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Abstract. Using the description of multiline queues as functions on words, we in-
troduce the notion of a spectral weight of a word by defining a new weighting on
multiline queues. We show that the spectral weight of a word is invariant under a
natural action of the symmetric group, giving a proof of the commutativity conjecture
of Arita, Ayyer, Mallick, and Prolhac. We give a determinant formula for the spectral
weight of a word, which gives a proof of a conjecture of the first author and Linusson.
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1 Introduction

The totally asymmetric exclusion process (TASEP) is a non-equilibrium stochastic pro-
cess that has received significant attention in various fields, such as probability theory,
combinatorics, physics, biology, and civil engineering over the past few decades. For
some examples, we refer the reader to [1, 3, 5, 6, 8, 14, 15] and references therein. In this
paper, we consider the TASEP on a ring with n sites and ` species of particles. Thus, we
will consider the states to be words u in the alphabet {1, . . . , `} of length n, where we
take the indices to be Z/nZ. We will also consider the process to be discrete in time.

The steady state of the TASEP is known in terms of another process introduced in [9]
using (ordinary) multiline queues (MLQs) and by applying what is now known as the
Ferrari–Martin (FM) algorithm. In [14, 15], the FM algorithm was reformulated in terms
of the combinatorial R-matrix [19, 21] and using type A(1)

n−1 Kirillov–Reshetikhin crys-
tals [12]. Moreover, it connects the TASEP with five-vertex models, corner transfer ma-
trices, 3D integrable lattice models, and the tetrahedron equation of [22], yielding a new
matrix product formula for the steady state distribution.
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We describe MLQs as functions on words of a fixed length n following [3], where
it was referred to as the generalized FM algorithm. We introduce a new weighting of
MLQs, which is the weight of the MLQ considered as a tensor product of Kirillov–
Reshetikhin crystals. This allows us to define the spectral weight of a word u to be the
sum of the weights of all ordinary MLQs q such that u = q(1n). We also introduce the
notation of a σ-twisted MLQ, where σ is a permutation. Our main result is that for a fixed
permutation σ, the sum of the weights of all σ-twisted MLQs qσ such that u = qσ(1n)
equals the spectral weight of u. To this end, we construct an action of the symmetric
group on MLQs that corresponds, under the usual FM algorithm, to the natural action
by letters on words. This action is given by applying a combinatorial R-matrix to an
MLQ,1 and we show that does not change the MLQ as a function on words.

As a consequence, we obtain a proof of the commutativity conjecture of [3] when we
specialize all our weight parameters to 1. However, we note that the interlacing property
of [3] does not generalize to our weighting of MLQs. Furthermore, we give a determinant
expression for the spectral weight of decreasing words by using the Lindström–Gessel–
Viennot Lemma [10, 18]. By combining these results, we obtain a proof of [1, Conjecture
3.10].

One potential application is that our weighting could be used to describe the steady
state distribution for the inhomogeneous TASEP [2, 4]. Furthermore, we expect that
our weighting scheme can be extended to the totally asymmetric zero range process
(TARZP), where multiple particles can occupy the same site [16, 17]. This comes from the
fact that the TARZP can also be realized using a tensor product of Kirillov–Reshetikhin
crystals (under rank-level duality) using combinatorial R-matrices with analogous con-
nections to corner transfer matrices and the tetrahedron equation. Similarly, this ex-
tension of our results could be used to describe the steady state distribution for the
inhomogeneous TARZP defined in [13].

This extended abstract is organized as follows. In Section 2, we provide the necessary
background. In Section 3, we state our results. In Section 4, we sketch the proof of our
main result. In Section 5, we describe the connection between our work and the TASEP.

2 Background

Fix a positive integer n. Let [n] denote the set {1, 2, . . . , n}. Let Wn be the set of words
u = u1 · · · un in the ordered alphabet A := {1 < 2 < 3 < · · · }. We will consider the
indices of letters in a word to be taken modulo n (that is, uk+n = uk for all k). Let
x := {x1, x2, x3, . . .} be indeterminates.

The type of a word u is the vector m = (m1, m2, . . .), where mi is the number of
occurrences of i in u. We sometimes refer to ui = t as a particle at i of class t. A word u of

1This operation has also previously appeared in Danilov and Koshevoy [7] (see also [11, Chapter 4]).
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type m is packed if there exists an ` such that mi 6= 0 for 1 ≤ i ≤ ` and mi = 0 for i > `.
We will also call the type m itself packed in this case. We call ` the number of classes in
u. We merge two adjacent classes i, i + 1 in a packed word u to obtain a new packed word
as follows: first replace all occurrences of i + 1 in u by i, then replace all occurrences of
j in u by j− 1, for each j > i. We denote the merging of i and i + 1 in u by ∨iu, and for
T = {t1 < · · · < tk} ⊆ [`− 1], we set

∨
T u := ∨t1 · · · ∨tk u.

We define an r-queue q to be any subset of [n] of size r. When r is clear, we will
simply call q a queue. The weight of a queue q is wt(q) := ∏i∈q xi. We equate q with a
function from Wn to itself as follows. Fix a word u ∈ Wn, and let m = (m1, m2, . . .) be
the type of u. Define pi(m) := m1 + m2 + · · ·+ mi, and when m is clear, we simply write
pi. There exists a unique t such that pt−1 ≤ r < pt. The output word v = q(u) will have
type (m1, . . . , mt−1, r − pt−1, pt − r, mt+1, mt+2, . . .). Note that pt − r = mt + (pt−1 − r).
We think of this as splitting the class t into two new classes t and t + 1. The following
algorithm computes v = q(u). In the start no letter of v is set.

Phase I Go through all i such that ui > t in any order such that larger letters precede
smaller ones.2 When considering a site i, find the first j weakly to the left (cycli-
cally) of i such that j /∈ q and vj is not set. Then set vj = ui + 1.

Phase II Go through all i such that ui < t in any order such that smaller letters precede
larger ones. When considering a site i, find the first j weakly to the right of i such
that j ∈ q and vj is not set. Then set vj = ui.

Phase III At this point, there are mt unset values vi. For such i, set vi = t for i ∈ q and
vi = t + 1 for i /∈ q.

Example 2.1. We consider the 4-queue q = {1, 4, 8, 9} and the word u = 346613321.
Thus, the type of u is m = (2, 1, 3, 1, 0, 2, 0, . . .) with p2 = 3 and p3 = 6, and so t = 3.
To compute q(u), draw the following diagram (whose upper row shows u, whose lower
row shows q(u), and whose middle row represents the set q by balls in the positions of
its elements):

3 4 6 6 1 3 3 2 1

2 7 7 3 4 4 5 1 1

where the paths in red correspond to Phase I and those in blue are from Phase II. Hence,
we have q(346613321) = 277344511, which has type (2, 1, 1, 2, 1, 0, 2, . . .).

2The order in which equal letters are processed does not matter, as a simple argument shows.
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Since Phase I only deals with j /∈ q, and Phase II only with j ∈ q, these two phases
commute. We illustrate the situation v = q(u) with a 2× n array where the first row is
the word u, and second row has a circle labelled vj for j ∈ q or a square labelled vj for
j /∈ q in position j. Using this convention, we can write Example 2.1 as

1 123 3 34 6 6

1 12 3 4 4 57 7

There is an obvious duality in the definition of the labelling process above.

Lemma 2.2 (Duality). Let q be a queue and u be a packed word with ` classes. Define a new
word v by letting vi = ` + 1 − un+1−i and a new queue q′ by letting i ∈ q′ if and only if
n + 1− i /∈ q. Then q(u)i = `+ 2− q′(v)n+1−i.

Lemma 2.3 (Monotonicity). For any t ∈ Z≥1, let ft : {1, 2, . . .} → {1, 2} be given by ft(x) =
1 for x ≤ t and ft(x) = 2 for x > t. Let q be a queue, u be any word, and i, j ∈ [n]. We have
q(u)i ≤ q(u)j if and only if each t satisfies q( ft(u))i ≤ q( ft(u))j.

Lemma 2.3 tells us that when q is considered as a function on words, it is completely
determined by its values q(u) on words u ∈ {1, 2}n.

Definition 2.4. A (ordinary) multiline queue (MLQ) of type m, with ` classes, is a sequence
of queues q1, . . . , q`−1 such that qi is a pi(m)-queue. For a permutation σ of [`− 1], a
σ-twisted MLQ of type m, with ` classes, is a sequence of queues q1, . . . , q`−1 such that qi
is a pσ(i)(m)-queue.

Remark 2.5. Our notion of an MLQ is equivalent to what is called a “discrete MLQ”
in [1, Section 2.2], where we recover the labelling of level k by qk(· · · q1(1 · · · 1) · · · ). We
omit the word “discrete” as these are the only MLQs in this note.

Definition 2.6. For a packed word u of type m with ` classes, we define the spectral
weight or amplitude as

〈u〉 := ∑
(q1,...,q`−1)

`−1

∏
i=1

wt(qi), (2.1)

where the sum is over all MLQs (q1, . . . , q`−1) of type m and u = q`−1(· · · q1(1 · · · 1) · · · ).

We will also need the elementary symmetric function and complete homogeneous symmet-
ric function on the indeterminates x, defined for each N ∈ {0, 1, . . . , n} by

ek(N) = ∑
1≤i1<···<ik≤N

xi1 · · · xik , hk(N) = ∑
1≤i1≤···≤ik≤N

xi1 · · · xik ,

respectively. We define ek(N) = 0 and hk(N) = 0 for k < 0.
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3 Main results

In this section, we state our main results and prove the commutativity conjecture of [3]
and [1, Conjecture 3.10].

Theorem 3.1. Let u be a packed word of type m with ` classes. For any permutation σ of [`− 1],
we have

〈u〉 = ∑
(q1,...,q`−1)

`−1

∏
i=1

wt(qi),

where we sum over all σ-twisted MLQs such that u = q`−1(· · · q1(1 · · · 1) · · · ).

We note that Theorem 3.1 for the special case of x1 = · · · = xn = 1 is proven in [3]
using different techniques.

Corollary 3.2. Let m be a type with mi 6= 0 and mi+1 6= 0. Let m′ = (m1, . . . , mi−1, mi +
mi+1, mi+2, . . .). For any packed word v of type m′, we have

〈v〉 epi(m)(n) = ∑
u
〈u〉 ,

where we sum over all u of type m such that v = ∨iu.

Proof sketch. Note that if u = qr−1(· · · q2(q1(1 · · · 1)) · · · ), where q1 is a pi(m)-queue,
then v = qr−1(· · · q2(1 · · · 1) · · · ) = ∨iu. The result follows from Theorem 3.1.

Example 3.3. We give an example to illustrate the proof of Corollary 3.2. To compute
〈135452〉, we need to examine MLQs of type (1, 1, 1, 1, 2). We take a particular MLQ and
add the 5-queue {1, 2, 3, 5, 6} as follows:

q =

2 2 2 1 2 2

3 3 2 3 3 1

1 3 4 4 2 4

1 3 5 4 5 2

−−−−→

1 1 1 2 1 1

2 2 3 1 2 2

3 4 2 3 3 1

1 3 4 4 2 5

1 3 5 4 6 2

= q̃.

Note that we can take any subset of [6] of size 5, and so the sum over all of these choices
contributes a weight change to q by e5(6). Furthermore, note that 135452 = ∨5135462.
Now, by Theorem 3.1, such queues are in bijection with ordinary queues counting, in this
case, 〈135462〉. In more detail, let Ri(q̃) be the MLQ formed by taking the configuration
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C = (q̃i, q̃i+1) and replacing it with the dual configuration. By taking R4R3R2R1(q̃) to
bring the top row to the bottom, we obtain the ordinary MLQ as follows:

q̃
R1−−→

2 2 1 2 2 2

2 2 3 1 2 2

3 4 2 3 3 1

1 3 4 4 2 5

1 3 5 4 6 2

R2−−→

2 2 1 2 2 2

3 2 3 3 3 1

3 4 2 3 3 1

1 3 4 4 2 5

1 3 5 4 6 2

R3−−→

2 2 1 2 2 2

3 2 3 3 3 1

3 4 4 4 2 1

1 3 4 4 2 5

1 3 5 4 6 2

R4−−→

2 2 1 2 2 2

3 2 3 3 3 1

3 4 4 4 2 1

1 3 5 4 2 5

1 3 5 4 6 2

which contributes to 〈135462〉.

Example 3.4. Suppose n = 5. Let v = 13234, and we have that v = ∨3u if and only if
u ∈ {13245, 14235}. By examining all possible MLQs for these words, we obtain

〈13234〉 = x1x2x2
3x4(x2

1 + x1x4 + x1x5 + x4x5 + x2
5),

〈13245〉 = x1x2x2
3x4(x2

1 + x1x4 + x1x5 + x2
4 + x4x5 + x2

5)

× (x1x2x3 + x1x2x5 + x1x3x5 + x2x3x5),

〈14235〉 = x1x2x2
3x2

4(x3
1x2 + x3

1x3 + x3
1x5 + x2

1x2x3 + x2
1x2x4 + 2x2

1x2x5 + x2
1x3x4

+ 2x2
1x3x5 + x2

1x4x5 + x2
1x2

5 + x1x2x3x5 + x1x2x4x5 + 2x1x2x2
5

+ x1x3x4x5 + 2x1x3x2
5 + x1x4x2

5 + x1x3
5 + x2x3x2

5 + x2x4x2
5

+ x2x3
5 + x3x4x2

5 + x3x3
5).

(We have factored the expressions for readability only.) We verify Corollary 3.2 in this
case by computing 〈13234〉 e3(5) = 〈13245〉+ 〈14235〉.

Theorem 3.5. Let B = {b1 < b2 < · · · < br} ⊆ [n]. Let v1v2 · · · vr be a weakly decreasing
(non-cyclic) packed word of length r with `− 1 classes. Define a word u of length n by ui = vj
if i = bj for some j, otherwise ui = `. Then

〈u〉 =
(

∏
i∈B

xi

)
det
(
hi−j−1+γj(bj)

)
1≤i,j≤r,

where γj is the number of distinct letters in v1 · · · vj.

Now, fix a sequence b1 < b2 < · · · < br, and for a permutation v of [r], let u(v)
be the corresponding word as defined in Theorem 3.5. Furthermore let S ⊆ [r− 1]
be such that i ∈ S implies i + 1 /∈ S, and define the permutation σS = (∏i∈S si)w0,3

where si is the simple transposition on i and i + 1 and w0(k) = r + 1− k is the reverse

3The elements {si | i ∈ S} all commute, so the product is well-defined.
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Figure 1: An example of the bijection with n = 9, r = 6, ` = 4, v = 332221, and
B = {1, 2, 4, 6, 7, 9} between MLQs and non-intersecting lattice paths coming from the
Lindström–Gessel–Viennot Lemma [10, 18] applied to Theorem 3.5.

permutation on [r]. In [1], a formula for the spectral weight 〈uσS〉 is conjectured, where
uσS = uσS(1) · · · uσS(r).

Let T ⊆ [r− 1], and let φ(T) = ∑S⊆T 〈uσS〉. By Theorem 3.1, we have

ψ(T) =

(
∏
i∈S

epi(m)(n)

)〈∨
T

w0

〉
=

(
∏
i∈B

xi

)(
∏
i∈S

epi(m)(n)

)
det(hi−j+1+γj(bj))1≤i,j≤r,

where γi = i − |{j ∈ T | j < i}| and the second equality is Theorem 3.5. By Möbius
inversion we have 〈uσS〉 = ∑T⊆S(−1)|S|−|T|ψ(T). Taken together with x1 = · · · = xn = 1,
this proves [1, Conjecture 3.10].

4 Proof sketch of Theorem 3.1

The proof reduces down to defining an action of a simple transposition on a pair of
queues since all permutations can be written as a product of simple transpositions. We
call a pair of queues C = (q1, q2) an (r, s)-configuration, where q1 is an r-queue and q2 is
an s-queue. We consider C as a function on words by C(u) := q2

(
q1(u)

)
, and we define

the weight of C by wt(C) := wt(q1)wt(q2). Our proof is thus reduced to constructing
the dual (s, r)-configuration C′ to C, which satisfies C(u) = C′(u), wt(C) = wt(C′), and
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Figure 2: We draw a© in position i in row j corresponding to i ∈ qj and a � if i /∈ qj.
The maximal balanced intervals are boxed.

C′′ = C. Furthermore, we need to show that taking the dual configuration satisfies the
braid relations.

To construct C′ and show it satisfies the requisite properties, we break it into four
parts as follows. By using the monotonicity, we may assume u ∈ {1, 2}n. For the
remainder of this section, we fix an (r, s)-configuration C = (q1, q2).

Part A: Splitting into balanced and unbalanced intervals

Let int[i, j] denote a closed (cyclic) interval from i to j. This is the set {i, i + 1, . . . , j},
which wraps around the “circle” if i > j. Let int(i, j) := int[i, j] \ {i, j} denote the
open (cyclic) interval. Let c↑(i, k) (resp. c↓(i, k)) denote the number of ` ∈ int[i, k] such
that ` ∈ q1 (resp. ` ∈ q2). We say that a closed cyclic interval int[i, j] is balanced if
c↑(i, j) = c↓(i, j) and for each k ∈ int[i, j], we have c↑(i, k) ≥ c↓(i, k). Note that for a
balanced interval I , we have |q1 ∩ I| = |q2 ∩ I|. For i ∈ [n], we say that i is balanced if i
belongs to some balanced interval, and unbalanced otherwise. The maximal (with respect
to set inclusion) balanced intervals are disjoint, and a maximal interval is [n] if and only
if r = s.

For r < s and j unbalanced, we have j /∈ q1 and j ∈ q2. Conversely, for r > s and j
unbalanced, j ∈ q1 and j /∈ q2. The following notation will be useful later on: for a word
u ∈ Wn, an element j ∈ [n] and an (r, s)-configuration C = (q1, q2), we let T(j) be the
pair (uj, sj) where sj =© if j ∈ q1 and sj = � if j /∈ q1.

Part B: Defining the dual configuration

We construct C′ = (q′1, q′2) by letting q′i ∩I = qi ∩I for i = 1, 2 and each balanced interval
I in C. For unbalanced j, we have j ∈ q′i if and only if j ∈ q3−i for i = 1, 2. Note that C
and C′ have the same balanced intervals. It is clear that C′′ = C and wt(C) = wt(C′).
This corresponds to the action of the combinatorial R-matrix [19, 21], which satisfies the
Yang–Baxter equation/the braid relation. Note that if r = s, then C = C′.

Example 4.1. Consider the configuration C given in Figure 2. The dual configuration C′
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is given by sliding all of the circles not in a boxed interval from the upper level to the
lower level. In particular, we have q′1 = q1 \ {1, 5, 6, 8} and q′2 = q2 ∪ {1, 5, 6, 8}.

Part C: Reduction to special words

We reduce the problem to a certain set of words by performing a series of reductions
based on the following lemmas. For this part, we assume i, j ∈ [n]. We define ui↔j as the
result of swapping positions i and j in u.

Lemma 4.2 (BB reduction). Suppose int[i, j] is a balanced interval, T(i) = (1,�), T(j) =
(2,©), and T(k) ∈ {(1,©), (2,�)} for all k ∈ int(i, j). Then C(u) = C(ui↔j).

In the following examples, on the first line, we write the word u, the second line is
the word is q1(u) with i ∈ q1 (resp. i /∈ q1) depicted as© (resp. �), and the third line is
q2
(
q1(u)

)
with similar depiction for q2.

Example 4.3. Suppose n = 8. Let u = 12121122, and consider the (5, 3)-configuration
C = ({1, 2, 5, 6, 8}, {5, 7, 8}). We apply C to u on the left and to u3↔8 on the right:

1 21 1 12 2 2

1 1 1 12 3 3 3

4 4 432 1 1 1

balanced

=

121 1 12 2 2

1 1 1 13 3 32

4 4 432 1 1 1

balanced

Lemma 4.4 (BU reduction). Suppose i is balanced, j is unbalanced, T(i) = (1,�), uj = 2,
uk = 1 for all unbalanced k ∈ int(i, j), and T(k) ∈ {(1,©), (2,�)} for all balanced k ∈
int(i, j). Then C(u) = C(ui↔j).

Example 4.5. Suppose n = 8. Let u = 21111122, and consider the (4, 1)-configuration
C = ({1, 2, 5, 6}, {7}). We apply C to u on the left and to u4↔1 (note the interval int[4, 1]
wraps around):

2 11 1 1 1 2 2

1 1 1 12 3 3 3

4 4 4 132 2 2

balanced balanced

=

21 1 1 1 1 2 2

1 1 1 12 3 3 3

4 4 4 132 2 2

balanced balanced

Remark 4.6. The BB and, when r > s, BU reductions always have q1(u) = q1(ui↔j).
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Lemma 4.7 (UB reduction). Suppose i is unbalanced, j is balanced, ui = 1, T(j) = (2,©),
uk = 2 for all unbalanced k ∈ int(i, j), and T(k) ∈ {(1,©), (2,�)} for all balanced k in
int(i, j). Then C(u) = C(ui↔j).

Example 4.8. Suppose n = 8. Let u = 12221222, and consider the (6, 2)-configuration
C = ({1, 2, 3, 4, 5, 8}, {7, 8}). We apply C to u on the left and to u1↔8 on the right:

1 212 2 2 2 2

1 212 2 2 3 3

4 4 1 13 3 3 3

balanced

=

12 12 2 2 2 2

12 12 2 2 3 3

4 4 1 13 3 3 3

balanced

Part D: Finishing the proof

Note that if one of the previous lemmas applies to C for some u, i, j, then it applies to
C′ with the same u, i, j. Thus, we prove that C(u) = C′(u), where u is one of the words
such that none of the reduction steps from Part C apply.

5 The TASEP connection

We now explain how our proof of Theorem 3.1 gives a proof of the commutativity con-
jecture of [3]. The totally asymmetric simple exclusion process (TASEP) is a Markov chain
on Wn with transitions uiui+1 → ui+1ui with rate 1 for ui < ui+1. These moves pre-
serve the type of the words, so each irreducible part of the chain corresponds to a
type m. There are 2n−1 packed types for words of length n as they are compositions
of n. We let the subset S ⊆ [n − 1] correspond to the type of the word obtained by
merging i and i + 1 in 12 · · · n for each i ∈ S. Denote this type by mS. Note that
{p1(mS), . . . , p`−1(mS)} = [n− 1] \ S, where mS has ` classes, which is the complement
of the usual bijection between subsets of [n− 1] and compositions of n. For example
when n = 4, we have m∅ = (1, 1, 1, 1) and m{1,2,3} = (4).

Let WS denote the set of words of type mS. Let VS be the vector space over R with
basis {εw | w ∈ WS}. Let MS : VS → VS be the transition matrix of the TASEP on WS.
For i, S such that i /∈ S, we define Ψi : VS∪{i} → VS by letting Ψi(εu) = ∑q εq(u), where
the sum is taken over all i-queues q.

In [3], it is shown that MSΨi = Ψi MS∪{i}. Let πS ∈ VS be the stationary distribution
of MS: the unique vector with non-negative entries summing to 1 satisfying πS = MSπS.
Thus, the vector πS can be computed from πS∪{i} by πS = ΨiπS∪{i}. This allows us to
compute every stationary distribution from the trivial vector π[n] = 1 ∈ R.
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It is conjectured in [3] that ΨiΨj = ΨjΨi, where it is called the commutativity conjecture.
By looking at the (u, v) entry of both sides of this equation, the commutativity conjecture
is asking whether the number of (i, j)-configurations C such that v = C(u) equals the
number of (j, i)-configurations C′ such that v = C′(u). Thus, our proof of Theorem 3.1
shows that Ψ̃iΨ̃j = Ψ̃jΨ̃i for the weighted operators Ψ̃i given by Ψ̃i(εu) = ∑q wt(q)εq(u).
Note that Ψ̃i = Ψi when we specialize x1 = · · · = xn = 1.

We have not found any process similar to the TASEP using only “local” moves for
which our spectral weights of u are the stationary probabilities. However, we note that
the Markov chain onWn with transitions u→ q(u) for r-queues q (for some fixed r) has
stationary probabilities given by our spectral weights of u.
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