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Abstract. In a recent paper, Dousse introduced a refinement of Siladić’s theorem on
partitions, where parts occur in two primary and three secondary colors. Her proof
used the method of weighted words and q-difference equations. The purpose of this
extended abstract is to sketch a bijective proof of Dousse’s theorem and show how it
can be generalized from two primary colors to an arbitrary number of primary colors.
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1 Introduction

In this paper, we mostly denote by λ1 + · · ·+ λs a partition of a non-negative integer n.
For any x, q ∈ C with |q| < 1, and n ∈N, we define

(x; q)n =
n−1

∏
k=0

(1− xqk) ,

with the convention (x; q)0 = 1, and

(x; q)∞ =
∞

∏
k=0

(1− xqk) ·

Recall the Rogers–Ramanujan identities [8], which state that for a ∈ {0, 1},

∑
n≥0

qn(n+a)

(q; q)n
=

1
(q1+a; q5)∞(q4−a; q5)∞

· (1.1)

These identities give an equality between the cardinalities of two sets of partitions: the
set of partitions of n with parts differing by at least two and greater than a, and the
set of partitions of n with parts congruent to 1 + a, 4− a mod 5. In the spirit of these
identities, a q-series or combinatorial identity is said to be of Rogers–Ramanujan type if
it links some sets of partitions with certain difference conditions to others with certain
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congruence conditions. Another well-known example is Schur’s partition theorem [9],
which states that the number of partitions of n into parts congruent to ±1 mod 6 is
equal to the number of partitions of n where parts differ by at least three and multiples
of 3 differ by at least six.
A rich source of such identities is the representation theory of Lie algebras. This has
its origins in work of Lepowsky and Wilson [6], who proved the Rogers–Ramanujan
identities by using representations of the affine Lie algebra sl2(C)∼.
Our motivation in this paper is one such identity given by Siladić [10] in his study of
representations of the twisted affine Lie algebra A(2)

2 .

Theorem 1.1 (Siladić). The number of partitions λ1 + · · · + λs of an integer n into parts
different from 2 such that λi − λi+1 ≥ 5 and

λi − λi+1 = 5⇒ λi + λi+1 ≡ ±3 mod 16 ,

λi − λi+1 = 6⇒ λi + λi+1 ≡ 0,±4, 8 mod 16 ,

λi − λi+1 = 7⇒ λi + λi+1 ≡ ±1,±5,±7 mod 16 ,

λi − λi+1 = 8⇒ λi + λi+1 ≡ 0,±2,±6, 8 mod 16 ,

is equal to the number of partitions of n into distinct odd parts.

The above theorem has recently been refined by Dousse [5] (see Theorem 1.2). She
was inspired by the original method of weighted words, first introduced by Alladi and
Gordon [2] to generalize Schur’s partition theorem, but proceeded in a different way.
Her framework is as follows: we consider that parts are colored by two primary colors
a, b and secondary colors a2, b2, ab, where the colored parts are ordered as

1ab <c 1a <c 1b2 <c 1b <c 2ab <c 2a <c 3a2 <c 2b <c 3ab <c 3a <c 3b2 <c 3b <c · · · · (1.2)

Note that only odd parts can be colored by a2, b2. In terms of q-series, the part kc with
length k and color c will be cqk. The dilation in the q-series

q→ q4 , a→ aq−3 , b→ bq−1 ,

leads to the natural order on N

0ab < 1a < 2b2 < 3b < 4ab < 5a < 6a2 < 7b < 8ab < 9a < 10b2 < 11b < · · · · (1.3)

In fact, the dilation gives a bijection the colored parts and the natural numbers, since we
have the following mapping:

8k 8k + 1 8k + 2 8k + 3 8k + 4 8k + 5 8k + 6 8k + 7
l l l l l l l l

(2k + 1)ab (2k + 1)a (2k + 1)b2 (2k + 1)b (2k + 2)ab (2k + 2)a (2k + 3)a2 (2k + 2)b

·

(1.4)
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Then the minimal differences (minimal values of λi− λi+1) in Siladic̀ theorem, where
parts are natural numbers, can be expressed in terms of colored parts by the table

λi\λi+1 a2
odd aodd aeven b2

odd bodd beven abodd abeven
a2

odd 4 4 3 4 4 3 4 3
aodd 2 2 3 2 2 3 2 1
aeven 3 3 2 3 3 2 3 2
b2

odd 2 2 3 4 4 3 2 3
bodd 2 2 1 2 2 3 2 1
beven 1 1 2 3 3 2 1 2
abodd 2 2 3 4 4 3 2 3
abeven 3 3 2 3 3 2 3 2

· (1.5)

We set a relation �c on colored parts, defined by kp �c lr if and only if k− l is at least
the minimal difference in (1.5). One can check that �c is transitive, and since kp 6�c kp,
it defines a strict order on the set of colored parts. We are now ready to state Dousse’s
refinement of Siladic̀ theorem.

Theorem 1.2 (Dousse). Let (u, v, n) ∈ N3. Denote by D(u, v, n) the set of all the partitions
of n, such that no part is equal to 1ab, 1a2 or 1b2 , with difference between two consecutive parts
following the minimal conditions in (1.5), and with u equal to the number of parts with color
a or ab plus twice the number of parts colored by a2, and v equal to the number of parts with
color b or ab plus twice the number of parts colored by b2. Denote by C(u, v, n) the set of all the
partitions of n with u distinct parts colored by a and v distinct parts colored by b. We then have
]D(u, v, n) = ]C(u, v, n).

In terms of q-series, we get the equation

∑
u,v,n≥0

]D(u, v, n)aubvqn = ∑
u,v,n≥0

]C(u, v, n)aubvqn = (−aq; q)∞(−bq; q)∞ · (1.6)

Our purpose here is to build an actual bijection between sets D(u, v, n) and C(u, v, n). In
fact, we build a bijection between two bigger sets that contain C(u, v, n) and D(u, v, n),
in such a way that it will imply Theorem 1.2.

The bijective proof will allow us to generalize Dousse’s theorem, with an arbitrary num-
ber of primary colors. In fact, we consider a set of m primary colors a1 < · · · < am.
And we order the parts colored by primary colors in the usual way, first according to
size and then according to color (see in (2.1)). We also set m2 secondary colors aiaj with
i, j ∈ {1, . . . , m}, in such a way aiaj only colors parts with the same parity as χ(ai ≤ aj),
where χ(A) = 1 if A is true and χ(A) = 0 if not.
We then define a certain strict order �c on parts colored with primary and secondary
colors which corresponds to minimal difference conditions between the parts (see Sec-
tion 2.2). This leads to the following theorem.
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Theorem 1.3. Let C(u1, . . . , um, n) denote the set of partitions of n with uk distinct parts with
color ak. Let D(u1, . . . , um, n) denote the set of partitions of n such that parts are ordered by�c,
with no part equal to 1aiaj , and with ui equal to the number of parts colored by ai, aiaj or ajai

with i 6= j, plus twice the number of parts colored by a2
i . We have then

]C(u1, . . . , um, n) = ]D(u1, . . . , um, n) · (1.7)

In terms of the q-series, we get the equation

∑
u1,...,um,n≥0

]D(u1, . . . , um, n)au1
1 · · · a

um
m qn = ∑

u1,...,um,n≥0
]C(u1, . . . , um, n)au1

1 · · · a
um
m qn

= (−a1q; q)∞ · · · (−amq; q)∞ ·
(1.8)

This may be compared with work of Corteel and Lovejoy [4] who gave interpretations of
the same infinite products above but using 2m − 1 colors instead of m2 + m colors as we
do here. As an example, we choose m = 3 and use a, b, d instead of a1, a2, a3. The table
which sums up the minimal differences is

λi\λi+1 a b d a2 ab ad b2 bd d2 ba da db
a 2 2 2 2 2 2 2 2 2 1 1 1
b 1 2 2 1 1 1 2 2 2 1 1 1
d 1 1 2 1 1 1 1 1 2 0 1 1
a2 3 3 3 4 4 4 4 4 4 3 3 3
ab 2 3 3 2 2 2 4 4 4 3 3 3
b2 2 3 3 2 2 2 4 4 4 3 3 3
ad 2 2 3 2 2 2 2 2 4 1 3 3
bd 2 2 3 2 2 2 2 2 4 1 3 3
d2 2 2 3 2 2 2 2 2 4 1 3 3
ba 2 2 2 3 3 3 3 3 3 2 2 2
da 2 2 2 3 3 3 3 3 3 2 2 2
db 1 2 2 1 1 1 3 3 3 2 2 2

·

We take the dilation 
q 7→ q10

a 7→ aq−6

b 7→ bq−4

d 7→ dq−1

,

and we get the order

1ab <c 1b2 <c 1ad <c 1a <c 1bd <c 1b <c 1d2 <c 1d <c

2ba <c 2da <c 2a <c 2db <c 2b <c 3a2 <c 2d <c 3ab <c · · · (1.9)
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since the dilation gives in the natural ordering in N

0ab < 2b2 < 3ad < 4a < 5bd < 6b < 8d2 < 9d < 10ba <

13da < 14a < 15db < 14b < 18a2 < 19d < 20ab · · · · (1.10)

We notice that >c is always defined and fixed when we restrict it to parts with primary
colors. In fact, it is the total usual order (2.1). But we can see with the previous dilation
that there exists some extension of >c over the parts colored with primary and secondary
colors, depending on the dilation. However, the strict order �c, that we will explicitly
define over the colored parts with primary or secondary colors, is partial and fixed.
For the last dilation, we have a corollary in the spirit of Siladić’s theorem:

Corollary 1.4. Let u, v, w, n be non-negative integers. Let A(u, v, w, n) denote the number of
partitions of n with respectively u, v, w parts congruent to 4, 6, 9 mod 10. Let B(u, v, w, n)
denote the number of partitions λ1 + · · ·+ λs of n, with

• no part equal to 2, 3, 5, 8 or congruent to 1, 7, 11, 12, 17 mod 20,

• u equal to the number of parts congruent to 0, 3, 4 mod 10 plus twice the number of parts
congruent to 18 mod 20,

• v equal to the number of parts congruent to 0, 5, 6 mod 10 plus twice the number of parts
congruent to 2 mod 20,

• w equal to the number of parts congruent to 3, 5, 9 mod 10 plus twice the number of parts
congruent to 8 mod 20,

• two consecutive parts differing by at least 9 with the additional conditions
for 9 ≤ λi − λi+1 ≤ 20 according to the table below:

λi − λi+1 λi mod 20 λi − λi+1 λi mod 20
9 4, 19 15 4, 5, 9, 10, 14, 15, 19

10 ∅ 16 0, 4, 6, 9, 10, 15, 16, 19
11 4, 6, 10, 15 17 0, 3, 6, 10, 13, 15, 16, 19
12 6, 15, 16 18 2, 3, 4, 6, 8, 13, 14, 16
13 3, 6, 9, 16, 19 19 2, 3, 4, 5, 9, 13, 14, 15, 18, 19
14 4, 9, 10, 13, 19 20 0, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 19

· (1.11)

Then A(u, v, w, n) = B(u, v, w, n).

The remainder of the paper is organised as follows. In the next section, we discuss
the existence of a new color ba different from ab, that will lead to an enumeration of
explicit relations for the minimal difference conditions in (1.5). In section 3, we will
build our bijection, and after that in the next section, we will sketch the main ideas of its
well-definedness. Finally in section 5, we will briefly indicate how to generalize Dousse’s
theorem to obtain Theorem 1.3.
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2 Some fundamental remarks

2.1 A new color ba 6= ab

First, we set the order a < b for the primary colors. Then for any (k, l, p, q) ∈ N2 ×
{a, b}2, the usual order >c is set by the equivalence

kp >c lq ⇔ k− l ≥ χ(p ≤ q) · (2.1)

At the same time, we have a strict order �c defined by (1.5), and it follows the equiva-
lence

kp �c lq ⇔ k− l ≥ 1 + χ(p ≤ q) (2.2)

for any (k, l, p, q) ∈ N2 × {a, b}2. We set δpq = χ(p ≤ q) for notational convenience and
denote by O = Z× {a, b} which contains the set of parts colored by a, b (we extend this
to Z for the purpose of our bijection). One can observe that the parts colored by a2, b2, ab
can be uniquely divided into two parts kp, lq ∈ O such that kp >c lq and kp 6�c lq, i.e
k− l = δpq. Specifically, we have

(2k)ab = kb + ka
(2k + 1)ab = (k + 1)a + kb
(2k + 1)a2 = (k + 1)a + ka
(2k + 1)b2 = (k + 1)b + kb

·

It is then convenient to set another color ba so that for any p, q ∈ {a, b}, pq only colors
parts with the same parity as δpq. Furthermore, the following equality holds:

(2k + δpq)pq = (k + δpq)p + kq · (2.3)

This means that ab 6= ba, since ab colors only odd parts and ba only even parts.

The above notation allows us to introduce the set E = Z × {a, b}2 so that the part
(2k + δpq)pq is uniquely represented by (k, p, q). In fact, we have

(2k)ba ↔ (k, b, a)
(2k + 1)ab ↔ (k, a, b)
(2k + 1)a2 ↔ (k, a, a)
(2k + 1)b2 ↔ (k, b, b)

· (2.4)

It is reasonable then to set γ, µ the functions which map a part of E to the unique parts
in O as

γ(k, p, q) = (k + δpq, p) , µ(k, p, q) = (k, q) · (2.5)

We call γ(k, p, q) and µ(k, p, q) respectively the upper and the lower halves of (k, p, q).
As an example, the part 40ab considered by Dousse will be in fact the part 40ba, which we



A bijective proof and generalization of Siladić’s Theorem 7

denote (20, b, a) and which is the sum of the unique parts 20b = (20, b) and 20a = (20, a)
respectively as its upper half γ and its lower half µ.
With this notation, we notice that a part (k, p) ∈ O has an actual length k, while a part
(l, q, r) ∈ E has 2l + δqr as actual length.

2.2 Explicit relations for the minimal difference conditions

We just saw in the previous section the necessary and sufficient condition (2.2) to have
the minimal difference between two parts in O. We state it as a lemma.

Lemma 2.1. For any (k, p), (l, q) ∈ O2, we have

(k, p)�c (l, q) ⇔ k− l ≥ 1 + δpq · (2.6)

Now we are going to give analogous conditions for any pair of parts in O × E , E ×
E , E ×O, by giving some explicit expressions of the minimal difference conditions given
in (1.5) according to the colors involved in the comparison.

Lemma 2.2. For any (k, p), (l, q, r) ∈ O × E , we have

(k, p)�c (l, q, r) ⇔ k− (2l + δqr) ≥ δpq + δqr ⇔ (k, p) >c (2(l + δqr), q) · (2.7)

Lemma 2.3. For any (k, p, q), (l, r) ∈ E ×O, we have

(k, p, q)�c (l, r) ⇔ (2k + δpq)− l ≥ 1 + δpq + δqr ⇔ (2k, q)�c (l, r) · (2.8)

Lemma 2.4. For any (k, p, q), (l, r, s) ∈ E2, we have

(k, p, q)�c (l, r, s) ⇔ (2k + δpq)− (2l + δrs) ≥ δpq + 2δqr + δrs · (2.9)

Furthermore, the last equality is equivalent to

(k, p, q)�c (l, r, s) ⇔ k− (l + δrs) ≥ δqr ⇔ µ(k, p, q) >c γ(l, r, s) · (2.10)

Condition (2.10) is the most important in our construction. This comes from the fact
that comparing two parts in E in terms of�c is the same as comparing the lower half of
the first part and the upper half of the second part using >c.

3 How do we build the bijection?

We build our bijection in the spirit of the bijective proof of the partition theorem of K.
Alladi [1] given by Padmavathamma, R. Raghavendra, and B. M. Chandrashekara [7].
The idea was introduced by Bressoud [3] in his bijective proof of Schur’s theorem.
Denote by C the set of partitions with parts in primary colors, i.e in O′ = N∗ × {a, b}.
Also denote by D the set of partitions with parts colored by primary or secondary colors,
with no part equal to 1a2 , 1b2 , 1ab, i.e with parts in E ′ = N∗ × {a, b}2 or in O′, such that
the colored parts are ordered by�c.



8 Isaac Konan

3.1 The bijection’s key operation Λ

Let us set the function Λ as

Λ : O × E −→ E ×O
(k, p), (l, q, r) 7−→ (l + δqr, p, q), (k− δpq − δqr, r)

· (3.1)

The function Λ is invertible with

Λ−1 : E ×O −→ O× E
(k, p, q), (l, r) 7−→ (l + δpq + δqr, p), (k− δqr, q, r)

· (3.2)

We explicitly have the following table

(k,p)×(l,q,r) (l, a, a) (l, a, b) (l, b, a) (l, b, b)

(k, a) (l + 1, a, a), (k− 2, a) (l + 1, a, a), (k− 2, b) (l, a, b), (k− 1, a) (l + 1, a, b), (k− 2, b)
(k, b) (l + 1, b, a), (k− 1, a) (l + 1, b, a), (k− 1, b) (l, b, b), (k− 1, a) (l + 1, b, b), (k− 2, b)

or with the actual lengths

kp×(2l+δqr)qr (2l + 1)a2 (2l + 1)ab (2l)ba (2l + 1)b2

ka (2l + 3)a2 , (k− 2)a (2l + 3)a2 , (k− 2)b (2l + 1)ab, (k− 1)a (2l + 3)ab, (k− 2)b

kb (2l + 2)ba, (k− 1)a (2l + 2)ba, (k− 1)b (2l + 1)b2 , (k− 1)a (2l + 1)b2 , (k− 2)b

·

(3.3)

3.2 Mapping C and D
We denote here by Φ the mapping from C to D and by Ψ the mapping from D to C.

3.2.1 How to get Φ : C → D

Let us take any λ = λ1 + · · · + λs in C, with λ1 >c · · · >c λs. We have then for any
i ∈ {1, . . . , s} that λi ∈ O′. As an example, we take

λ = 24a + 17b + 11b + 10a + 9b + 8b + 6a + 5a + 4b + 4a · (3.4)

i/ First, we identify the consecutive troublesome pairs of parts, i.e (λi, λi+1) such that
λi 6�c λi+1, by taking consecutively the greatest pairs in terms of length, in such a
way they are disjoint. With the example we have

λ = 24a + 17b + 11b + 10a + 9b + 8b + 6a + 5a + 4b + 4a · (3.5)

Then we simply replace them by the corresponding parts in E ′ using (2.5). We
denote that very partition λ′ = λ′1 + · · · + λ′s′ with parts with the exact order by
just replacing the pairs (parts are no longer ordered here). With the example we
get

λ′ = 24a + 17b + 11b + 19ab + 8b + 11a2 + 8ba · (3.6)
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ii/ As long as there exists i ∈ {1, . . . , s′ − 1} such that

λ′i, λ′i+1 ∈ O × E

and λ′i 6�c λ′i+1, we just replace them by

Λ(λ′i, λ′i+1) ∈ E ×O

in this order. With the example, if we proceed by choosing the smallest i at each
step, we have

i = 3 : 24a + 17b + 11b + 19ab + 8b + 11a2 + 8ba
↓

i = 2 : 24a + 17b + 20ba + 10b + 8b + 11a2 + 8ba
↓

i = 5 : 24a + 21b2 + 16a + 10b + 8b + 11a2 + 8ba
↓

i = 4 : 24a + 21b2 + 16a + 10b + 12ba + 7a + 8ba
↓

i = 6 : 24a + 21b2 + 16a + 13b2 + 9a + 7a + 8ba
↓

i = 5 : 24a + 21b2 + 16a + 13b2 + 9a + 9ab + 6a
↓

24a + 21b2 + 16a + 13b2 + 11a2 + 7b + 6a

· (3.7)

We denote by λ′′ the final result, which exists since the sum of the indices of parts
in E strictly decreases at each step.

We set then Φ(λ) = λ′′. Our example gives

Φ(24a + 17b + 11b + 10a + 9b + 8b + 6a + 5a + 4b + 4a) = 24a + 21b2 + 16a + 13b2 + 11a2 + 7b + 6a

(3.8)
and we easily check that it belongs to D. We sketch a proof of λ′′ ∈ D in the next

section.

3.2.2 How to get Ψ : D → C

Let’s take ν = ν1 + · · ·+ νs ∈ D with ν1 �c · · · �c νs. We also take the example ν = λ′′

in the previous part,

ν = 24a + 21b2 + 16a + 13b2 + 11a2 + 7b + 6a · (3.9)
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i/ As long as there exists i ∈ {1, . . . , s− 1} such that

νi, νi+1 ∈ E ×O

and
µ(νi) 6>c νi+1 ,

we replace νi, νi+1 by
Λ−1(νi, νi+1) ∈ O × E

in that order. We denote the final result ν′, which exists since the sum of the indices
of the parts in O strictly decreases at each step. One can easily check that if we
proceed by taking the greatest i at each step, we have the exact reverse steps as we
did in (3.7). And then

ν′ = 24a + 17b + 11b + 19ab + 8b + 11a2 + 8ba = λ′ · (3.10)

ii/ We finish by dividing all parts in E in their upper and lower halves and keeping
the order. We get finally ν′′. In the example, we get exactly

ν′′ = 24a + 17b + 11b + 10a + 9b + 8b + 6a + 5a + 4b + 4a = λ · (3.11)

We have then Ψ(ν) = ν′′. With our example we get

Ψ(24a + 21b2 + 16a + 13b2 + 11a2 + 7b + 6a) = 24a + 17b + 11b + 10a + 9b + 8b + 6a + 5a + 4b + 4a ·
(3.12)

4 Main ideas of the proof of the well-definedness of the
mappings Φ and Ψ

Recall
Λ : O × E −→ E ×O

(k, p), (l, q, r) 7−→ (l + δqr, p, q), (k− δpq − δqr, r)
·

Firstly, we can state that the sum of the lengths is conserved by the function Λ (and so
Λ−1), as

k + (2l + δqr) = (2(l + δqr) + δpq) + (k− δpq − δqr) · (4.1)

Secondly, the total set of primary colors is conserved as well as their arrangement, since
we considered that any part in E is twice colored by primary colors, and we have by
Λ the colors p, (q, r) become (p, q), r. Then, the final result has the same total length
and the sequence of color as the original partition, in such a way that if Φ and Ψ are
reciprocal bijections, then they imply bijections between D(u, v, n) and C(u, v, n).
Now let’s provide some properties of Λ that are important in the construction of the
bijection.



A bijective proof and generalization of Siladić’s Theorem 11

Proposition 4.1. For any (k, p), (l, q, r) ∈ O×E , one and only one of these statements is true:

(k, p)�c (l, q, r) · (4.2)

(l + δqr, p, q)�c (k− δpq − δqr, r) · (4.3)

Proposition 4.2. For any (k, p, q), (l, r) ∈ E ×O, one and only one of these statements is true:

µ(k, p, q) >c (l, r) · (4.4)

(l + δpq + δqr, p)�c γ(k− δqr, q, r) · (4.5)

The first proposition means that λi, λi+1 ∈ O × E are such that λi 6�c λi+1 if only if
by applying

Λ(λi, λi+1) = (λ′i, λ′i+1) ∈ E ×O

we have that λ′i �c λ′i+1. It is the key proposition that ensures that the final state belongs
to D. The second proposition allows us to come back to C in the process of Ψ by using
Λ−1. But the fact that we stay in set O′ and E ′ after applying Λ and the uniqueness of
the final result depend on many other facts. A detailed proof is given in the full article.

5 Generalization of Dousse’s theorem

Theorem 1.3 just comes by using in our process

O = Z× {a1, . . . , am} , O′ = N∗ × {a1, . . . , am} (5.1)

for the parts with primary colors and

E = Z× {a1, . . . , am}2 , E ′ = N∗ × {a1, . . . , am}2 (5.2)

for the parts with secondary colors. We can apply the usual order >c of (2.1) after
ordering a1 < · · · < am, and use the lemmas of Section 2.2 as definitions of �c. And
the mappings Φ and Ψ in Section 3 are defined exactly the same as in the case of two
primary colors.
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