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Proof of Chapoton’s conjecture on Newton
polygons of g-Ehrhart polynomials
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Abstract. Recently, Chapoton found a g-analog of Ehrhart polynomials, which are
polynomials in x whose coefficients are rational functions in q. Chapoton conjectured
the shape of the Newton polygon of the numerator of the g-Ehrhart polynomial of an
order polytope. In this paper, we prove Chapoton’s conjecture.
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1 Introduction

In 1962, Ehrhart [5] discovered certain polynomials associated to lattice polytopes. These
polynomials are now widely known and called Ehrhart polynomials. They contain im-
portant information of lattice polytopes such as the number of lattice points in the poly-
tope, the number of lattice points in the relative interior and the relative volume of the
polytope.

Recently, Chapoton [4] found a g-analog of Ehrhart polynomials and generalized
some properties of them. A g-Ehrhart polynomial is a polynomial in variable x whose
coefficients are rational functions in 4. Thus we can write a g-Ehrhart polynomial as a
rational function in g and x whose numerator is a polynomial in 4 and x, and whose
denominator is a polynomial in 4. In the same paper, Chapoton conjectured the shape
of the Newton polygon of the numerator of the g-Ehrhart polynomial associated to an
order polytope. The goal of this paper is to prove Chapoton’s conjecture.

First, we briefly review basic properties of Ehrhart polynomials and their g-analogs.
See [1, 3, 2] for more details in Ehrhart polynomials.

A point in R™ is called a lattice point if all the coordinates are integers. A lattice
polytope is a polytope whose vertices are lattice points. All polytopes considered in this
paper are lattice polytopes.

For a polytope M and an integer n, we denote by nM the dilation of M by a scale
factor of n, i.e.,

nM = {nx:x € M}.
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For a lattice polytope M in IR™, there exists a polynomial E(x), called the Ehrhart polyno-
mial of M, satisfying the following interesting properties:

e E(n) = [nMNZ™"| for all integers n > 0.

o (—1)4MME(_p) = |[nM° N Z™| for all integers n > 0, where dim M is the dimen-
sion of M and M° is the relative interior of M.

e The degree of E(x) is equal to the dimension of M.
e The leading coefficient of E(x) is equal to the relative volume of M.

For a polytope M in R", let

W(Mq) = Y. 4",
xeMNZMm

where for x = (x1,...,x,) we denote
|x| :x1_|_..._|_xm.
We use the standard notation for g-integers: for n € Z,

1-4"
[n]q:: 1_q’

and, for integers n > k > 0,

[yt = [11,02], - ], mq = %

Note that for n > 0 and a4,b € Z, we have

Chapoton [4, Theorem 3.1] found a g-analog of Ehrhart polynomials as follows.
Theorem 1.1 (Chapoton). Let M be a polytope satisfying the following conditions:

e For every vertex x of M, we have |x| > 0.

e For every edge between two vertices x and y of M, we have |x| # |y]|.

Then there is a polynomial E(x) € Q(q)[x] such that for every integer n > 0,
E([n]g) = W(nM, q).
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The polynomial E(x) in Theorem 1.1 is called the g-Ehrhart polynomial of the polytope
M. We note that in [4], more generally, Chapoton considers a linear form A(x) on R" in
place of |x|. In this setting with a linear form, Chapoton [4, Theorem 3.5] also shows a
nice g-analog of the Ehrhart-Macdonald reciprocity:

E([-n]g) = (=)™ MW(nM®,1/q).

We note that Kim and Stanton [7, Theorem 9.3] showed that the leading coefficient
of the g-Ehrhart polynomial of an order polytope is equal to the g-volume of the order
polytope, which is defined as a Jackson’s g-integral over the order polytope.

In order to state Chapoton’s conjecture we need some notation and terminology.

For a polynomial f(x1,...,x;) in x1,...,x, we denote by [x{' ... x}]f(x1,...,x,) the
coefficient of xll1 . ..xllc" in f(x1,...,xx). For a polynomial f(x1,...,xx) in xq,...,x, the
Newton polytope of f(x1,...,xx), denoted by Newton(f(xq,...,xx)), is the convex hull of
the points (i,..., i) such that [x}'...x}]f(x1,...,x¢) # 0. In this paper, we consider
Newton polygons, which are Newton polytopes of two-variable functions.

For a poset P on {1,2,...,m}, the order polytope O(P) of P is defined by

O(P) = {(xl,...,xm) < [O,l]m cx < X; ifi <p ]}

As mentioned in [4], using the properties of vertices and edges of an order polytope
in [9] one can check that every order polytope satisfies the conditions in Theorem 1.1.
Therefore, we can consider the g-Ehrhart polynomial of an order polytope.

Let Ep(x) be the g-Ehrhart polynomial of O(P). We denote by Np(g, x) be the numer-
ator of Ep(x). More precisely, Np(g, x) is the unique polynomial in Z[g, x] with positive
leading coefficient such that

Ep(x) = —NII;(Z;)X) ,

for some polynomial D(g) € Z[q] with gcd(Np(g,x), D(gq)) = 1.

Forintegers 1 <ay <ay <---<apand h > a; + - - -+ a,, we define C(ay, ..., amu; h)
to be the convex hull of the points (0,0), (a7 +--- +4a;,i) for 1 < i < m, (h,m) and
(h —m,0). See Figure 1 for an example.

Let P be a poset and x € P. A chain ending at x (resp. starting at x) is a subset
{t1 <p -+ <p tx} of P with t; = x (resp. 1 = x). The size of a chain is the number
of elements in the chain. We denote by mcp(x) the maximum size of a chain ending at
x. We also denote by mcp(x) the maximum size of a chain starting at x. When there is
no possible confusion, we will simply write as mc(x) and mc(x) instead of mcp(x) and
m_cP(x).

In [4, Conjecture 5.3], Chapoton proposed the following conjecture on the shape of
the Newton polygon of Np(g, x).
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Figure 1: The polygon C(1,2,2,3;10) in the (g, x)-coordinate system.

Conjecture 1.2. Let P be a poset on {1,2,...,m}. Suppose that a1 < ay < -+ < ay,
is the increasing rearrangement of mc(1),...,mc(m). Then the Newton polygon of the
numerator of the g-Ehrhart polynomial of O(P) is given by

Newton(Np(g,x)) = C(ay,...,am;h),
for some integer h > a; + - - - + ay,.

The goal of this paper is to prove Conjecture 1.2. As Chapoton points out in [4],
the g-Ehrhart polynomial Ep(x) of O(P) can be understood as a generating function for
P-partitions of P, the dual poset of P. It is well-known that the generating function for
P-partitions can be expressed in terms of linear extensions of the poset. One of the main
ingredients of our proof of Conjecture 1.2 is Corollary 3.4, which gives a description of
the minimum of maj(7r) — kdes(7t) over all linear extensions 7t of P.

The rest of this paper is organized as follows. In Section 2, we recall necessary defi-
nitions and state our main result (Theorem 2.5), which describes the precise shape of the
Newton polygon of [m];!Ep(x). Then we show that Theorem 2.5 implies Conjecture 1.2.
In Section 3 we find some property of the linear extensions of a poset. In Section 4 we
prove Theorem 2.5.

This is an extended abstract of [6].

2 The main result

In this section we state our main theorem, which implies Conjecture 1.2.

We first recall some definitions on permutations and posets. We refer the reader to
[8] for more details.

The set of nonnegative integers is denoted by IN.

Let G, be the set of permutations of {1,2,...,m}. For m = 71 ... 71y € &, a descent
of 7t is an integer 1 < i < m — 1 such that 77; > ;1. We denote by Des(7r) the set of
descents of 7r. We define maj(71) = Y jcpes(r) i and des(7r) = | Des(7)|.

Let P be a poset on {1,2,...,m}. A P-partition is an order-reversing map ¢ : P — N,
ie., o(x) > o(y) if x <p y. For a P-partition o, let |c| = ¢(1) + - - - + o(m). We denote by
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P (P) the set of P-partitions. For an integer 1, we denote by P (P, n) the set of P-partitions
o satisfying o(x) < n for all x € P.

We say that P is naturally labeled if x <p y implies x < y. A linear extension of P is a
permutation 7 = 711 ... 7T, € &y such that 7r; <p 7; implies i < j. We denote by L(P)
the set of linear extensions of P. Note that if P is naturally labeled, £(P) always contains
the identity permutation.

We need the following lemma, which gives a connection between certain generating
functions for P(P,n) and L(P).

Lemma 2.1. For a naturally labeled poset P on {1,2,...,m}, we have

y q"" > qmaj(n) {n — des(7) + m]q.

oeP(Pn) neL(P) m

Proof. For a permutation w € &, let S;, denote the set of all functions f : P — IN
satisfying the following conditions:

o fw) > flws) > - > flwn) and
) f(wl) > f(wi+1) ifi e Des(w).
It is well known [8, Lemma 3.15.3] that

P(P)= | S
neL(P)

Let Sz(n) = Sx NP(P,n). Then we have

P(P,n)= | Sx(n).
neL(P)

Thus,

IRAESS ol VIR oD SR
ceP(Pn) neL(P) ceSy(n) neLl(P) n>ig>->ip>0
i]'>i]‘+1 if jeDes(r)

It is shown in [7, Lemma 4.5] that

Z qi1+-~-+im — qmaj(rr) n— des(ﬂ) +m
m .

n>ip > >im >0
>ij 1 if j€Des(m)

}j

which completes the proof. O
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For a poset P, we denote its dual by P, that is, x <p y if and only if y <7 x. By
definition, for a poset P and an integer n € IN, we have

W(nO(P),q)= Y. q". (2.1)

c€P(Pn)

Therefore, the g-Ehrhart polynomial Ep(x) of O(P) is closely related to P-partitions of P.
The next proposition shows that Ep(x) can be written as a generating function for linear
extensions of P.

Proposition 2.2. Let P be a poset on {1,2,...,m}. Suppose that P is naturally labeled. Then
the q-Ehrhart polynomial of O(P) is

Ep(x) = b ) gm H i —des(m)], + gi—des(m ),
[m]ﬂi' nel(P) i=1
Proof. Let f(x) be the right hand side. Then
ma izqli — des(7) + n] mai(7) [ — des(7r) + m
qu qzqu(ﬂ)[ 17(1) }
q

nez( ) ]! neL(P)

On the other hand, by Lemma (2.1) and (2.1), we have
W(HO(P),q) _ Z qmaj(n) [Vl — des(ﬂ) + m} .
el (D) mn q
Thus f([n];) = W(nO(P),q) for all n € IN and we obtain Ep(x) = f(x). O
Now we define a polynomial Fp(g, x) in g and x, which will be used throughout this
paper.
Definition 2.3. For a poset P on {1,2,...,m}, we define

Fp(g,x)= Y, qm(™

neL(P) i

([i — des(m)]y +4" ),

s

Il
—_

Note that we always have Fp(q,x) € Z[q, x| because for every m € L(P), the power
of g in each summand is at least

a0 +desz(:n)(i—des(7r)) . (des(TC) + 1) N (des(n) +1) ~des(n)? > 0.

i=1 2 2
Proposition 2.2 implies that for a naturally labeled poset P on {1,2,...,m}, we have
Fp(q,x) = [l Ep(x). 2)
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Proposition 2.4. Let P be a poset on {1,2,...,m} such that P is naturally labeled. Suppose
that ay < ay < --- < ay, is the increasing rearrangement of mc(1), ..., mc(m). Then we have

Newton(Np(q,x)) = C(ay,...,am;h),
for some h > ay + - - - + ay, if and only if
Newton(Fs(q,x)) = C(ay, ..., am '),

for some W > ay+--- 4+ ay. Moreover, in this case we always have W = h+r, where r =
deg¢(q) and ¢(q) = ged(Fp(q, x), [m]q!).
Proof. By (2.2), we have

F5(g,x) = Np(g,x)$(q)-

Since ¢(q) divides [m],!, the leading coefficient and the constant term of ¢(g) are both 1.
Thus, we have

$(q)=q +cag T+ +ag +1,

for some ¢y,...,c,_1 € Z. Hence, for each 1 < k < m, we have
max{i : [7'x*|Np(q, x) # 0} = max{i : [qurTxk]l%(q,x) # 0},
min{i : [q'x"|Np(q,x) # 0} = min{i : [q'x"|F5(q, x) # 0},
which imply the statement. O
Now we state our main theorem.

Theorem 2.5. Let P be a naturally labeled poset on {1,2,...,m}. Let by < by < --- < by, be
the increasing rearrangement of mc(1), mc(2),...,mc(m). Then the Newton polygon of

m

Fp(q,x) = [m]q!Ep(x) = Z maj(7t H i— des +qi—des(n)x)

meL(P) i=1

is given by

Newton (Fp(q, x)) = C <b1, b (’”; 1>> |

We prove Theorem 2.5 in Section 4. Note that in Theorem 2.5 we have

oo ("31),

which follows from the fact that by = 1 and b; 1 < b; + 1 for all i.
We finish this section by showing that Theorem 2.5 implies Conjecture 1.2.
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Proof of Conjecture 1.2. Note that relabeling of P does not affect Ep(q,x). Hence, we
can assume that P is naturally labeled. Observe that mcp(x) = mcp(x) for all x €
{1,2,...,m}. By Theorem 2.5,

1
Newton(Fp(q,x)) =C (al,...,am; (m; )) :
By Proposition 2.4, we obtain that
Newton(Np(gq,x)) = C(ay,...,am;h),

for some integer i > a; + - - - + a,;. This completes the proof. O

3 Some properties of linear extensions

In this section we prove some properties of posets which will be used in the next section.

Lemma 3.1. Let P be a naturally labeled poset on {1,2,...,m} and = € L(P). Suppose that
Des(7t) # @ and c is the largest descent of 7. Then there is a permutation o € L(P) such that
Des(c) = Des(7) \ {c}.

Definition 3.2. Let 1 = 17... 71, € G, A descent block of 7t is a maximal consecutive
subsequence of 7t which is in decreasing order. We denote by DB;(77) the set of elements
in the ith descent block of 7.

For example, if T = 384196725, then the descent blocks of 7 are 3, 841, 96, 72, 5, and
DB, (7r) = {3}, DBy(71) = {1,4,8}, DBs(7r) = {6,9}, DB4(7r) = {2,7}, DBs(71) = {5}.
The following proposition is the key ingredient for proving Chapoton’s conjecture.

Proposition 3.3. Let P be a naturally labeled poset on {1,2,...,m}. Suppose that by < by <
-+ - < by, is the increasing rearrangement of mc(1), me(2), ..., me(m) and

Ci={x € P:mc(x) =i}.

Then, for T € L(P) and 0 < k < m, we have
k+1
maj(7t) — kdes(m) + < —; ) >by+ -+ by

The equality holds if and only if all of the following conditions hold:
e Des(mt) C {1,2,...,k},
e DBi(r) =C;, for1 <i<p-—1,
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e DB,(1) C Cp,
where p is the integer satisfying
Cal 4+ |Cpoa] <k < [Cal 4+ +Cyl.
Furthermore, for every 0 < k < m, there is a permutation in L(P) satisfying these conditions.

The following corollary is an immediate consequence of Proposition 3.3.

Corollary 3.4. Let P be a naturally labeled poset on {1,2,...,m}. Suppose that by < by, <
- < by, is the increasing rearrangement of me(1), me(2),...,mc(m). Then, for 0 < k < m,
we have

min {maj(n) —kdes(m) + <k—£1) = ﬁ(P)} b+ + by
Moreover, for 1 < k < m, if P is not a chain, we have
min {maj(n) — kdes(m) + (k—;1> :me L(P),1<des(m) < k} =by+ -+ b

Note that Corollary 3.4 allows us to find the minimum of maj(7t) — kdes(7r) over
7t € L(P). The second part of Corollary 3.4 means that if 1 < k < m and P is not a chain,
the minimum of maj(7r) — kdes(7) + (kH) for all m € L(P) is attained for w € L(P)
satisfying 1 < des(7r) < k. This will be used in the next section.

4 Proof of Theorem 2.5

In this section we assume that P is a naturally labeled poset on {1,2,...,m} and b; <
by < --- < by is the increasing rearrangement of mc(1),...,mc(m).
For a polynomial f(gq) in g, define

qmax (f(q)) = max{i : [Eli]f(ﬂl) # 0},
gmin(f(q)) = min{i : [¢']f(q) # 0}

When f(g) = 0, we use the following convention:

Qmax(o) = —0o0, Qmin(o) = ©0.

Recall that
m
Fp(g,x) = Y g™ OTT([i — des(m)], + ¢~ 9e(Px)
neL(P) i=1
m—1
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Since P is naturally labeled, £(P) contains the identity permutation. Therefore,

Fp(gq,x) = A+ B, (4.1)
where
m .
A=TT(g"x +[iy),
i=1
m—1 ) s—1 m—s
B:xz qma]()(ZHx—l] qu—|—
s=1 weL(P),des(mr)=s i=1 i=1

qmax([xO]FP(q/x)) = (T;)/ qmin([xO]FP(q,X)) =0.

Therefore, in order to prove Theorem 2.5, it suffices to show the following two proposi-
tions.

Proposition 4.1. For 1 < k < m, we have

m
gmax([x*]Fp (g, x)) = (2) + k.
Proposition 4.2. For 1 < k < m, we have

qmin([xk]Fp(q,X)) =by+-+ by
Proof of Proposition 4.1. By (4.1), it is enough to show that

gmax ([¥]A) = (r;) +k, 4.2)
gmax ([x]B) < (’g) + k. (4.3)

In order to get the largest power of 4, when we expand the product in A, we must select
g'x or g¢'—1. This implies (4.2).
To prove (4.3), consider 7w € &, with des(7t) =s > 1. Then

Therefore, we obtain (4.3). O



Proof of Chapoton’s conjecture on Newton polygons of g-Ehrhart polynomials 11

The rest of this section is devoted to proving Proposition 4.2.
For m € &, with des() =s > 1 and an integer 1 < k < m, let

[uy

S5— m—

t(?‘[,k) — [xk—l]qmaj(ﬂ)_(s) 1—[ q x+ (4.4)
i i=1

Q'}

IX
—_

Then we always have

Gonin (E(7T, ) > maj(77) — (desz(”)). 45)

We need the following two lemmas.

Lemma 4.3. Let m € &, with des(rr) = s > 1. Then, for s < k < m, we have

fmin(t(,)) = maj(m) ks + (1)

Lemma 4.4. Let P be a naturally labeled poset on {1,2,...,m}. Suppose that P is not a chain.
Then, for 1 < k < m, we have

Gmin ([*]B) = min {maj(n) — kdes(m) + (k;rl) :te L(P),1<des(r) < k} :

Now we give a proof of Proposition 4.2.

Proof of Proposition 4.2. First, observe that

tmn((¥12) = (1),

If P is a chain, then the identity permutation is the only linear extension of P. In this
case B =0and b; = i. Thus

foin(#0(0,)) = min([3414) = (5 1) =br-+ o+

Now suppose that P is not a chain. By Lemma 4.4 and Corollary 3.4 we have

qmin([xk]B) —b 4 +b < <k42rl).

Therefore we also obtain

Gmin([XX]Fp(q, %)) = by + - - - + by 0
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