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1 Introduction

Generalized Kac–Moody algebras, also known as Borcherds algebras, are infinite-dimen-
sional Lie algebras introduced by Borcherds [1, 2] as a result of his study of the “Mon-
strous Moonshine” conjectures of Conway and Norton [4]. See, e.g., [10].

With respect to a symmetrizable Kac–Moody algebra g, crystal bases are combina-
torial analogues of representations of the quantized universal enveloping algebra of g.
Defined by Kashiwara in the early 1990s [14, 15], crystals have become an integral part
of combinatorial representation theory and have seen application to algebraic combina-
torics, mathematical physics, the theory of automorphic forms, and more. In [6], Kashi-
wara’s construction of the crystal basis was extended to the symmetrizable generalized
Kac–Moody algebra setting. In particular, the crystal basis for the negative half of the
quantized universal enveloping algebra Uq(g) was introduced, denoted B(∞), and the
crystal basis for the irreducible highest weight module V(λ) was also introduced, de-
noted B(λ). The general combinatorial properties of these crystals were then abstracted
in [8], much in the same way that Kashiwara had done in [16] for the classical case.
There, theorems characterizing the crystals B(∞) and B(λ) were also proved. More re-
cently, other combinatorial models for crystals over generalized Kac–Moody algebras are
known: Nakajima monomials [8], Littelmann’s path model [9], the polyhedral model [23,
24], and irreducible components of quiver varieties [12, 13].

This extended abstract aims to achieve analogous results to [19, 20, 21] for the case in
which g is a generalized Kac–Moody algebra; that is, to develop a rigged configuration
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model for the infinity crystal B(∞), including the ∗-crystal operators, and the irreducible
highest weight crystals B(λ) when the underlying algebra is a generalized Kac–Moody
algebra. In order to do this, a new recognition theorem (see Theorem 3.3) for B(∞), mim-
icking the recognition theorem in the classical Kac–Moody cases by Tingley–Webster [26,
Proposition 1.4] (which is a reformulation of [17, Proposition 3.2.3]), is presented. The
major difference in this new recognition theorem is the existence of imaginary simple
roots; the crystal operators associated with imaginary simple roots behave inherently
different than that of the case of only real simple roots. Once the new recognition theo-
rem is established, we state new crystal operators (see Definition 4.1) and the ∗-crystal
operators (see Definition 4.6) on rigged configurations. We then appeal to the fact that
B(λ) naturally injects into B(∞) by [7, Theorem 5.2].

There are currently no known non-recursive characterizations of RC(∞) in any Kac–
Moody or generalized Kac–Moody type. However, there is a recursive description of
RC(∞) in type An given in [25].

We note that our results give the first model for crystals of generalized Kac–Moody
algebras that has a direct combinatorial description of the ∗-involution on B(∞); i.e., by
not recursively using the crystal and ∗-crystal operators. Moreover, the rigged configura-
tion model for B(λ) does not require knowledge other than the combinatorial description
of the element, in contrast to the Littelmann path or Nakajima monomial models.

2 Quantum generalized Kac–Moody algebras and crystals

Let I be a countable set. An (even, integral, symmetrizable) Borcherds–Cartan matrix A =
(Aab)a,b∈I is a matrix with integer entries such that

1. Aaa = 2 or Aaa ∈ −2Z>0 for all a ∈ I;
2. Aab ≤ 0 if a 6= b;
3. Aab = 0 if and only if Aba = 0;
4. there exists a diagonal matrix D such that DA is symmetric.

An index a ∈ I is called real if Aaa = 2 and is called imaginary if Aaa ≤ 0. The subset of I
of all real (resp. imaginary) indices is denoted Ire (resp. Iim).

Example 2.1. Let I = {(i, t) : i ∈ Z≥−1, 1 ≤ t ≤ c(i)}, where c(i) is the i-th coefficient of
the elliptic modular function

j(q)− 744 = q−1 + 196884q + 21493760q2 + · · · = ∑
i≥−1

c(i)qi.

Define A = (A(i,t),(j,s)), where each entry is defined by A(i,t),(j,s) = −(i + j). This is
a Borcherds–Cartan matrix, and it is associated to the Monster Lie algebra used by
Borcherds in [2].
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A Borcherds–Cartan datum is a tuple (A, P∨, P, Π∨, Π), where

1. A is an even, integral, symmetrizable Borcherds–Cartan matrix;

2. P∨ = (
⊕

a∈I Zha)⊕ (
⊕

a∈I Zda), called the dual weight lattice;

3. P = {λ ∈ h∗ : λ(P∨) ⊂ Z}, where h∗ = Q⊗Z P∨, called the weight lattice;

4. Π∨ = {ha : a ∈ I}, called the set of simple coroots;

5. Π = {αa : a ∈ I}, called the set of simple roots.

Define the canonical pairing 〈 , 〉 : P∨ × P −→ Z by 〈ha, αb〉 = Aab for all a, b ∈ I.
The set of dominant integral weights is P+ = {λ ∈ P : λ(ha) ≥ 0 for all a ∈ I}.

The fundamental weights, denoted Λa ∈ P+ for a ∈ I, are defined by Λa(hb) = δab and
Λa(db) = 0 for all a, b ∈ I. Finally, set Q =

⊕
a∈I Zαa and Q+ = ∑a∈I Z≥0αa.

Let Uq(g) be the quantum generalized Kac–Moody algebra associated with the Borcherds–
Cartan datum (A, P∨, P, Π∨, Π). (For more detailed information on Uq(g), see, e.g., [6].)

Definition 2.2 (See [6]). An abstract Uq(g)-crystal is a set B together with maps

ea, fa : B −→ B t {0}, εa, ϕa : B −→ Z t {−∞}, wt : B −→ P,

subject to the following conditions:

1. wt(eav) = wt(v) + αa if eav 6= 0;
2. wt( fav) = wt(v)− αa if fav 6= 0;
3. for any a ∈ I and v ∈ B, ϕa(v) = εa(v) + 〈ha, wt(v)〉;
4. for any a ∈ I and v, v′ ∈ B, fav = v′ if and only if v = eav′;
5. for any a ∈ I and v ∈ B such that eav 6= 0, we have

(a) εa(eav) = εa(v)− 1 and ϕa(eav) = ϕa(v) + 1 if a ∈ Ire,
(b) εa(eav) = εa(v) and ϕa(eav) = ϕa(v) + Aaa if a ∈ Iim;

6. for any a ∈ I and v ∈ B such that fav 6= 0, we have

(a) εa( fav) = εa(v) + 1 and ϕa( fav) = ϕa(v)− 1 if a ∈ Ire,
(b) εa( fav) = εa(v) and ϕa( fav) = ϕa(v)− Aaa if a ∈ Iim;

7. for any a ∈ I and v ∈ B such that ϕa(v) = −∞, we have eav = fav = 0.

Here, 0 is considered to be a formal object; i.e., it is not an element of a crystal.

Example 2.3. For each λ ∈ P+, by [6, Section 3], there exists a unique irreducible highest
weight Uq(g)-module V(λ) in the category Oint. (See [6] for the details and explanation
of the notation.) Associated to each V(λ) is a crystal basis

(
L(λ), B(λ)

)
, in the sense
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of [6]. Then B(λ) is an abstract Uq(g)-crystal. In this case, for all a ∈ I and v ∈ B(λ), we
have

εa(v) =

{
max{k ≥ 0 : ek

av 6= 0} if a ∈ Ire,
0 if a ∈ Iim,

ϕa(v) =

{
max{k ≥ 0 : f k

a v 6= 0} if a ∈ Ire,
〈ha, wt(v)〉 if a ∈ Iim.

Moreover, there exists a unique vλ ∈ B(λ) such that wt(vλ) = λ and

B(λ) = { fa1 · · · far vλ : r ≥ 0, a1, . . . , ar ∈ I} \ {0}.

Example 2.4. The negative half of the generalized quantum algebra U−q (g) has a crystal
basis

(
L(∞), B(∞)

)
in the sense of [6]. Then B(∞) is an abstract Uq(g)-crystal. In this

case, there exists a unique element 1 ∈ B(∞) such that wt(1) = 0 and

B(∞) = { fa1 · · · far1 : r ≥ 0, a1, . . . , ar ∈ I}.

Moreover, for all v ∈ B(∞) and a, a1, . . . , ar ∈ I, we have

εa(v) =

{
max{k ≥ 0 : ek

av 6= 0} if a ∈ Ire,
0 if a ∈ Iim,

(2.1)

ϕa(v) = εa(v) + 〈ha, wt(v)〉, (2.2)
wt(v) = −αa1 − · · · − αar if v = fa1 · · · far1. (2.3)

Definition 2.5 (See [7]). Let B1 and B2 be abstract Uq(g)-crystals. A crystal morphism
ψ : B1 −→ B2 is a map B1 t {0} −→ B2 t {0} such that

1. for v ∈ B1 and a ∈ I, εa
(
ψ(v)

)
= εa(v), ϕa

(
ψ(v)

)
= ϕa(v), and wt

(
ψ(v)

)
= wt(v),

2. if v ∈ B1 and fav ∈ B1, then ψ( fav) = faψ(v).

Let ψ : B1 −→ B2 be a crystal morphism. Then ψ is called strict if ψ(eav) = eaψ(v)
and ψ( fav) = faψ(v) for all a ∈ I. The morphism ψ is an embedding if the underlying
map is injective. An isomorphism of crystals is a bijective, strict crystal morphism.

Definition 2.6 (See [7]). Let B1 and B2 be abstract Uq(g)-crystals. The tensor product
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B1 ⊗ B2 is a crystal with underlying set B1 × B2 and operations defined, for a ∈ I, by

ea(v1 ⊗ v2) =



eav1 ⊗ v2 if a ∈ Ire and ϕa(v1) ≥ εa(v2),
eav1 ⊗ v2 if a ∈ Iim and ϕa(v1) > εa(v2)− Aaa,
0 if a ∈ Iim and εa(v2) < ϕa(v1) ≤ εa(v2)− Aaa,
v1 ⊗ eav2 if a ∈ Ire and ϕa(v1) < εa(v2),
v1 ⊗ eav2 if a ∈ Iim and ϕa(v1) ≤ εa(v2),

fa(v1 ⊗ v2) =

{
fav1 ⊗ v2 if ϕa(v1) > εa(v2),
v1 ⊗ fav2 if ϕa(v1) ≤ εa(v2),

εa(v1 ⊗ v2) = max
{

εa(v1), εa(v2)− 〈ha, wt(v1)〉
}

,
ϕa(v1 ⊗ v2) = max

{
ϕa(v1) + 〈ha, wt(v2)〉, ϕa(v2)

}
,

wt(v1 ⊗ v2) = wt(v1) + wt(v2).

Example 2.7. Let λ ∈ P and set Tλ = {tλ}. For all a ∈ I, define crystal operations

eatλ = fatλ = 0, εa(tλ) = ϕa(tλ) = −∞, wt(tλ) = λ.

Note that Tλ ⊗ Tµ
∼= Tλ+µ, for λ, µ ∈ P. Moreover, by [7, Proposition 3.9], for every

λ ∈ P+, there exists a crystal embedding ιλ : B(λ) ↪−→ B(∞)⊗ Tλ.

Example 2.8. Let C = {c}. Then C is a crystal with operations defined, for a ∈ I, by

eac = fac = 0, εa(c) = ϕa(c) = 0, wt(c) = 0.

Theorem 2.9 (See [7, Theorem 5.2]). Let λ ∈ P+. Then B(λ) is isomorphic to the connected
component of B(∞)⊗ Tλ ⊗ C containing 1⊗ tλ ⊗ c.

Example 2.10. For each a ∈ I, set N(a) = {za(−n) : n ≥ 0}. Then N(a) is a crystal with
maps defined, for b ∈ I, by

ebza(−n) =

{
za(−n + 1) if b = a,
0 otherwise,

fbza(−n) =

{
za(−n− 1) if b = a,
0 otherwise,

εb
(
za(−n)

)
=


n if b = a ∈ Ire,
0 if b = a ∈ Iim,
−∞ otherwise,

ϕb
(
za(−n)

)
=


−n if b = a ∈ Ire,
−nAaa if b = a ∈ Iim,
−∞ otherwise,

wt
(
za(−n)

)
= −nαa.

By convention, za(−n) = 0 for n < 0.

Theorem 2.11 (See [7, Theorem 4.1]). For any a ∈ I, there exists a unique strict crystal
embedding Ψa : B(∞) ↪−→ B(∞)⊗N(a).
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3 Recognition theorem for B(∞)

Theorem 3.1 (See [7, Theorem 5.1]). Let B be an abstract Uq(g)-crystal such that

1. wt(B) ⊂ −Q+;
2. there exists an element v0 ∈ B such that wt(v0) = 0;
3. for any v ∈ B such that v 6= v0, there exists some a ∈ I such that eav 6= 0;
4. for all a ∈ I, there exists a strict embedding Ψa : B ↪−→ B⊗N(a).

Then there exists a crystal isomorphism B ∼= B(∞) such that v0 7→ 1.

In [6], it was shown there is a antiautomorphism ∗ : Uq(g) −→ Uq(g) defined by

E∗a = Ea, F∗a = Fa, (qh)∗ = q−h,

where Ea, Fa, qh, a ∈ I and h ∈ P∨, are the generators of Uq(g). By [6, Corollary 7.40],
this admits a combinatorial construction on B(∞) that is called the ∗-involution or star
involution (sometimes known as Kashiwara’s involution [3, 5, 11, 18, 22, 26]), which we
describe here. For a ∈ I, define

N(a) = {v ∈ B(∞) : v⊗ za(−n) ∈ Im(Ψa) for some n ≥ 0}.

This forms a subcrystal of B(∞). By [18, Lemma 3.12], we have B(∞) = N(a) ⊗ N(a)
as a Uq(g)-crystal. Using this expression for B(∞), the Kashiwara operators eb and fb
act on the left-hand factor, for all b ∈ I. Define new operators e∗b and f ∗b , respectively,
on B(∞) to be the operators that act by eb and fb, respectively, on the right-hand factor.
Additionally, for b ∈ I and v ∈ B(∞), set wt∗(v) = wt(v) and

ε∗b(v) =

{
max{k ≥ 0 : e∗b v 6= 0} if b ∈ Ire,
0 if b ∈ Iim,

ϕ∗b(v) = ε∗b(v) + 〈hb, wt(v)〉.

The set B(∞) equipped with the ∗-crystal operators will be denoted by B(∞)∗.

Theorem 3.2 (See [18, Theorem 4.7]). We have B(∞) ∼= B(∞)∗.

Define B(∞) −→ B(∞)∗ by asserting v∗ = f ∗ak
· · · f ∗a2

f ∗a1
1 if v = fak · · · fa2 fa11. Then

e∗a = ∗ ◦ ea ◦ ∗, f ∗a = ∗ ◦ fa ◦ ∗, ε∗a = εa ◦ ∗, ϕ∗a = ϕa ◦ ∗, wt∗ = wt.

In the sequel, we will require the following modified statistics:

ε̃a(v) := max{k′ ≥ 0 : ek′
a v 6= 0}, ϕ̃a(v) := max{k′ ≥ 0 : f k′

a v 6= 0},
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and similarly for ε̃∗a and ϕ̃∗a using e∗a and f ∗a respectively. Note that ε̃a(v) = εa(v) and
ϕ̃a(v) = ϕa(v), as well as for the ∗-versions, when a ∈ Ire. Additionally, for v ∈ B(∞)
and a ∈ I, define

κa(v) :=

{
εa(v) + ε∗a(v) + 〈ha, wt(v)〉 if a ∈ Ire,
εa(v) + ε̃∗a(v)Aaa + 〈ha, wt(v)〉 if a ∈ Iim.

(3.1)

We will appeal to the following statement, which is a generalized Kac–Moody analog
of the result used in [20] coming from [26] (but based on Kashiwara and Saito’s classi-
fication theorem for B(∞) in the Kac–Moody setting from [17]). First, a bicrystal is a set
B with two abstract Uq(g)-crystal structures (B, ea, fa, εa, ϕa, wt) and (B, e◦a , f ◦a , ε◦a, ϕ◦a , wt)
with the same weight function. In such a bicrystal B, we say v ∈ B is a highest weight
element if eav = e◦a v = 0 for all a ∈ I.

Theorem 3.3. Let (B, ea, fa, εa, ϕa, wt) and (B◦, e◦a , f ◦a , ε◦a, ϕ◦a , wt) be connected abstract Uq(g)-
crystals with the same highest weight element v0 ∈ B ∩ B◦ that is the unique element of weight
0, where the remaining crystal data is determined by setting wt(v0) = 0 and εa(v) by Equa-
tion (2.1). Assume further that, for all a 6= b in I and all v ∈ B,

1. fav, f ◦a v 6= 0;
2. f ◦a fbv = fb f ◦a v and ε̃◦a( fbv) = ε̃◦a(v) and ε̃b( f ◦a v) = ε̃b(v);
3. κa(v) = 0 implies fav = f ◦a v;
4. for a ∈ Ire:

(a) κa(v) ≥ 0;
(b) κa(v) ≥ 1 implies ε◦a( fav) = ε◦a(v) and εa( f ◦a v) = εa(v);
(c) κa(v) ≥ 2 implies fa f ◦a v = f ◦a fav;

5. for a ∈ Iim: κa(v) > 0 implies ε̃◦a( fav) = ε̃a(v) and fa f ◦a v = f ◦a fav.

Then (B, ea, fa, εa, ϕa, wt) ∼= B(∞). Moreover, suppose κa(v) = 0 if and only if

κ◦a (v) := ε◦a(v) + ε̃a(v)Aaa + 〈ha, wt(v)〉 = 0

for all a ∈ Iim and v ∈ B. Then (B◦, e◦a , f ◦a , ε◦a, ϕ◦a , wt) ∼= B(∞) with e◦a = e∗a and f ◦a = f ∗a .

Theorem 3.3 is logically equivalent to Theorem 3.1.

4 Rigged configurations

Let H = I × Z>0. A rigged configuration is a sequence of partitions ν = (ν(a) : a ∈ I)
such that each row ν

(a)
i has an integer called a rigging, and we let J =

(
J(a)
i : (a, i) ∈ H

)
,
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where J(a)
i is the multiset of riggings of rows of length i in ν(a). We consider there to

be an infinite number of rows of length 0 with rigging 0; i.e., J(a)
0 = {0, 0, . . . } for all

a ∈ I. The term rigging will be interchanged freely with the term label. We identify two
rigged configurations (ν, J) and (ν̃, J̃) if ν = ν̃ and J(a)

i = J̃(a)
i for any fixed (a, i) ∈ H.

Let (ν, J)(a) denote the rigged partition (ν(a), J(a)).
Define the vacancy numbers of ν to be

p(a)
i (ν) = p(a)

i = − ∑
(b,j)∈H

Aab min(i, j)m(b)
j , (4.1)

where m(a)
i is the number of parts of length i in ν(a) and (Aab)a,b∈I is the underlying

Cartan matrix. The corigging, or colabel, of a row in (ν, J)(a) with rigging x is p(a)
i − x. In

addition, we can extend the vacancy numbers to

p(a)
∞ = lim

i→∞
p(a)

i = −∑
b∈I

Aab|ν(b)|

since ∑∞
j=1 min(i, j)m(b)

j = |ν(b)| for i � 1. Note this is consistent with letting i = ∞ in
Equation (4.1).

Let RC(∞) denote the set of rigged configurations generated by (ν∅, J∅), where ν
(a)
∅ =

0 for all a ∈ I, and closed under the operators ea and fa (a ∈ I) defined next. Recall that,
in our convention, x ≤ 0 since there the string (0, 0) is in each (ν, J)(a).

Definition 4.1. Fix some a ∈ I.

ea: We initially split this into two cases:

a ∈ Ire: Let x be the smallest rigging in (ν, J)(a). If x = 0, then ea(ν, J) = 0.
Otherwise, let r be a row in (ν, J)(a) of minimal length ` with rigging x.

a ∈ Iim: If ν(a) = ∅ or the smallest rigging of (ν, J)(a) is not equal to −1
2 Aaa, then

ea(ν, J) = 0. Otherwise let r be a row with rigging x = −1
2 Aaa.

If ea(ν, J) 6= 0, then ea(ν, J) is the rigged configuration that removes a box from row
r, sets the new rigging of r to be x + 1

2 Aaa, and changes all other riggings such that
the coriggings remain fixed.

fa: Let x be the smallest rigging in (ν, J)(a). Let r be a row in (ν, J)(a) of maximal length
` with rigging x. Then fa(ν, J) is the rigged configuration that adds a box to row r,
sets the new rigging of r to be x − 1

2 Aaa, and changes all other riggings such that
the coriggings remain fixed.
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Define the following additional maps on RC(∞) by

εa(ν, J) =

{
max{k ∈ Z : ek

a(ν, J) 6= 0} if a ∈ Ire,
0 if a ∈ Iim,

ϕa(ν, J) = 〈ha, wt(ν, J)〉+ εa(ν, J),

wt(ν, J) = −∑
a∈I
|ν(a)|αa.

Remark 4.2. The reasoning for the cases in the definition of ea amounts to the definition
of B(∞) for generalized Kac–Moody algebras, which is outlined in Example 2.4. It is
also a manifestation of the tensor product rule in Definition 2.6.

Unlike in the case when a ∈ Ire, there is a lot more structure for (ν, J)(a) when a ∈ Iim.
This is a key observation in our proofs.

Lemma 4.3. Suppose a ∈ Iim and (ν, J) ∈ RC(∞). Then, ν(a) = (1k) and, for any string (i, x)
such that i > 0, we have x ≥ −1

2 Aaa.

Proposition 4.4. With the operations above, RC(∞) is an abstract Uq(g)-crystal.

Proposition 4.5. Let (ν, J) ∈ RC(∞) and fix some a ∈ I. Let x ≤ 0 denote the smallest label in
(ν, J)(a). Then we have εa(ν, J) = −x and ϕa(ν, J) = p(a)

∞ − x.

Definition 4.6. Fix some a ∈ I.

e∗a : We initially split this into two cases:

a ∈ Ire: Let x be the smallest corigging in (ν, J)(a). If x = 0, then e∗a(ν, J) = 0.
Otherwise, let r be a row in (ν, J)(a) of minimal length ` with corigging x.

a ∈ Iim: If ν(a) = ∅ or the smallest corigging of (ν, J)(a) is not equal to −1
2 Aaa,

then e∗a(ν, J) = 0. Otherwise let r be a row with corigging x = −1
2 Aaa.

If e∗a(ν, J) 6= 0, then e∗a(ν, J) is the rigged configuration that removes a box from
row r, sets the rigging of r so that the corigging is x − 1

2 Aaa, and keeps all other
riggings fixed.

f ∗a : Let x be the smallest corigging in (ν, J)(a). Let r be a row in (ν, J)(a) of maximal
length ` with corigging x. Then f ∗a (ν, J) is the rigged configuration that adds a box
to row r, sets the rigging of r so that the corigging is x− 1

2 Aaa, and keeps all other
riggings fixed.

If e∗a removes a box from a row of length ` in (ν, J), then the vacancy numbers change
by the formula

p̃(b)i =

{
p(b)i if i < `,

p(b)i + Aab if i ≥ `.
(4.2)
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On the other hand, if f ∗a adds a box to a row of length `, then the vacancy numbers
change by

p̃(b)i =

{
p(b)i if i ≤ `,

p(b)i − Aab if i > `.
(4.3)

Similar equations hold for ea and fa, respectively. So the riggings of unchanged rows are
changed according to Equation (4.2) and Equation (4.3) under ea and fa, respectively.

Remark 4.7. By Equation (4.2) and Equation (4.3), the crystal operators ea and fa preserve
all colabels of (ν, J) other than the row changed in (ν, J)(a).

Let RC(∞)∗ denote the closure of (ν∅, J∅) under f ∗a and e∗a . We define the remaining
crystal structure by

ε∗a(ν, J) =

{
max{k ∈ Z : (e∗a)k(ν, J) 6= 0} if a ∈ Ire,
0 if a ∈ Iim,

ϕ∗a(ν, J) = 〈ha, wt(ν, J)〉+ ε∗a(ν, J),

wt(ν, J) = −∑
a∈I
|ν(a)|αa.

Proposition 4.8. With the operations above, RC(∞)∗ is an abstract Uq(g)-crystal.

Theorem 4.9. As Uq(g)-crystals, RC(∞) ∼= RC(∞)∗ ∼= B(∞).

Example 4.10. Let I = {1, 2} and

A =

(
−2α −β

−γ −2δ

)
,

such that β, γ ∈ Z≥0 and α, δ ∈ Z>0. Then I = Iim. The top part of the crystal graph
RC(∞) is pictured in Figure 1. For example,

f2 f 3
1 f2(ν∅, J∅) =

3α + γ
2α + γ
α + γ

6α + 2β
6α + 2β
6α + 2β

2δ + 3β

δ

4δ + 3γ
4δ + 3γ

As previously mentioned, the proof of Theorem 4.9 is given by showing the condi-
tions of Theorem 3.3 hold. Thus, we obtain the following corollary as in [20].

Corollary 4.11. The ∗-involution on RC(∞) is given by replacing every rigging x of a row of
length i in (ν, J)(a) by the corresponding corigging p(a)

i − x for all (a, i) ∈ H.

We can describe highest weight crystals B(λ) by utilizing Theorem 2.9. We give this
explicitly on rigged configurations by defining new crystal operators f ′a(ν, J) as fa(ν, J)
unless p(a)

i < x + 〈ha, λ〉 for some (a, i) ∈ H and x ∈ J(a)
i or ϕa(ν, J) = 0 for a ∈ Iim, in

which case f ′a(ν, J) = 0. Let RC(λ) denote the closure of (ν∅, J∅) under f ′a.

Theorem 4.12. Let λ ∈ P+. Then RC(λ) ∼= B(λ).
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∅ ∅

α ∅ ∅ δ

2α
α

∅ α+ γ δ α δ + β ∅ 2δ
δ

3α
2α
α

∅ 2α+ γ
α+ γ

δ 2α+ γ
α

δ + β 2α
α

δ + 2β α+ 2γ 2δ
δ

α+ γ 2δ + β
δ

α 2δ + β
δ + β

∅ 3δ
2δ
δ

...
...

...
...

...
...

...
...

1

Figure 1: Top of the crystal graph for a purely imaginary Borcherds–Cartan matrix in
terms of rigged configurations. Here, the blue arrows correspond to f1 and the red
arrows correspond to f2.
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