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Abstract. We investigate certain nonassociative binary operations that satisfy a four-
parameter generalization of the associative law. From this we obtain variations of
the ubiquitous Catalan numbers and connections to many interesting combinatorial
objects such as binary trees, plane trees, lattice paths, and permutations.
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1 Introduction

We consider an overlooked yet natural question: to what degree is a given binary op-
eration nonassociative? We use ∗ to denote a binary operation on a set A and use
a0, a1, a2, . . . to denote A-valued indeterminates. Let P∗,n be the set of all parenthe-
sizations of the otherwise ambiguous expression a0 ∗ · · · ∗ an. The set P∗,n is in bijec-
tion with the set Tn of (full) binary trees with n + 1 leaves. Both sets P∗,n and Tn are
among the hundreds of families of objects enumerated by the ubiquitous Catalan number
Cn := 1

n+1(
2n
n ); see, e.g., Stanley [11]. Figure 1 below illustrates the bijection P∗,3 ↔ T3.
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Figure 1: binary trees and parenthesizations

We investigate two nonassociativity measurements for the operation ∗. Given binary
trees t, t′ ∈ Tn, write t ∼∗ t′ if the corresponding parenthesizations are equal as functions
from An+1 to A. This is an equivalence relation on a set of Catalan objects, and for
brevity we say its equivalence classes are (∗, n)-classes. We define C∗,n to be the number
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of (∗, n)-classes, and observe that 1 ≤ C∗,n ≤ Cn. We now have an alternate definition of
associativity that specializes to the traditional meaning: the operation ∗ is associative if
C∗,n = 1 for all n ≥ 0. Thus C∗,n measures the failure of ∗ to be associative. We say ∗ is
totally nonassociative if C∗,n attains its theoretical upper bound, C∗,n = Cn.

Alternatively, one may quantify nonassociativity by computing the cardinality C̃∗,n
of the largest (∗, n)-class for each n. Again, we have 1 ≤ C̃∗,n ≤ Cn. One may see
that C̃∗,n = 1 if and only if ∗ is totally nonassociative and C̃∗,n = Cn if and only if ∗ is
associative. Moreover, 1 ≤ C∗,n + C̃∗,n − 1 ≤ Cn.

In earlier work [5], we investigated the nonassociativity of a 1-parameter family (de-
pending on a positive integer k) of binary operations which generalize addition (k = 1)
and subtraction (k = 2). Now we further generalize this to a four-parameter family (de-
pending on positive integers d, e, k, `) of binary operations which are neither associative
nor totally nonassociative. Our prototypical example is in the quotient C[x, y]/I of the
polynomial ring C[x, y] by its ideal I := (xd+k − xd, ye+` − ye). We define the binary
operation ∗ by the following rule:

f ∗ g := x f + yg, ∀ f , g ∈ C[x, y]/I. (1.1)

The relations imposed on x and y are motivated by the relation satisfied by an element in
a finite semigroup; see, e.g., Steinberg [12, Section 1.2]. A parenthesization correspond-
ing to a binary tree t ∈ Tn has the form

xδ0(t)yρ0(t) f0 + · · ·+ xδn(t)yρn(t) fn. (1.2)

Here we list the leaves of t as 0, 1, . . . , n according to preorder and define the left depth
δi(t) (resp., right depth ρi(t)) of i to be the number of left (resp., right) steps along the
unique path from the root of t down to i. The map sending each t ∈ Tn to its left depth
δ(t) := (δ0(t), . . . , δn(t)) is one-to-one [5, Section 2.1], and by symmetry, so is the map
sending each t ∈ Tn to its right depth ρ(t) := (ρ0(t), . . . , ρn(t)).

For example, the third binary tree in Fig. 1 has left depth δ = (2, 2, 1, 0) and right
depth ρ = (0, 1, 2, 1), and the corresponding parenthesization ( f0 ∗ ( f1 ∗ f2)) ∗ f3 can be
written as x2 f0 + x2y f1 + xy2 f2 + y f3.

For ∗ defined by (1.1), comparing expressions for t, t′ ∈ Tn of the form (1.2) gives

t ∼∗ t′ if and only if δ(t) ∼d
k δ(t′) and ρ(t) ∼e

` ρ(t′) . (1.3)

Here for any two integer sequences b = (b0, . . . , bn) and c = (c0, . . . , cn) we write
(1) b ∼k c if bi ≡ ci (mod k) for i = 0, . . . , n,
(2) b ∼d c if min{bi, ci} < d implies bi = ci for i = 0, . . . , n, and
(3) b ∼d

k c if b ∼k c and b ∼d c.
We write Cd,e

k,`,n := C∗,n and C̃d,e
k,`,n := C̃∗,n for any binary operation ∗ satisfying (1.3).

Observe that if d ≤ d′, e ≤ e′, k | k′, and ` | `′, then Cd,e
k,`,n ≤ Cd′,e′

k′,`′,n and C̃d,e
k,`,n ≥ C̃d′,e′

k′,`′,n.

We symmetrically have Cd,e
k,`,n = Ce,d

`,k,n and C̃d,e
k,`,n = C̃e,d

`,k,n.
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Note that the relations ∼d
1 and ∼1

k coincide with ∼d and ∼k, respectively, on left and
right depths of binary trees in Tn. In earlier work [5], we determined Ck,n := C1,1

k,1,n
using plane trees, Dyck paths, and Lagrange inversion. We call Ck,n a (k-)modular Catalan
number as for any binary operation ∗ satisfying (1.3) with d = e = ` = 1, the (∗, n)-
relation is the same as the congruence relation modulo k on left depths of binary trees
in Tn. We also determined C̃k,n := C̃1,1

k,1,n and enumerated (∗, n)-classes with this largest
size. The “if” part of (1.3) with d = e = ` = 1 is equivalent to k-associativity, given by the
rule (a0 ∗ · · · ∗ ak) ∗ ak+1 = a0 ∗ (a1 ∗ · · · ∗ ak+1), where the ∗’s in parentheses are evaluated
from left to right [5, Proposition 2.11]. This gives a one-parameter generalization of the
usual associativity (k = 1).

We will see in Section 2.1 that, for e = k = ` = 1, the “if” part of the (∗, n)-relation
(1.3) can be viewed as associativity at left depth d, that is, t ∼∗ t′ if t can be obtained from
t′ by a finite sequence of moves, each of which replaces the maximal subtree rooted at a
node of left depth at least d− 1 by another binary tree with the same number of leaves.
Here a subtree rooted at a node v is a subtree whose root is v, and the maximal subtree rooted
at v is the subtree consisting of all descendants of v, including v itself.

Motivated by the two single-parameter generalizations of associativity above, we say
a binary operation ∗ is (k, `)-associative at depth (d, e) if it satisfies the “if” part of (1.3).
We focus on two special cases, k = ` = 1 and e = ` = 1, each giving a two-parameter
generalization of the usual associativity with connections to many interesting integer
sequences and combinatorial objects.

In Section 2 we study the case k = ` = 1. In this case the “if” part of (1.3) can be
viewed as associativity at left depth d and right depth e, which recovers the associativity at
left depth d when e = 1. We determine C̃d,e

n := C̃d,e
1,1,n and enumerate (∗, n)-classes with

this largest size for any binary operation ∗ satisfying (1.3) with k = ` = 1. We prove
that the cardinality of each (∗, n)-class is a product of Catalan numbers. We provide
a recursive formula for the generating function Cd,e(x) := ∑n≥0 Cd,e

n xn+1 of the number
Cd,e

n := Cd,e
1,1,n of (∗, n)-classes and give closed formulas for Cd,e(x) and Cd,e

n when e = 1, 2.

It turns out that Cd,1(x) is a well-known continued fraction and Cd,1
n enumerates many

families of objects (see Andrews–Krattenthaler–Orsina–Luigi–Papi [1], de Bruijn–Knuth–
Rice [3], Flajolet [4], Kitaev–Remmel–Tiefenbruck [7], Kreweras [8], and The OEIS [10,
A080934]). Our formula for Cd,1

n is different from the existing formulas [1, 3]. We find
no existing result on Cd,e

n for d, e ≥ 2 except C2,2
n and C3,2

n [10, A045623,A142586].
In Section 3 we study the case e = ` = 1. In this case the “if” part of (1.3) can be

viewed as k-associativity at left depth d, which recovers the k-associativity when d = 1
and recovers the associativity at left depth d when k = 1. We show that the number
Cd

k,n := Cd,1
k,1,n enumerates binary trees and Dyck paths with certain constraints, and

establish a recursive formula for its generating function Cd
k (x) := ∑n≥0 Cd

k,nxn+1. We
have Cd

1(x) = Cd,1(x) and Cd
2(x) = Cd+1,1(x) for d, n ≥ 0. The number Cd

3,n appears
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in The OEIS [10, A005773, A054391–A054394] for d = 1, . . . , 5. Barcucci, Del Lungo,
Pergola, and Pinzani [2] studied Cd

3,n in terms of pattern avoidance in permutations and
obtained a closed formula for Cd

3(x), but no closed formula for Cd
3,n. We provide a

different formula for Cd
3(x) and derive a closed formula for Cd

3,n from it. We also give
closed formulas for C2

k,n using Lagrange inversion and our earlier work [5] on C1
k,n.

Another 2-parameter specialization of (1.3) is obtained by taking d = e = 1 and
computations suggest a conjecture: C1,1

k,`,n = Ck+`−1,n for all k, ` ≥ 1 and n ≥ 0. We will
also explore the case k, `, d, e > 1 in the future.

2 Associativity at left depth d and right depth e

In this section we study Cd,e
n := C∗,n and C̃d,e

n := C̃∗,n for any operation ∗ satisfying (1.3)
with k = ` = 1, i.e., when t ∼∗ t′ ⇔ δ(t) ∼d δ(t′) and ρ(t) ∼e ρ(t′) for all t, t′ ∈ Tn.

We first introduce some notation. If a node in a binary tree has left depth δ ≥ d− 1
and right depth ρ ≥ e− 1 then we say this node is (d, e)-contractible, or simply contractible
if d and e are clear from the context. We call a contractible node maximal if its parent is
not contractible. One sees that a node with left depth δ and right depth ρ is a maximal
contractible node if and only if δ = d− 1 and ρ ≥ e− 1 when v is the left child of its
parent, or δ ≥ d− 1 and ρ = e− 1 when v is the right child of its parent.

Let t ∈ Tn and assign each leaf weight one. For each maximal contractible node v,
we contract its subtree to a single node and assign v a weight equal to the number of
leaves in this subtree. Denote by φ(t) the resulting weighted binary tree. This gives a
map φ : Tn → T d,e

n by t 7→ φ(t), where T d,e
n is the set of all leaf-weighted binary trees

such that every contractible leaf is maximal and has a positive integer weight, every
non-contractible leaf has weight one, and the sum of all leaf weights is n + 1.

Conversely, if t̄ ∈ T d,e
n has leaves v0, . . . , vr with weights m0, . . . , mr, respectively, then

replacing vi by ti ∈ Tmi−1 for i = 0, . . . , r gives a binary tree φ−1(t̄; t0, . . . , tr).

Lemma 2.1. (i) We have a surjection φ : Tn � T d,e
n .

(ii) For each t̄ ∈ T d,e
n whose leaves v0, . . . , vr are weighted m0, . . . , mr, its fiber is

φ−1(t̄) = {φ−1(t̄; t0, . . . , tr) : ti ∈ Tmi−1}.

(iii) We have t ∼∗ t′ whenever φ(t) = φ(t′).

Theorem 2.2. Let ∗ be a binary operation satisfying (1.3) with k = ` = 1. Then the fibers of φ are
precisely the (∗, n)-classes. Thus the cardinality of a (∗, n)-class is a product of Catalan numbers
Cm0−1 · · ·Cmr−1 for some positive integers m0, . . . , mr satisfying m0 + · · ·+ mr = n + 1.

Theorem 2.3. Let d, e ≥ 1. If 0 ≤ n < d + e then C̃d,e
n = 1. If n ≥ d + e then C̃d,e

n = Cn+2−d−e
and the number of (∗, n)-classes with this size is (d+e−2

d−1 ).
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For d, e ≥ 1 let Cd,e(x) := ∑n≥0 Cd,e
n xn+1, C0,e(x) := C1,e(x), and Cd,0(x) := Cd,1(x).

Proposition 2.4. For d, e ≥ 1 we have Cd,e(x) = x + Cd−1,e(x)Cd,e−1(x).

We apply Proposition 2.4 to study Cd,e(x) for e = 1, 2, respectively, in the next two
subsections. We find no result on Cd,3

n for d ≥ 3 in The OEIS [10].

2.1 Associativity of left depth d: The case e = k = ` = 1

Assume e = k = ` = 1 in this subsection. Then the “if” part of the (∗, n)-relation (1.3)
may be regarded as associativity at left depth d, as Theorem 2.2 implies that two trees
t, t′ ∈ Tn satisfy t ∼∗ t′ if and only if t can be obtained from t′ by a finite sequence of
moves, each of which replaces the maximal subtree rooted at a node of left depth at least
d− 1 by another binary tree with the same number of leaves.

We use Proposition 2.4 to determine the number Cd
n := Cd,1

n of (∗, n)-classes from its
generating function Cd(x) := Cd,1(x) for all d ≥ 1. We need the Fibonacci polynomials
defined by Fn(x) := Fn−1(x)− xFn−2(x) for n ≥ 2 with Fi(x) := i for i = 0, 1. For n ≥ 1
we have [3, (8), (9), (10)]

Fn(x) =
1√

1− 4x

((
1 +
√

1− 4x
2

)n

−
(

1−
√

1− 4x
2

)n)

= ∑
0≤i≤(n−1)/2

(
n− 1− i

i

)
(−x)i = ∏

1≤j≤(n−1)/2
(1− 4x cos2(jπ/n)).

Corollary 2.5 (Kreweras [8]). For d ≥ 1 we have (with C0(x) := x)

Cd(x) =
x

1− Cd−1(x)
=

xFd+1(x)
Fd+2(x)

.

Corollary 2.5 follows from Proposition 2.4 and implies that Cd(x) is a well-known
continued fraction [3, 4]:

C1(x) =
x

1− x
, C2(x) =

x
1− x

1−x
=

x(1− x)
1− 2x

, C3(x) =
x

1− x
1− x

1−x

=
x(1− 2x)

1− 3x + x2 , . . . .

Hence (Cd
n)d≥1,n≥0 coincides with an array in The OEIS [10, A080934] and enumerates

(i) Dyck paths of length 2n with height at most d (Flajolet [4], Kreweras [8, page 38]),
(ii) permutations in Sn avoiding 132 and 12 · · · (d+ 1) (Kitaev–Remmel–Tiefenbruck [7]),
(iii) plane trees with n + 1 nodes of depth at most d (de Bruijn–Knuth–Rice [3]), and
(iv) ad-nilpotent ideals of the Borel subalgebra of the Lie algebra sln(C) of order at most
d− 1 (Andrews–Krattenthaler–Orsina–Papi [1]).



6 Nickolas Hein and Jia Huang

One has C2
n = 2n−1, C3

n = F2n−1, and C4
n = 1

2(1 + 3n−1) for n ≥ 1 [1, 7]. In general,

Cd
n = ∑

i∈Z

2i(d + 2) + 1
2n + 1

(
2n + 1

n− i(d + 2)

)
[1, Theorem 4.5]

= det
[(

i−max{−1, j− d}
j− i + 1

)]n−1

i,j=1
[1, Theorem 4.5]

= ∑
0=i0≤i1≤···≤id−1≤id=n

∏
0≤j≤d−2

(
ij+2 − ij − 1

ij+1 − ij

)
[1, Corollary 4.3]

=
22n+1

d + 2 ∑
1≤j≤d+1

sin2(jπ/(d + 2)) cos2n(jπ/(d + 2)). [3, (14)]

Now we derive a closed formula for Cd
n from the generating function Cd(x). We write

α |= n if α is a composition of n, i.e., if α = (α1, . . . , α`) is a sequence of positive integers
such that α1 + · · ·+ α` = n. We also define `(α) := ` and max(α) := max{α1, . . . , α`}.

Proposition 2.6. For n, d ≥ 1 we have

Cd
n = ∑

α|=n
max(α)≤(d+1)/2

(−1)n−`(α)
(

d− α1

α1 − 1

)
∏

2≤r≤`(α)

(
d + 1− αi

αi

)
.

This alternating formula differs from the other known formulas. For example, it gives
C4

3 = 1 · 4 · 4− 2 · 4− 1 · 3 = 5 and the determinant formula gives C4
3 = 2 · 3− 1 = 5.

Next, we give an interpretation of the number Cd
n which is very similar to the one

by Andrews–Krattenthaler–Orsina–Papi [1]. We do not know any direct way (e.g., using
the exponential map) to convert one to the other.

Let Un be the algebra of n-by-n upper triangular matrices over a field F, with the
usual matrix product. A nilpotent (two-sided) ideal of Un can be represented by an n-by-
n matrix whose entries are either zero or arbitrary such that these two kinds of entries
are separated by a lattice path above the main diagonal from the upper left corner to the
lower right corner. Thus the number of nilpotent ideals of Un is the Catalan number Cn.
L. Shapiro [9] showed that the number of commutative ideals of Un is 2n−1. Motivated by
the observation that an ideal I of Un is commutative if and only if I2 = 0, we generalize
Shapiro’s result below, using the (nilpotent) order of a nilpotent ideal I, which is defined
as inf{d : Id = 0}. We are grateful to Brendon Rhoades for giving a proof for this result.

Proposition 2.7. For d ≥ 1, nilpotent ideals of order at most d in Un are enumerated by Cd
n.

2.2 Associativity at left depth d and right depth e = 2

Now we give closed formulas for the generating function Cd,2(x) and the number Cd,2
n .
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Proposition 2.8. For d, n ≥ 2 we have

Cd,2(x) = Cd(x) +
xd+2

(1− 2x)Fd+2(x)
and

Cd,2
n = Cd

n + ∑
1≤i≤n−d

2i−1 ∑
α|=n−d−i

max(α)≤(d+1)/2

(−1)n−d−i−`(α) ∏
1≤j≤`(α)

(
d + 1− αj

αj

)
.

Using Proposition 2.8 we find C2,2
n and C3,2

n in The OEIS. The sequence {C2,2
n : n ≥ 0}

is the binomial transformation of 1, 1, 2, 2, 3, 3, . . ., it has a simple formula C2,2
n = (n +

2)2n−3 for n ≥ 2, and it enumerates a few families of objects. These objects include
copies of r in all compositions of n + r for any positive integer r, weak compositions
of n − 1 with exactly one zero, triangulations of a regular (n + 3)-gon in which each
triangle contains at least one side of the polygon, and more [10, A045623]. The sequence
(C3,2

n )n≥0 is the binomial transformation of (b(1+
√

5
2 )nc)n≥0 and satisfies the formula

C3,2
n =

(
1+
√

5
2

)2n−2
+
(

1−
√

5
2

)2n−2
− 2n−2 for n ≥ 2 [10, A142586]. We do not see C4,2

n in
The OEIS, but it also has a simple formula.

Proposition 2.9. For n ≥ 3 we have C4,2
n = 1 + 5 · 3n−3 − 2n−3.

3 k-associativity of left depth d

In this section we study Cd
k,n := C∗,n and C̃d

k,n := C̃∗,n for any binary operation ∗ satisfying
(1.3) with e = ` = 1, i.e., when t ∼∗ t′ if and only if δ(t) ∼d

k δ(t′) for all t, t′ ∈ Tn.
We first study (∗, n)-classes using rotations on binary trees. Given two binary trees s

and t, we say t contains s at left depth d if t contains s as a (possibly non-maximal) subtree
rooted at a node of left depth d and say t avoids s at left depth d otherwise.

Given binary trees s and t, write s ∧ t for the binary tree whose root has left and right
maximal subtrees s and t, respectively. Let v be a node of t. If the maximal subtree of t
rooted at v can be written as (t0 ∧ · · · ∧ tk)∧ tk+1, where t0, . . . , tk+1 are binary trees, then
replacing this subtree with t0 ∧ (t1 ∧ · · · ∧ tk+1) in t gives another binary tree t′. Here the
operations ∧ in parentheses are performed left-to-right. We call the operation t 7→ t′ a
right k-rotation at v (see Fig. 2), and call the inverse operation t′ 7→ t a left k-rotation at v.

→

Figure 2: A right 3-rotation
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Lemma 3.1. A left or right k-rotation at a node v in a binary tree t produces another binary tree
t′ satisfying t ∼d

k t′ if and only if the left depth of v in t is at least d− 1.

If s ∈ Tn can be obtained from t ∈ Tn by finitely many left k-rotations at nodes of left
depths at least d− 1 then we say s ≤d

k t. We call this partial order on Tn the (d
k)-order,

which includes the k-associative order introduced in earlier work [5] as a special case
(d = 1). A binary tree minimal or maximal under the (d

k)-order is called (d
k)-minimal or

(d
k)-maximal. For each k ≥ 1 we define combk := t0 ∧ · · · ∧ tk and comb1

k := t0 ∧ combk
where t0 = · · · = tk is the unique tree in T0.

Proposition 3.2. Let t be a binary tree. For d, k ≥ 1 we have
(i) t is (d

k)-minimal if and only if it avoids comb1
k at each left depth at least d− 1, and

(ii) t is (d
k)-maximal if and only if it avoids combk+1 at each left depth at least d− 1.

Theorem 3.3. The (∗, n)-classes are precisely the connected components of the Hasse diagram of
the (d

k)-order on Tn. Every (∗, n)-class has a unique (d
k)-minimal element.

A subpath L′ of a lattice path L is at height h if the initial point of L′ has height h. We
say L avoids L′ at height h if L contains no subpath L′ at height h.

Proposition 3.4. For k, d ≥ 1 and n ≥ 0, the number Cd
k,n enumerates

(i) binary trees with n + 1 leaves avoiding comb1
k at any left depth at least d− 1, and

(ii) Dyck paths of length 2n avoiding DUk at height at least d.

Remark 3.5. For any fixed n and k, the limit of Cd
k,n as d → ∞ is the Catalan number Cn

since the constraints in Proposition 3.4 are redundant if d is large enough.
Let Md

k,n be the number of binary trees in Tn avoiding combk+1 at any node of left

depth at least d− 1. This number counts (d
k)-maximal elements in Tn by Proposition 3.2,

and is closely related to Cd
k,n. The number Mk,n := M1

k,n was called a generalized Motzkin
number in our previous work [5] and also studied by Takács [13]. For d, k ≥ 1 we define

Cd
k (x) := ∑

n≥0
Cd

k,nxn+1 and Md
k−1(x) := ∑

n≥0
Md

k−1,nxn+1.

Proposition 3.6. For m, n, d ≥ 0 and k ≥ 1 we have (with C0
k (x) := M1

k−1(x))

Cd+1
k (x) = x

/(
1− Cd

k (x)
)

and

[xn+m]Cd+1
k (x)m = ∑

0≤i≤n

(
m + i− 1

i

)
[xn]Cd

k (x)i.

Proposition 3.7. For d, k ≥ 1 and n ≥ 0 we have Md
k−1(x) = Cd−1

k (x), Md
k−1,n = Cd−1

k,n , and
Md

k−1,n ≤ Cd
k,n ≤ Md

k,n. Consequently, we have the following additional inequalities for d, k ≥ 1:

· · · ≤ Cd
k,n ≤ Cd+1

k,n ≤ Cd
k+1,n ≤ Cd+1

k+1,n ≤ Cd
k+2,n ≤ Cd+1

k+2,n ≤ · · · .

Proposition 3.8. For d ≥ 1 and n ≥ 0 we have Md
1(x) = Cd

1(x) and Md
1,n = Cd

1,n.
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3.1 The case k ≤ 3

We studied Cd
1,n = Cd

n = Cd,1
n in Section 2.1. We now give their relationship to Cd

2,n.

Proposition 3.9. For d, n ≥ 0 we have Cd
2(x) = Cd+1

1 (x) and Cd
2,n = Cd+1

1,n .

Next, we study Cd
3,n. It follows from our earlier work [5] that C0

3,n is the Motzkin
number [10, A001006], which has many closed formulas, and its generating function is

C0
3(x) =

1− x−
√

1− 2x− 3x2

2x
=

x

1− x− x2

1−x− x2
···

.

Applying Proposition 3.6 to this gives a continued fraction

Cd
3(x) =

x
1− x

1−··· x
1−C0

3(x)

(3.1)

where the number of ones is d. Equation (3.1) is a special case of the generating function
studied by Flajolet [4] for labeled positive paths. Such a path L starts at (0, 0) and stays
weakly above the line y = 0, with three kinds of steps U = (1, 1), D = (1,−1), and
H = (1, 0). Each step is labeled with some weight, and the total weight of L is the sum of
all weights of the steps. The height of L is the largest y-coordinate of a point on L.

By Equation (3.1) or Remark 3.5, the number Cd
3,n interpolates between the Motzkin

number C0
3,n and the Catalan number Cn = limd→∞ Cd

3,n. For d = 1, . . . , 5, the sequences
{Cd

3,n} are recorded in The OEIS [10, A005773, A054391–A054394]. For an arbitrary d,
Barcucci, Del Lungo, Pergola, and Pinzani [2] studied Cd

3,n in terms of permutations
avoiding certain barred patterns and provided a closed formula [2, p. 47] for the generat-
ing function Cd

3(x), but no formula for the number Cd
3,n.

Proposition 3.10. For d, n ≥ 0 the number Cd
3,n enumerates

(i) labeled positive paths with no H-step strictly below y = d and with total weight n, where each
U-step or D-step weakly below y = d has a weight 1/2 and each other step has a weight 1, and
(ii) permutations of 1, 2, . . . , n avoiding 321 and (d + 3)1̄(d + 4)23 · · · (d + 2) (barred pattern).

We give a new closed formula for Cd
3(x) and derive a closed formula for Cd

3,n from
that. We have not found the sequences {Cd

k,n} for k ≥ 4 (and d ≥ 2) in The OEIS.

Theorem 3.11. For d ≥ 0 we have

Cd
3(x) =

2xFd+1(x)Fd+2(x)− xd − xd+1 + xd
√

1− 2x− 3x2

2(Fd+2(x)2 − xd − xd+1)
.
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Theorem 3.12. For d ≥ 1 and n ≥ 0 we have

Cd
3,n = ∑

α|=n+1
h>1⇒αh≤d+1

−
(

C0
3,α1−d−2 +

δα1,d

2
+ (−1)α1 ∑

i+j=α1−1

(
d− i

i

)(
d + 1− j

j

))

·∏
h≥2

((
δαh,d + (−1)αh−1 ∑

i+j=αh

(
d + 1− i

i

)(
d + 1− j

j

)))
where

C0
3,m :=


1/2, m = −1,
−1/2, m = −2,
0, m ≤ −3,

and δm,d :=

{
1, m ∈ {d, d + 1},
0, otherwise.

3.2 The case d ≤ 2

As the second formula in Proposition 3.6 gives a way to obtain the number Cd+1
k,n from

Cd
k (x)m, we study [xn+m]Cd

k (x)m for fixed d. We first generalize the closed formulas [5,
(9) and (11)] for C0

k (x) = Mk−1(x) and C1
k (x) = Ck(x). Recall that the monomial symmetric

function mλ(x1, . . . , xn) indexed by a partition λ = (λ1, . . . , λn) is the sum of xa1
1 · · · x

an
n

for all rearrangement (a1, . . . , an) of the partition λ = (λ1, . . . , λn).

Proposition 3.13. For k, m ≥ 1 and n ≥ 0, the number of plane forests with m components and
n + m nodes, each of degree less than k, is

[xn+m]Mk−1(x)m =
m

n + m ∑
0≤j≤n/k

(−1)j
(

n + m
j

)(
2n + m− jk− 1

n + m− 1

)
=

m
n + m ∑

λ⊆(k−1)n+m

|λ|=n

mλ(1n+m).

Remark 3.14. We have ([xn+m]M0(x)m)n≥0 = (1, 0, 0, . . .) for any fixed m ≥ 0 and also
[xn+m]M1(x)m = (m+n−1

n ) for all m, n ≥ 0. For k = 3 the array ([xn+m]Mk−1(x)m)m,n≥0
gives the diagonals of the Motzkin triangle [10, A026300]; see [10, A002026, A005322–
A005325] for m = 2, . . . , 6. We find no result in The OEIS when k ≥ 4 and m ≥ 2.

Proposition 3.15. For k, m, n ≥ 1, the number of plane forests with m components and n non-
root nodes, each of degree less than k, is

[xn+m]Ck(x)m =
m
n ∑

0≤j≤(n−1)/k
(−1)j

(
n
j

)(
2n + m− jk− 1

n + m

)
= ∑

λ⊆(k−1)n

n− |λ|
n

(
m + n− |λ| − 1

n− |λ|

)
mλ(1n).
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A weak composition of n with m parts is a sequence of m nonnegative integers whose
sum is n. For k = 1, 2, Proposition 3.15 is related to weak compositions.

Corollary 3.16. For m, n ≥ 0, weak compositions of n with m parts are enumerated by

[xn+m]C1(x)m =

(
m + n− 1

n

)
and weak compositions of n with m− 1 zero parts are enumerated by

[xn+m]C2(x)m = ∑
0≤i≤m

(
m
i

)(
n− 1
n− i

)
2n−i = ∑

0≤i≤n

(
m + i− 1

i

)(
n− 1
n− i

)
.

The case k = 1 of Corollary 3.16 is well known and the case k = 2 has been studied by
Janjić and Petković [6] with a different approach from ours. For k = 2 and 1 ≤ m ≤ 10
see the sequences [10, A011782, A045623, A058396, A062109, A169792–A169797]. We
find no result for k ≥ 3 and m ≥ 2 except the special case (k, m) = (3, 2) [10, A036908].

Now we study the case d = 2.

Proposition 3.17. Let m, n ≥ 0 and k ≥ 1. Then

[xn+m]C2
k (x)m =

(
m + n− 1

n

)
+

n−1

∑
i=1

(
m + i− 1

i

)
i

n− i ∑
0≤j≤ n−i−1

k

(−1)j
(

n− i
j

)(
2n− i− jk− 1

n

)

=

(
m + n− 1

n

)
+

n−1

∑
i=1

(
m + i− 1

i

)
∑

λ⊆(k−1)n−i

n− i− |λ|
n− i

(
n− |λ| − 1
n− |λ| − i

)
mλ(1n−i).

In particular,

C2
k,n(x) = 1 +

n−1

∑
i=1

i
n− i ∑

0≤j≤(n−i−1)/k
(−1)j

(
n− i

j

)(
2n− i− jk− 1

n

)

= 1 +
n−1

∑
i=1

∑
λ⊆(k−1)n−i

n− i− |λ|
n− i

(
n− |λ| − 1
n− |λ| − i

)
mλ(1n−i).

Proposition 3.18. Let m, n ≥ 0. Then

[xn+m]C2
2(x)m = ∑

0≤i≤n

(
m + i− 1

i

)
∑

0≤j≤n−i

(
i + j− 1

j

)(
n− i− 1
n− i− j

)
.

In particular,

C2
2,n = ∑

0≤j≤n

(
n + j− 1

2j

)
= F2n−1.

Remark 3.19. Let C(x) := ∑n≥0 Cnxn+1 be the generating function of the Catalan num-
bers. The limit of [xn+m]Cd

k (x)m as k → ∞ or d→ ∞ is below, which gives the diagonals
of Catalan’s triangle [10, A009766]:

[xn+m]C(x)m =
m

n + m

(
2n + m− 1

n

)
.
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