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Proof of Chapoton’s conjecture on Newton
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Abstract. Recently, Chapoton found a q-analog of Ehrhart polynomials, which are
polynomials in x whose coefficients are rational functions in q. Chapoton conjectured
the shape of the Newton polygon of the numerator of the q-Ehrhart polynomial of an
order polytope. In this paper, we prove Chapoton’s conjecture.
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1 Introduction

In 1962, Ehrhart [5] discovered certain polynomials associated to lattice polytopes. These
polynomials are now widely known and called Ehrhart polynomials. They contain im-
portant information of lattice polytopes such as the number of lattice points in the poly-
tope, the number of lattice points in the relative interior and the relative volume of the
polytope.

Recently, Chapoton [4] found a q-analog of Ehrhart polynomials and generalized
some properties of them. A q-Ehrhart polynomial is a polynomial in variable x whose
coefficients are rational functions in q. Thus we can write a q-Ehrhart polynomial as a
rational function in q and x whose numerator is a polynomial in q and x, and whose
denominator is a polynomial in q. In the same paper, Chapoton conjectured the shape
of the Newton polygon of the numerator of the q-Ehrhart polynomial associated to an
order polytope. The goal of this paper is to prove Chapoton’s conjecture.

First, we briefly review basic properties of Ehrhart polynomials and their q-analogs.
See [1, 3, 2] for more details in Ehrhart polynomials.

A point in Rm is called a lattice point if all the coordinates are integers. A lattice
polytope is a polytope whose vertices are lattice points. All polytopes considered in this
paper are lattice polytopes.

For a polytope M and an integer n, we denote by nM the dilation of M by a scale
factor of n, i.e.,

nM = {nx : x ∈ M}.
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For a lattice polytope M in Rm, there exists a polynomial E(x), called the Ehrhart polyno-
mial of M, satisfying the following interesting properties:

• E(n) = |nM ∩Zm| for all integers n ≥ 0.

• (−1)dim ME(−n) = |nM◦ ∩Zm| for all integers n ≥ 0, where dim M is the dimen-
sion of M and M◦ is the relative interior of M.

• The degree of E(x) is equal to the dimension of M.

• The leading coefficient of E(x) is equal to the relative volume of M.

For a polytope M in Rm, let

W(M, q) = ∑
x∈M∩Zm

q|x|,

where for x = (x1, . . . , xm) we denote

|x| = x1 + · · ·+ xm.

We use the standard notation for q-integers: for n ∈ Z,

[n]q :=
1− qn

1− q
,

and, for integers n ≥ k ≥ 0,

[n]q! := [1]q[2]q . . . [n]q,
[

n
k

]
q

:=
[n]q!

[k]q![n− k]q!
.

Note that for n ≥ 0 and a, b ∈ Z, we have

[n]q = 1 + q + q2 + · · ·+ qn−1,
[−n]q = −q−n[n]q,

[a + b]q = [a]q + qa[b]q.

Chapoton [4, Theorem 3.1] found a q-analog of Ehrhart polynomials as follows.

Theorem 1.1 (Chapoton). Let M be a polytope satisfying the following conditions:

• For every vertex x of M, we have |x| ≥ 0.

• For every edge between two vertices x and y of M, we have |x| 6= |y|.

Then there is a polynomial E(x) ∈ Q(q)[x] such that for every integer n ≥ 0,

E([n]q) = W(nM, q).
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The polynomial E(x) in Theorem 1.1 is called the q-Ehrhart polynomial of the polytope
M. We note that in [4], more generally, Chapoton considers a linear form λ(x) on Rm in
place of |x|. In this setting with a linear form, Chapoton [4, Theorem 3.5] also shows a
nice q-analog of the Ehrhart–Macdonald reciprocity:

E([−n]q) = (−1)dim MW(nM◦, 1/q).

We note that Kim and Stanton [7, Theorem 9.3] showed that the leading coefficient
of the q-Ehrhart polynomial of an order polytope is equal to the q-volume of the order
polytope, which is defined as a Jackson’s q-integral over the order polytope.

In order to state Chapoton’s conjecture we need some notation and terminology.
For a polynomial f (x1, . . . , xk) in x1, . . . , xk, we denote by [xi1

1 . . . xik
k ] f (x1, . . . , xk) the

coefficient of xi1
1 . . . xik

k in f (x1, . . . , xk). For a polynomial f (x1, . . . , xk) in x1, . . . , xk, the
Newton polytope of f (x1, . . . , xk), denoted by Newton( f (x1, . . . , xk)), is the convex hull of
the points (i1, . . . , ik) such that [xi1

1 . . . xik
k ] f (x1, . . . , xk) 6= 0. In this paper, we consider

Newton polygons, which are Newton polytopes of two-variable functions.
For a poset P on {1, 2, . . . , m}, the order polytope O(P) of P is defined by

O(P) = {(x1, . . . , xm) ∈ [0, 1]m : xi ≤ xj if i ≤P j}.

As mentioned in [4], using the properties of vertices and edges of an order polytope
in [9] one can check that every order polytope satisfies the conditions in Theorem 1.1.
Therefore, we can consider the q-Ehrhart polynomial of an order polytope.

Let EP(x) be the q-Ehrhart polynomial of O(P). We denote by NP(q, x) be the numer-
ator of EP(x). More precisely, NP(q, x) is the unique polynomial in Z[q, x] with positive
leading coefficient such that

EP(x) =
NP(q, x)

D(q)
,

for some polynomial D(q) ∈ Z[q] with gcd(NP(q, x), D(q)) = 1.
For integers 1 ≤ a1 ≤ a2 ≤ · · · ≤ am and h ≥ a1 + · · ·+ am, we define C(a1, . . . , am; h)

to be the convex hull of the points (0, 0), (a1 + · · · + ai, i) for 1 ≤ i ≤ m, (h, m) and
(h−m, 0). See Figure 1 for an example.

Let P be a poset and x ∈ P. A chain ending at x (resp. starting at x) is a subset
{t1 <P · · · <P tk} of P with tk = x (resp. t1 = x). The size of a chain is the number
of elements in the chain. We denote by mcP(x) the maximum size of a chain ending at
x. We also denote by mcP(x) the maximum size of a chain starting at x. When there is
no possible confusion, we will simply write as mc(x) and mc(x) instead of mcP(x) and
mcP(x).

In [4, Conjecture 5.3], Chapoton proposed the following conjecture on the shape of
the Newton polygon of NP(q, x).
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Figure 1: The polygon C(1, 2, 2, 3; 10) in the (q, x)-coordinate system.

Conjecture 1.2. Let P be a poset on {1, 2, . . . , m}. Suppose that a1 ≤ a2 ≤ · · · ≤ am
is the increasing rearrangement of mc(1), . . . , mc(m). Then the Newton polygon of the
numerator of the q-Ehrhart polynomial of O(P) is given by

Newton(NP(q, x)) = C(a1, . . . , am; h),

for some integer h ≥ a1 + · · ·+ am.

The goal of this paper is to prove Conjecture 1.2. As Chapoton points out in [4],
the q-Ehrhart polynomial EP(x) of O(P) can be understood as a generating function for
P-partitions of P, the dual poset of P. It is well-known that the generating function for
P-partitions can be expressed in terms of linear extensions of the poset. One of the main
ingredients of our proof of Conjecture 1.2 is Corollary 3.4, which gives a description of
the minimum of maj(π)− k des(π) over all linear extensions π of P.

The rest of this paper is organized as follows. In Section 2, we recall necessary defi-
nitions and state our main result (Theorem 2.5), which describes the precise shape of the
Newton polygon of [m]q!EP(x). Then we show that Theorem 2.5 implies Conjecture 1.2.
In Section 3 we find some property of the linear extensions of a poset. In Section 4 we
prove Theorem 2.5.

This is an extended abstract of [6].

2 The main result

In this section we state our main theorem, which implies Conjecture 1.2.
We first recall some definitions on permutations and posets. We refer the reader to

[8] for more details.
The set of nonnegative integers is denoted by N.
Let Sm be the set of permutations of {1, 2, . . . , m}. For π = π1 . . . πm ∈ Sm, a descent

of π is an integer 1 ≤ i ≤ m− 1 such that πi > πi+1. We denote by Des(π) the set of
descents of π. We define maj(π) = ∑i∈Des(π) i and des(π) = |Des(π)|.

Let P be a poset on {1, 2, . . . , m}. A P-partition is an order-reversing map σ : P→ N,
i.e., σ(x) ≥ σ(y) if x ≤P y. For a P-partition σ, let |σ| = σ(1) + · · ·+ σ(m). We denote by
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P(P) the set of P-partitions. For an integer n, we denote by P(P, n) the set of P-partitions
σ satisfying σ(x) ≤ n for all x ∈ P.

We say that P is naturally labeled if x ≤P y implies x ≤ y. A linear extension of P is a
permutation π = π1 . . . πm ∈ Sm such that πi ≤P πj implies i ≤ j. We denote by L(P)
the set of linear extensions of P. Note that if P is naturally labeled, L(P) always contains
the identity permutation.

We need the following lemma, which gives a connection between certain generating
functions for P(P, n) and L(P).

Lemma 2.1. For a naturally labeled poset P on {1, 2, . . . , m}, we have

∑
σ∈P(P,n)

q|σ| = ∑
π∈L(P)

qmaj(π)

[
n− des(π) + m

m

]
q
.

Proof. For a permutation w ∈ Sm, let Sw denote the set of all functions f : P → N

satisfying the following conditions:

• f (w1) ≥ f (w2) ≥ · · · ≥ f (wm) and

• f (wi) > f (wi+1) if i ∈ Des(w).

It is well known [8, Lemma 3.15.3] that

P(P) =
⊎

π∈L(P)

Sπ.

Let Sπ(n) = Sπ ∩ P(P, n). Then we have

P(P, n) =
⊎

π∈L(P)

Sπ(n).

Thus,
∑

σ∈P(P,n)
q|σ| = ∑

π∈L(P)
∑

σ∈Sπ(n)
q|σ| = ∑

π∈L(P)
∑

n≥i1≥···≥im≥0
ij>ij+1 if j∈Des(π)

qi1+···+im .

It is shown in [7, Lemma 4.5] that

∑
n≥i1≥···≥im≥0

ij>ij+1 if j∈Des(π)

qi1+···+im = qmaj(π)

[
n− des(π) + m

m

]
q
,

which completes the proof.
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For a poset P, we denote its dual by P, that is, x ≤P y if and only if y ≤P x. By
definition, for a poset P and an integer n ∈N, we have

W(nO(P), q) = ∑
σ∈P(P,n)

q|σ|. (2.1)

Therefore, the q-Ehrhart polynomial EP(x) of O(P) is closely related to P-partitions of P.
The next proposition shows that EP(x) can be written as a generating function for linear
extensions of P.

Proposition 2.2. Let P be a poset on {1, 2, . . . , m}. Suppose that P is naturally labeled. Then
the q-Ehrhart polynomial of O(P) is

EP(x) =
1

[m]q! ∑
π∈L(P)

qmaj(π)
m

∏
i=1

([i− des(π)]q + qi−des(π)x).

Proof. Let f (x) be the right hand side. Then

f ([n]q) = ∑
π∈L(P)

qmaj(π) ∏m
i=1[i− des(π) + n]q

[m]q!
= ∑

π∈L(P)

qmaj(π)

[
n− des(π) + m

m

]
q
.

On the other hand, by Lemma (2.1) and (2.1), we have

W(nO(P), q) = ∑
π∈L(P)

qmaj(π)

[
n− des(π) + m

m

]
q
.

Thus f ([n]q) = W(nO(P), q) for all n ∈N and we obtain EP(x) = f (x).

Now we define a polynomial FP(q, x) in q and x, which will be used throughout this
paper.

Definition 2.3. For a poset P on {1, 2, . . . , m}, we define

FP(q, x) = ∑
π∈L(P)

qmaj(π)
m

∏
i=1

([i− des(π)]q + qi−des(π)x).

Note that we always have FP(q, x) ∈ Z[q, x] because for every π ∈ L(P), the power
of q in each summand is at least

maj(π) +
des(π)

∑
i=1

(i− des(π)) ≥
(

des(π) + 1
2

)
+

(
des(π) + 1

2

)
− des(π)2 ≥ 0.

Proposition 2.2 implies that for a naturally labeled poset P on {1, 2, . . . , m}, we have

FP(q, x) = [m]q!EP(x). (2.2)
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Proposition 2.4. Let P be a poset on {1, 2, . . . , m} such that P is naturally labeled. Suppose
that a1 ≤ a2 ≤ · · · ≤ am is the increasing rearrangement of mc(1), . . . , mc(m). Then we have

Newton(NP(q, x)) = C(a1, . . . , am; h),

for some h ≥ a1 + · · ·+ am if and only if

Newton(FP(q, x)) = C(a1, . . . , am; h′),

for some h′ ≥ a1 + · · · + am. Moreover, in this case we always have h′ = h + r, where r =
deg φ(q) and φ(q) = gcd(FP(q, x), [m]q!).

Proof. By (2.2), we have
FP(q, x) = NP(q, x)φ(q).

Since φ(q) divides [m]q!, the leading coefficient and the constant term of φ(q) are both 1.
Thus, we have

φ(q) = qr + cr−1qr−1 + · · ·+ c1q1 + 1,

for some c1, . . . , cr−1 ∈ Z. Hence, for each 1 ≤ k ≤ m, we have

max{i : [qixk]NP(q, x) 6= 0} = max{i : [qi+rxk]FP(q, x) 6= 0},

min{i : [qixk]NP(q, x) 6= 0} = min{i : [qixk]FP(q, x) 6= 0},

which imply the statement.

Now we state our main theorem.

Theorem 2.5. Let P be a naturally labeled poset on {1, 2, . . . , m}. Let b1 ≤ b2 ≤ · · · ≤ bm be
the increasing rearrangement of mc(1), mc(2), . . . , mc(m). Then the Newton polygon of

FP(q, x) = [m]q!EP(x) = ∑
π∈L(P)

qmaj(π)
m

∏
i=1

([i− des(π)]q + qi−des(π)x)

is given by

Newton(FP(q, x)) = C
(

b1, . . . , bm;
(

m + 1
2

))
.

We prove Theorem 2.5 in Section 4. Note that in Theorem 2.5 we have

b1 + · · ·+ bm ≤
(

m + 1
2

)
,

which follows from the fact that b1 = 1 and bi+1 ≤ bi + 1 for all i.
We finish this section by showing that Theorem 2.5 implies Conjecture 1.2.
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Proof of Conjecture 1.2. Note that relabeling of P does not affect EP(q, x). Hence, we
can assume that P is naturally labeled. Observe that mcP(x) = mcP(x) for all x ∈
{1, 2, . . . , m}. By Theorem 2.5,

Newton(FP(q, x)) = C
(

a1, . . . , am;
(

m + 1
2

))
.

By Proposition 2.4, we obtain that

Newton(NP(q, x)) = C(a1, . . . , am; h),

for some integer h ≥ a1 + · · ·+ am. This completes the proof.

3 Some properties of linear extensions

In this section we prove some properties of posets which will be used in the next section.

Lemma 3.1. Let P be a naturally labeled poset on {1, 2, . . . , m} and π ∈ L(P). Suppose that
Des(π) 6= ∅ and c is the largest descent of π. Then there is a permutation σ ∈ L(P) such that
Des(σ) = Des(π) \ {c}.

Definition 3.2. Let π = π1 . . . πm ∈ Sm. A descent block of π is a maximal consecutive
subsequence of π which is in decreasing order. We denote by DBi(π) the set of elements
in the ith descent block of π.

For example, if π = 384196725, then the descent blocks of π are 3, 841, 96, 72, 5, and
DB1(π) = {3}, DB2(π) = {1, 4, 8}, DB3(π) = {6, 9}, DB4(π) = {2, 7}, DB5(π) = {5}.

The following proposition is the key ingredient for proving Chapoton’s conjecture.

Proposition 3.3. Let P be a naturally labeled poset on {1, 2, . . . , m}. Suppose that b1 ≤ b2 ≤
· · · ≤ bm is the increasing rearrangement of mc(1), mc(2), . . . , mc(m) and

Ci = {x ∈ P : mc(x) = i}.

Then, for π ∈ L(P) and 0 ≤ k ≤ m, we have

maj(π)− k des(π) +

(
k + 1

2

)
≥ b1 + · · ·+ bk.

The equality holds if and only if all of the following conditions hold:

• Des(π) ⊆ {1, 2, . . . , k},

• DBi(π) = Ci, for 1 ≤ i ≤ p− 1,
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• DBp(π) ⊆ Cp,

where p is the integer satisfying

|C1|+ · · ·+ |Cp−1| < k ≤ |C1|+ · · ·+ |Cp|.

Furthermore, for every 0 ≤ k ≤ m, there is a permutation in L(P) satisfying these conditions.

The following corollary is an immediate consequence of Proposition 3.3.

Corollary 3.4. Let P be a naturally labeled poset on {1, 2, . . . , m}. Suppose that b1 ≤ b2 ≤
· · · ≤ bm is the increasing rearrangement of mc(1), mc(2), . . . , mc(m). Then, for 0 ≤ k ≤ m,
we have

min
{

maj(π)− k des(π) +

(
k + 1

2

)
: π ∈ L(P)

}
= b1 + · · ·+ bk.

Moreover, for 1 ≤ k ≤ m, if P is not a chain, we have

min
{

maj(π)− k des(π) +

(
k + 1

2

)
: π ∈ L(P), 1 ≤ des(π) ≤ k

}
= b1 + · · ·+ bk.

Note that Corollary 3.4 allows us to find the minimum of maj(π) − k des(π) over
π ∈ L(P). The second part of Corollary 3.4 means that if 1 ≤ k ≤ m and P is not a chain,
the minimum of maj(π) − k des(π) + (k+1

2 ) for all π ∈ L(P) is attained for π ∈ L(P)
satisfying 1 ≤ des(π) ≤ k. This will be used in the next section.

4 Proof of Theorem 2.5

In this section we assume that P is a naturally labeled poset on {1, 2, . . . , m} and b1 ≤
b2 ≤ · · · ≤ bm is the increasing rearrangement of mc(1), . . . , mc(m).

For a polynomial f (q) in q, define

qmax( f (q)) = max{i : [qi] f (q) 6= 0},
qmin( f (q)) = min{i : [qi] f (q) 6= 0}.

When f (q) = 0, we use the following convention:

qmax(0) = −∞, qmin(0) = ∞.

Recall that

FP(q, x) = ∑
π∈L(P)

qmaj(π)
m

∏
i=1

([i− des(π)]q + qi−des(π)x)

=
m−1

∑
s=0

∑
π∈L(P),des(π)=s

qmaj(π)
m

∏
i=1

(qi−sx + [i− s]q).
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Since P is naturally labeled, L(P) contains the identity permutation. Therefore,

FP(q, x) = A + B, (4.1)

where

A =
m

∏
i=1

(qix + [i]q),

B = x
m−1

∑
s=1

∑
π∈L(P),des(π)=s

qmaj(π)−(s
2)

s−1

∏
i=1

(x− [i]q)
m−s

∏
i=1

(qix + [i]q).

Since [x0]FP(q, x) = [x0]A = [m]q!, we have

qmax([x0]FP(q, x)) =
(

m
2

)
, qmin([x0]FP(q, x)) = 0.

Therefore, in order to prove Theorem 2.5, it suffices to show the following two proposi-
tions.

Proposition 4.1. For 1 ≤ k ≤ m, we have

qmax([xk]FP(q, x)) =
(

m
2

)
+ k.

Proposition 4.2. For 1 ≤ k ≤ m, we have

qmin([xk]FP(q, x)) = b1 + · · ·+ bk.

Proof of Proposition 4.1. By (4.1), it is enough to show that

qmax([xk]A) =

(
m
2

)
+ k, (4.2)

qmax([xk]B) <
(

m
2

)
+ k. (4.3)

In order to get the largest power of q, when we expand the product in A, we must select
qix or qi−1. This implies (4.2).

To prove (4.3), consider π ∈ Sm with des(π) = s ≥ 1. Then

qmax

(
[xk−1]qmaj(π)−(s

2)
s−1

∏
i=1

(x− [i]q)
m−s

∏
i=1

(qix + [i]q)

)

≤
s

∑
i=1

(m− i)−
(

s
2

)
+

s−1

∑
i=1

(i− 1) +
m−s

∑
i=1

(i− 1) + (k− 1)

=

(
m
2

)
− (s− 1) + (k− 1) <

(
m
2

)
+ k.

Therefore, we obtain (4.3).
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The rest of this section is devoted to proving Proposition 4.2.
For π ∈ Sm with des(π) = s ≥ 1 and an integer 1 ≤ k ≤ m, let

t(π, k) = [xk−1]qmaj(π)−(s
2)

s−1

∏
i=1

(x− [i]q)
m−s

∏
i=1

(qix + [i]q). (4.4)

Then we always have

qmin(t(π, k)) ≥ maj(π)−
(

des(π)

2

)
. (4.5)

We need the following two lemmas.

Lemma 4.3. Let π ∈ Sm with des(π) = s ≥ 1. Then, for s ≤ k ≤ m, we have

qmin(t(π, k)) = maj(π)− ks +
(

k + 1
2

)
.

Lemma 4.4. Let P be a naturally labeled poset on {1, 2, . . . , m}. Suppose that P is not a chain.
Then, for 1 ≤ k ≤ m, we have

qmin([xk]B) = min
{

maj(π)− k des(π) +

(
k + 1

2

)
: π ∈ L(P), 1 ≤ des(π) ≤ k

}
.

Now we give a proof of Proposition 4.2.

Proof of Proposition 4.2. First, observe that

qmin([xk]A) =

(
k + 1

2

)
.

If P is a chain, then the identity permutation is the only linear extension of P. In this
case B = 0 and bi = i. Thus

qmin([xk]FP(q, x)) = qmin([xk]A) =

(
k + 1

2

)
= b1 + · · ·+ bk.

Now suppose that P is not a chain. By Lemma 4.4 and Corollary 3.4 we have

qmin([xk]B) = b1 + · · ·+ bk ≤
(

k + 1
2

)
.

Therefore we also obtain

qmin([xk]FP(q, x)) = b1 + · · ·+ bk.
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