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Abstract. We explicitly describe the isomorphism between two combinatorial realiza-
tions of Kashiwara’s infinity crystal in types B and C. The first realization is in terms of
marginally large tableaux and the other is in terms of Kostant partitions coming from
PBW bases. We also discuss a stack notation for Kostant partitions which simplifies
that realization.
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1 Introduction

The infinity crystal B(∞) is a combinatorial object associated with a symmetrizable Kac–
Moody algebra g. It contains information about the integrable highest weight represen-
tations of g and the associated quantum group Uq(g). Kashiwara’s original description
of B(∞) used a complicated algebraic construction, but there are often simple combi-
natorial realizations. Here we consider two such realizations in types Bn and Cn. The
first is the marginally large tableaux construction of [4, 6]. The second uses the Kostant
partitions from [13], which are related to Lusztig’s PBW bases [12] (see also [15]). In
[3] and [14], isomorphisms between these two realizations are studied in types An and
Dn, respectively. Our main result is a simple description of the unique isomorphism
between these two realizations of B(∞) for types Bn and Cn. This is related to recent
work of Kwon [9], although that work uses a different reduced expression, so should
be compared to the more general results from [13]. However, the description given here
is different from the bijection given in [11], where the crystal structure was essentially
ignored. We also give a stack notation for Kostant partitions of these types motivated by
the connection to multisegments in type An described in [3].

The full version of this work can be found in [5].
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2 Background

Let g be a Lie algebra of type Bn or Cn. The Cartan matrix and Dynkin diagram are

Bn : (aij) =


2 −1 0 ··· 0 0 0
−1 2 −1 ··· 0 0 0
0 −1 2 ··· 0 0 0

. . .
0 0 0 ··· 2 −1 0
0 0 0 ··· −1 2 −1
0 0 0 ··· 0 −2 2

 , Cn : (aij) =


2 −1 0 ··· 0 0 0
−1 2 −1 ··· 0 0 0
0 −1 2 ··· 0 0 0

. . .
0 0 0 ··· 2 −1 0
0 0 0 ··· −1 2 −2
0 0 0 ··· 0 −1 2


Bn :

α1 α2 αn−1 αn

· · · Cn :
α1 α2 αn−1 αn.

· · ·

Let {α1, . . . , αn} be the simple roots and {α∨1 , . . . , α∨n } the simple coroots, related
by the inner product 〈α∨j , αi〉 = aij. Define the fundamental weights {ω1, . . . , ωn} by
〈α∨i , ωj〉 = δij. Then the weight lattice is P = Zω1 ⊕ · · · ⊕ Zωn and the coroot lattice
is P∨ = Zα∨1 ⊕ · · · ⊕ Zα∨n . Let Φ denote the roots associated to g, with the set of posi-
tive roots denoted Φ+. The list of positive roots in type Bn, expressed both as a linear
combination of simple roots and in the canonical realization following [2], is

βi,k = αi + · · ·+ αk, 1 ≤ i ≤ k ≤ n
γi,k = αi + · · ·+ αk−1 + 2αk + 2αk+1 + · · ·+ 2αn, 1 ≤ i < k ≤ n

βi,k = εi − εk+1, 1 ≤ i ≤ k ≤ n− 1
βi,n = εi, 1 ≤ i ≤ n

γi,k = εi + εk, 1 ≤ i < k ≤ n

The list of positive roots in type Cn, again expressed both as a linear combination of
simple roots and in the canonical realization following [2], is

βi,k = αi + · · ·+ αk, 1 ≤ i ≤ k < n
γi,k = αi + · · ·+ αn−1 + αn + αn−1 + · · ·+ αk, 1 ≤ i ≤ k ≤ n

βi,k = εi − εk+1, 1 ≤ i ≤ k < n
γi,k = εi + εk, 1 ≤ i ≤ k ≤ n

The Weyl group associated to g is the group generated by s1, . . . , sn, where si(λ) =
λ− 〈α∨i , λ〉αi for all λ ∈ P. There exists a unique longest element of W which is denoted
as w0. For notational brevity, set I = {1, 2, . . . , n}.

Let B(∞) be the infinity crystal associated to g as defined in [8]. This is a countable set
along with operators ei and fi, which roughly correspond to the Chevalley generators of
g. Here we use two explicit realizations of B(∞) but do not need the general definition.
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2.1 Crystal of marginally large tableaux

Recall the fundamental crystals given below.

Bn : 1 · · · n 0 n · · · 1
1 n− 1 n n n− 1 1

Cn : 1 · · · n n · · · 1
1 n− 1 n n− 1 1

(2.1)

Define alphabets, denoted J(Bn) and J(Cn), to be the elements of these crystals with the
natural orderings

J(Bn) :
{

1 ≺ · · · ≺ n− 1 ≺ n ≺ 0 ≺ n ≺ n− 1 ≺ · · · ≺ 1
}

, and

J(Cn) :
{

1 ≺ · · · ≺ n− 1 ≺ n ≺ n ≺ n− 1 ≺ · · · ≺ 1
}

.

Definition 2.1. The set of marginally large tableaux, T (∞), is the set of semistandard
Young tableaux T with entries in J(Bn) or J(Cn) which satisfy the following conditions.

1. The number of i in the i-th row of T is exactly one more than the total number
of boxes in the (i + 1)-th row.

2. Entries weakly increase along rows.

3. All entries in the i-th row are � ı.

4. If T is of type Bn, then the 0 does not appear more than once per row.

Definition 2.1 implies that the leftmost column of T contains 1 , 2 , . . . , n− 1 , n

in increasing order from top to bottom. We call the i in row i shaded boxes. The number
of shaded boxes in each row is one more than the total number of boxes in the next row.

Example 2.2. In type B3, each T ∈ T (∞) has the form

T =
1 1 1 · · · 1 1 1 · · · 1 1 1 · · · 1 1 · · · 1 1 2 · · · 2 3 · · · 3 0 3 · · · 3 2 · · · 2 1 · · · 1
2 2 2 · · · 2 2 3 · · · 3 0 3 · · · 3 2 · · · 2
3 0 3 · · · 3

.

The notation i · · · i indicates any number of i (possibly zero). Also, the 0 in each row
may or may not be present.

Definition 2.3. Fix T ∈ T (∞) for 1 ≤ j ≤ n and k � j ∈ J or k = j. Let k j denote a box
containing k in row j of T. Define the weight of the box by:

Type Bn : wt
(

k j

)
=

{
−β j,k−1 if k 6= 0,
−β j,n if k = 0,

wt
(

k j

)
=

{
−γj,k if k 6= j,
−2β j,n if k = j.



4 Jackson A. Criswell, Ben Salisbury, and Peter Tingley

Type Cn : wt
(

k j

)
= −β j,k−1, wt

(
k j

)
= −γj,k.

Define the weight wt(T) of T to be the sum of the weights of all the unshaded boxes of
T.

Note that the unique element of weight zero, denoted T∞, is the tableau where all
boxes are shaded. For example, in types B3 and C3,

T∞ =
1 1 1
2 2
3

.

Definition 2.4. Let T ∈ T (∞).

1. The Far-Eastern reading of T, denoted readFE(T), records the entries of the boxes in
the columns of T from top to bottom and proceeding from right to left.

2. The Middle-Eastern reading of T, denoted readME(T), records the entries of the boxes
in the rows of T from right to left and proceeding from top to bottom.

Definition 2.5. Let T ∈ T (∞) of type Bn or Cn, and set read(T) = readME(T) or
readFE(T). Consider the fundamental crystals from (2.1). For each i ∈ I = {1, 2, . . . , n},
the bracketing sequence bri(T) is obtained by replacing each letter in read(T) with )p(q,
where p is number of consecutive i-arrows entering and q is the number of consecutive
i-arrows leaving the corresponding box in the fundamental crystal.

After determining bri(T), sequentially cancel all ()-pairs to obtain a sequence of the
form ) · · · )(· · · ( called the i-signature of T. The i-signature is denoted as brc

i (T).

Definition 2.6. Let T ∈ T (∞) and i ∈ I. Define 0 as a formal object not in T (∞).

1. If there is no ‘)’ in brc
i (T) then set eiT = 0. Otherwise let r be the box in T

corresponding to the rightmost ‘)’ in brc
i (T). Define eiT to be the tableau obtained

from T by replacing the r in r with the predecessor in the alphabet of T (∞). If
this creates a column with exactly the entries 1, 2, . . . , i, then delete that column.

2. Let ` be the box in T corresponding to leftmost ‘(’ in brc
i (T). Define fiT to be

the tableau obtained from T by replacing the ` in ` with the successor of ` in the
alphabet of T (∞). If ` occurs in row i and ` = i, then also insert a column with
the entries 1, 2, . . . , i directly to the left of ` .

Example 2.7. Let T ∈ T (∞) for g of type B3 where

T =
1 1 1 1 1 1 1 1 1 2 0 3 2 1 1
2 2 2 2 3 0 2 2
3 3 3

.
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By Definition 2.5, we have

readME(T) = 1 1 2 3 0 2 1 1 1 1 1 1 1 1 1 2 2 0 3 2 2 2 2 3 3 3
br3(T) = )) )( )( (( )) )) ((
brc

3(T) = )) ) ) (( ,

so by Definition 2.6, we obtain

e3T =
1 1 1 1 1 1 1 1 1 2 0 3 2 1 1
2 2 2 2 3 0 2 2
3 0 3

and

f3T =
1 1 1 1 1 1 1 1 1 1 2 0 3 2 1 1
2 2 2 2 2 3 0 2 2
3 0 3 3

.

Example 2.8. Let T ∈ T (∞) for g of type C3 where

T =
1 1 1 1 1 1 1 1 1 2 3 3 3 2 1
2 2 2 2 3 3 3 1
3 3 3

.

By Definition 2.5, we have

readME(T) = 1 2 3 3 3 1 1 1 1 1 1 1 1 1 1 3 3 3 2 2 2 2 3 3 3
br3(T) = ) ( ( ) ) ( ) ) (
brc

3(T) = ) ) ( ,

so by Definition 2.6, we obtain

e3T =
1 1 1 1 1 1 1 1 2 3 3 3 2 1
2 2 2 3 3 3 1
3 3

and

f3T =
1 1 1 1 1 1 1 1 1 1 2 3 3 3 2 1
2 2 2 2 2 3 3 3 1
3 3 3 3

.

Theorem 2.9 ([4, 6]). Using readFE(T) and the operations defined in Definition 2.6, T (∞) is
a crystal isomorphic to B(∞).

It turns out that using readME in place of readFE is more convenient for us, and we
can do this because of the following:

Proposition 2.10. Let T (∞) be the set of marginally large tableaux of type Bn or Cn. Then the
crystal structures on T (∞) using either readFE or readME are identical.
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2.2 Crystal of Kostant partitions

Here we review the crystal structure on Kostant partitions from [13]. As explained there,
this is naturally identified with the crystal of PBW monomials as given in [1, 12] (see also
[15]) for the reduced expression

w0 = (s1s2 · · · sn−2sn−1snsn−2 · · · s1) · · · (sn−2sn−1snsn−2)sn−1sn.

Let R be the set of symbols {(β) : β ∈ Φ+}. Let Kp(∞) be the free Z≥0-span of
R. This is the set of Kostant partitions. Elements of Kp(∞) are written in the form
α = ∑(β)∈R cβ(β).

Definition 2.11. Consider the following sequences of positive roots depending on i ∈ I
for type Bn or Cn. For 1 ≤ i ≤ n− 1, define

ΦB
i = ΦC

i = (β1,i, β1,i−1, γ1,i, γ1,i+1, . . . , βi−1,i, βi−1,i−1, γi−1,i, γi−1,i+1, βi,i),

ΦB
n = (β1,n, β1,n−1, γ1,n, β1,n, . . . , βn−1,n, βn−1,n−1, γn−1,n, βn−1,n, βn,n),

ΦC
n = (γ1,1, β1,n−1, γ1,n, γ1,1, . . . , γn−1,n−1, βn−1,n−1, γn−1,n, γn−1,n−1, γn,n).

Let α ∈ Kp(∞). Define the bracketing sequence Si(α) by replacing the roots in ΦB
i or ΦC

i
with left and right brackets as follows:

In type Bn and Cn with 1 ≤ i < n, set

Si(α) = ) · · · )︸ ︷︷ ︸
cβ1,i

(· · · (︸ ︷︷ ︸
cβ1,i−1

) · · · )︸ ︷︷ ︸
cγ1,i

(· · · (︸ ︷︷ ︸
cγ1,i+1

· · · ) · · · )︸ ︷︷ ︸
cβi−1,i

(· · · (︸ ︷︷ ︸
cβi−1,i−1

) · · · )︸ ︷︷ ︸
cγi−1,i

(· · · (︸ ︷︷ ︸
cγi−1,i+1

) · · · )︸ ︷︷ ︸
cβi,i

.

In type Bn with i = n, set

Sn(α) = ) · · · )︸ ︷︷ ︸
cβ1,n

(· · · (︸ ︷︷ ︸
2cβ1,n−1

) · · · )︸ ︷︷ ︸
2cγ1,n

(· · · (︸ ︷︷ ︸
cβ1,n

· · · ) · · · )︸ ︷︷ ︸
cβn−1,n

(· · · (︸ ︷︷ ︸
2cβn−1,n−1

) · · · )︸ ︷︷ ︸
2cγn−1,n

(· · · (︸ ︷︷ ︸
cβn−1,n

) · · · )︸ ︷︷ ︸
cβn,n

.

In type Cn with i = n, set

Sn(α) = ) · · · )︸ ︷︷ ︸
cγ1,1

(· · · (︸ ︷︷ ︸
cβ1,n−1

) · · · )︸ ︷︷ ︸
cγ1,n

(· · · (︸ ︷︷ ︸
cγ1,1

· · · ) · · · )︸ ︷︷ ︸
cγn−1,n−1

(· · · (︸ ︷︷ ︸
cβn−1,n−1

) · · · )︸ ︷︷ ︸
cγn−1,n

(· · · (︸ ︷︷ ︸
cγn−1,n−1

) · · · )︸ ︷︷ ︸
cγn,n

.

In each case successively cancel all ()-pairs in Si(α) to obtain a sequence of the form
) · · · )(· · · ( which we call the i-signature of α denoted by Sc

i (α).

Remark 2.12. Roughly, left brackets correspond to roots β ∈ Φi such that β + αi is a root
and right brackets correspond to roots β ∈ Φi such that β− αi is a root (or β = αi) except
when i = n, where some subtleties arise.



PBW bases and marginally large tableaux in types B and C 7

Definition 2.13. Let i ∈ I and α ∈ Kp(∞) with α = ∑(β)∈R cβ(β) ∈ Kp(∞).

• Define wt(α) = −∑β∈Φ+ cββ.

• Define εi(α) = number of uncanceled ‘)’ in Si(α).

• Define ϕi(α) = εi(α) + 〈α∨i , wt(α)〉.

The following two rules hold except in the case where g is of type Cn and i = n.

• Let β be the root corresponding to the rightmost ‘)’ in Sc
i (α). Define

eiα = α− (β) + (β− αi).

Note that if β = αi, we interpret (0) as the additive identity in Kp(∞). Furthermore,
if no such ‘)’ exists, then eiα = 0, where 0 is a formal object not contained in Kp(∞).

• Let γ denote the root corresponding to the leftmost ‘(’ in Sc
i (α). Define,

fiα = α− (γ) + (γ + αi).

If no such ‘(’ exists, set fiα = α + (αi).

If g is of type Cn, then en and fn are defined as follows.

• Let β be the root corresponding to the rightmost ‘)’ in Sc
n(α). Define enα as follows,

for k ∈ {1, . . . , n− 1}. If no such β exists, then enα = 0.

1. If β = γk,n and cγk,n = cβk,n−1 + 1, then enα = α− (β) + (βk,n−1).

2. If β = γk,n and cγk,n > cβk,n−1 + 1, then enα = α− 2(β) + (γk,k).

3. If β = γk,k, then enα = α− (β) + 2(βk,n−1).

4. If β = γn,n, then enα = α− (β).

• Let γ denote the root corresponding to the leftmost ‘(’ in Sc
n(α). Define fnα as

follows, for k ∈ {1, . . . , n}. If no such γ exists, then fnα = α + (γn,n).

1. If γ = βk,n−1 and cγk,n = cβk,n−1 − 1, then fnα = α− (γ) + (γk,n).

2. If γ = βk,n−1 and cγk,n < cβk,n−1 − 1, then fnα = α− 2(γ) + (γk,k).

3. If γ = γk,k, then fnα = α− (γ) + 2(γk,n).

Example 2.14. Let Kp(∞) be of type C3 and let α ∈ Kp(∞), where

α = 4(β1,2) + 2(γ1,3) + 2(γ1,1) + (γ2,2) + (γ2,3) + (γ3,3).
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We consider the action of f3, so we must first compute the bracketing sequence:

cγ1,1 cβ1,2 cγ1,3 cγ1,1 cγ2,2 cβ2,2 cγ2,3 cγ2,2 cγ3,3

S3(α) = )) (((( )) (( ) ) ( )
Sc

3(α) = )) (( .

Hence f3α = 2(β1,2) + 2(γ1,3) + 3(γ1,1) + (γ2,2) + (γ2,3) + (γ3,3).

Example 2.15. Let Kp(∞) be of type C3 and let α ∈ Kp(∞), where

α = 2(β1,2) + 2(γ1,3) + 3(γ1,1) + (γ2,2) + (γ2,3) + (γ3,3).

To compute f3α we first need the relevant bracketing sequence, which is

cγ1,1 cβ1,2 cγ1,3 cγ1,1 cγ2,2 cβ2,2 cγ2,3 cγ2,2 cγ3,3

S3(α) = ))) (( )) ((( ) ) ( )
Sc

3(α) = ))) ( .

Hence f3α = 2(β1,2) + 4(γ1,3) + 2(γ1,1) + (γ2,2) + (γ2,3) + (γ3,3).

Proposition 2.16 ([13]). Using the operators defined in Definition 2.13, the set Kp(∞) is a
crystal isomorphic to B(∞).

3 The isomorphism

Theorem 3.1. Define Ψ : T (∞) −→ Kp(∞) by the following process. Fix T ∈ T (∞) and let
R1, . . . , Rn denote the rows of T starting at the top. Set Ψ(T) = ∑n

j=1 Ψ(Rj), where Ψ(Rj) is
defined as follows.
If T is of type Bn:

1. each pair
(

n , n
)

maps to 2(β j,n);

2. each 0 maps to (β j,n);

3. if j = n, then each n maps to 2(βn,n).

If T is of type Cn:

4. each pair
(

n , n
)

maps to (γj,j);

5. if j = n, then each j maps to (γn,n).

For all remaining boxes:

6. j maps to (β j,j) + (γj,j+1);

7. each pair
(

k , k
)

, where j < k < n, maps to (β j,k) + (γj,k+1);

8. each unpaired k maps to (β j,k−1), for k ∈ {j + 1, . . . , n};
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9. each unpaired k maps to (γj,k), for k ∈ {n, . . . , j + 1}.

Then Ψ is a crystal isomorphism.

Example 3.2. Let T be the marginally large tableau of type B3 from Example 2.7. By
Theorem 3.1,

Ψ(T) = 2(β1,1) + (β1,2) + (β1,3) + 2(γ1,3) + 2(γ1,2) + 3(β2,2) + (β2,3) + 2(γ2,3) + 4(β3,3).

Then
cβ1,3 2cβ1,2 2cγ1,3 cβ1,3 cβ2,3 2cβ2,2 2cγ2,3 cβ3,3

S3(Ψ(T)) = ) (( )))) ( ( (((((( )))) ))))
Sc

3(Ψ(T)) = ) )) ,

so f3Ψ(T) = Ψ(T) + (β3,3), which agrees with

Ψ( f3T) = 2(β1,1) + (β1,2) + (β1,3) + 2(γ1,3) + 2(γ1,2) + 3(β2,2) + (β2,3) + 2(γ2,3) + 5(β3,3).

Example 3.3. Consider type C3 and

T =
1 1 1 1 1 1 1 2 2 3 3 3 3 3 3 2 2
2 2 2 3 3 3
3 3

.

Then
readME(T) = 2 2 3 3 3 3 3 3 2 2 1 1 1 1 1 1 1 3 3 3 2 2 2 3 3

br3(T) = ) ) ( ( ( ( ) ) ( ) (
brc

3(T) = ) ) ( ( ( ,
so

f3T =
1 1 1 1 1 1 1 2 2 3 3 3 3 3 3 2 2
2 2 2 3 3 3
3 3

.

We now apply the isomorphism from Theorem 3.1 to T and f3T to get

Ψ(T) = 4(β1,2) + 2(γ1,1) + 2(γ1,3) + (γ2,2) + (γ2,3) + (γ3,3), and
Ψ( f3T) = 2(β1,2) + 3(γ1,1) + 2(γ1,3) + (γ2,2) + (γ2,3) + (γ3,3).

Note that these are the same Kostant partitions as in Example 2.14. Hence

f3Ψ(T) = Ψ(T)− 2(β1,2) + (γ1,1) = Ψ( f3T).
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4 Stack notation

This work extends results from [3, 14] in types An and Dn to types Bn and Cn. The
type An result can be described using the multisegments from [7, 10, 16] which are
a diagrammatic notation that makes the crystal structure apparent. In [14] this was
extended to type Dn by introducing a stack notation for Kostant partitions in which the
crystal structure can easily be read off. We now define a similar stack notation for types
Bn and Cn.

Type Bn Type Cn

β j,k =

k
...
j

γ`,m =

m
...

n−1
n n
n−1

...
`

β j,k =

k
...
j

γ`,m =

m
...

n−1
n

n−1
...
`

γh,h =

n
n−1 n−1

...
h h

1 ≤ j ≤ k ≤ n 1 ≤ ` < m ≤ n 1 ≤ j ≤ k < n 1 ≤ ` < m ≤ n 1 ≤ h ≤ n

Then the sequences of roots Φi from Definition 2.11 are exactly those positive roots
where we can either add or remove an i from the top of the corresponding stack and still
have either a valid stack, an empty stack, or in type Cn with i = n where we have two
valid stacks side by side. Once the stacks are ordered as in Definition 2.11, the bracketing
sequence is created by placing a left bracket for each i that can be added to the top of
a stack, and a right bracket for each i that can be removed from the top. Note that if
both happen then the root corresponding to the stack appears twice in Definition 2.11,
in which case the ‘)’ is placed over the left copy and the ‘(’ over the right copy. If there is
a leftmost uncanceled ‘(’ the crystal operator fi adds an i to the top of the corresponding
stack (or, in the case of i = n in type Cn, fi may combine two stacks together and attach
an n at the top). Otherwise fi creates a new stack consisting of just i.

Remark 4.1. Being able to add or remove an i from the top of a stack is different from
being able to add or remove an αi from the corresponding root. For instance, in type
B3, if β = α1 + α2 + 2α3, then β− α1 is a root, but there is no 1 at the top of the stack

corresponding to β, so β is not in ΦB
1 . Similarly, in type C3, although

2
3
2
1

is a stack,

α1 + 2α2 + α3 is not in ΦC
1 because the stack for 2α1 + 2α2 + α3 is

3
2 2
1 1

, not
1
2
3
2
1

.

Example 4.2. Consider type C3 and α ∈ Kp(∞) given in stack notation by

α = 2
1

2
1

2
1

3
2
1

3
2
1

3
2 2
1 1

3
2 2
1 1

3
2 2

3
2 3 .
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The corresponding 3-signature is

3
2 2
1 1

3
2 2
1 1

2
1

2
1

2
1

3
2
1

3
2
1

3
2 2
1 1

3
2 2
1 1

3
2 2

3
2

3
2 2 3

S3(α) = ) ) ( ( ( ) ) ( ( ) ) ( )
Sc

3(α) = ) ) ( .

Thus the action of f3 on α adds a 3 to top of a 2
1 . This gives

f3α = 2
1

2
1

3
2
1

3
2
1

3
2
1

3
2 2
1 1

3
2 2
1 1

3
2 2

3
2 3 .

Example 4.3. Consider type C3 and α as in Example 2.15. In stack notation,

α = 2
1

2
1

3
2
1

3
2
1

3
2 2
1 1

3
2 2
1 1

3
2 2
1 1

3
2 2

3
2 3 .

Recalculating the 3-signature using stack notation gives

3
2 2
1 1

3
2 2
1 1

3
2 2
1 1

2
1

2
1

3
2
1

3
2
1

3
2 2
1 1

3
2 2
1 1

3
2 2
1 1

3
2 2

3
2

3
2 2 3

S3(α) = ) ) ) ( ( ) ) ( ( ( ) ) ( )
Sc

3(α) = ) ) ) ( .

Since the leftmost ‘(’ comes from a
3

2 2
1 1

, we should add a 3 to the top of this stack, which

gives
3 3
2 2
1 1

. That is not the stack of a single root, but should be thought of as two copies

of
3
2
1

, which is the stack of a root. The result is

f3α = 2
1

2
1

3
2
1

3
2
1

3
2
1

3
2
1

3
2 2
1 1

3
2 2
1 1

3
2 2

3
2 3 .
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