrite the left-hand side of (1.4) as the generating functions of certain
Motzkin paths with respect to some weights. This leads to the rs statistics of
partitions of [WW] via a classical bijection due to FrajoLET [Fl], FRANGON
and VIENNOT (see [Vi, I1-14] or [F1]). Similarly, a combinatorial interpretation
of (1.6) in terms of Motzkin paths also leads to hard interpretations of the
¢-Stirling numbers of the first kind on permutations, see [DV]. Note that one of
the motivations of this paper is due to these “hard” statistics.
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4. The classical g-analog of Charlier polynomials
The classical ¢-Charlier polynomials [GR, p.187] are defined by

—n, T n+1
(4.1) Cn(z;a,q) = 261 (q " g, 2 - )
and satisfy the orthogonality
oo . B o i
(4.2) > Cm(a™%50,0)Cr(g™ %50, 4) 7 ¢(3)
=0 (¢ Q)x

= (—a;¢)oo(—9a™ " O)n(6 g™ "Omn-

Although it is possible to Veri'fy directly that the polynomials V,Sa)(:c; q) are
actually a rescaled version of Cy(z;a, q) by checking the three terms recurrence

satisfied by these polynomials, we prefer to give an alternative argument to

derive naturally the explicit expression and measure from the ¢-Stirling numbers

as ToUCHARD [To] and MILNE [Mi] did in some special cases.
We define the linear functional ¢ on the vector space C[g*] by

(43) e([2]") =D _ So(n k) a*.
k=0

It is easy to see that the g-Stirling numbers S,(n, k) satisfy

[2]* =) S4(n, k) [zlk,
k=0

and S,(n,n) = 1. Since {[z]n}n>0 and {[z]"}»>0 are two bases of the vector

space C[q¢?], if we define

[2]n =) sy(n, k) [2]",
k=0

we should have

S'q(n,k)sZ(k,m) = e for m,n €N.

k=0
It follows that

n n

k
@d)  lled) = Y ssn k) el = 3 sim D) Y Sk Da' = a
=0

k=0 k=0
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Recall that the two classical g-analogs of the exponential e? [An, GR] are
defined by

B ) JZk B oo q(’;)xk
gl ) = ];0 W and Eilz) = kz:% e
Note that (e4(z))™ = E,(—z). Hence

X n+k 1

2l) = g — 1 a _ S [k]nak'
(4.5) Al == o LT = o 2T

0

Since {[z],} is a basis of C [¢°] and ¢ linear, we obtain the following result.

PROPOSITION 6. — For any polynomial P(z) of ¢*, we have

o(P(a)) = la) 3 1;5]’? o*.
k=0

eq(
Setting P(z) = [z]® in the above proposition we get then a g-analog of
Touchard’s formula [To].

COROLLARY 7. — We have

Bon@) =3 8y(n, Byt = LS [H" 0
( 1‘?:’; eq(a)kzzg [&]!

Note that the above formula generalizes Milne’s g-analog of Dobinski’s
identity [Mil], which corresponds to the a = 1 case.

LEMMA 8. — Let P(z) be a polynomial of ¢* and k > 0, then

?([z]k P(2)) = a*(P(z + k).

Proor. — We first remark that o(lz]lt — 1],) = o™t = ap([z]y,).
So p([z]P(z — 1)) = ap(P(z)) for any polynomial P(z) of ¢®. Therefore
#([21kP(@) = @llalls ~ U1 P(2)) = ap((ali_sP(2)), and the proct &
complete by induction. []

We need the following version of the ¢-binomial theorem (see [An, p. 225] for
a combinatorial proof using vector spaces over a finite field).

n—1 n k—1 n—k—1
49 IMx-2)=% 11026 ] x-va)

k=0 j= =0
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Putting X = ¢*,Y = 1 and Z = 0 in (4.6) yields
r\n = n k
(1) wr =3 [ a0k
k=0
Applying ¢ to (4.7) and then applying (4.6) with X =1, Y =0and Z = (¢—1)a
leads to
r\n - n E
69 @)=Y |1 -0 = ala-Dion
k=0
As usual we define, for any function f(z) of =z, the shift operator

E : Ef(z) = f(z + 1), the identity operator I : I f(z) = f(z) and the

g-difference operator by means of

Al f(z) = f(z), A7 f(z)=(E-¢"DAGf(z) = A" flz+1)—g"Ag f(2).

Note that
(4.9) Arf(z) = (E—¢" ' )(E—¢" 1) (E = D)f(2).
It follows from (4.6) that

(4.10) AP f(z) =Y (-1 m ¢ f(z +n—k).
k=0

We require the following easily verified formula :

(4.11) AMz]m = { [m]n [2]men ¢"EF"™™)  ifn <m,
! 0 otherwise.
THEOREM 9. — Let
n o _
(4.12) Ha(q%0,0) = Y (—a)* [k] g**=D2 (], .
k=0

We have the orthogonality

(4.13) ¢(Hm(q%; a,9)Hn(g%; a,9)) = a”[n]'(a(1l = ¢); O)nbm n-
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PROOF. — Assume that m < n, then (4.11) reduces to B (@] = [n)l ™28, ...
By lemma 8 and (4.10) we have

P([2lm Ha(g";a,9)) = Y " (~a)* m T (R I
k=0

= a"p(A7 [z]m)
= a"[n]!o(q")6m n.
Therefore

?(Hm(q%; 0, 0)Hn(4%;0,9)) = o([a]m Ha(g%; a, q)) = a*[n]'o(q"* )6 n.
The proof is complete in virtue of (4.8).[]

Remark : The special cases of Theorem 9 have been proved respectively by
ToucHARD [Tou] for ¢ = 1 and MiLNE [Mil] for @ = 1 by similar methods. Note
that our right-hand side of (4.13) is simpler than that of MiLNE [Mi1] even in
the case a = 1.

In (4.12) if we set 2 = [z] then we get the explicit expression for Vyfa)(x; q):
(4.14)

n k-1
W20 = O M= De 4 100 = Y a7 T -

The polynomials H. »(¢%; a, ¢) may also be written in terms of hypergeometric
functions as

(4.15) H,(q%;a,q) = %q””‘(z)lwl (qlq_nﬂ ;¢ aq™(1— Q)) :

If we replace ¢ by 1 /q and then ¢=* by z in the above formula, we obtain the
classical ¢-Charlier polynomials [GR, p.187], that is

a 1 —a \" _(n F %z gl
4.1 H, (2 =f= (3) g - .
( 6) (xﬁl_qaq> (1_q> q ‘22 ( 0 y 4 .
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