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Prism Tableaux for Alternating Sign Matrix
Varieties
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Abstract. A prism tableau is a set of reverse semistandard tableaux, each positioned
within an ambient grid. Prism tableaux were introduced in joint work with A. Yong
to provide a formula for the Schubert polynomials of A. Lascoux and M.-P. Schützen-
berger. This formula directly generalizes the well known expression for Schur polyno-
mials as a sum over semistandard tableaux. Alternating sign matrix varieties generalize
the matrix Schubert varieties of W. Fulton. We use prism tableaux to give a formula for
the multidegree of an alternating sign matrix variety.
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1 Introduction

An alternating sign matrix (ASM) is a square matrix with entries in {−1, 0, 1} so that the
nonzero entries in each row and column sum to 1 and alternate in sign. Let ASM(n) be
the set of n× n ASMs. The enumeration of ASMs has drawn much interest, the sequence
for n ≥ 1 being

1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460, . . . .

There is a closed form expression for this sequence; the celebrated alternating sign matrix
conjecture of W. H. Mills–D. P. Robbins–H. Rumsey [17] asserts that

|ASM(n)| =
n−1

∏
j=0

(3j + 1)!
(n + j)!

.

The original proof was given by D. Zeilberger [19]. G. Kuperberg gave a second proof
using the six-vertex model of statistical mechanics [12]. See Proofs and Confirmations: The
Story of the Alternating-Sign Matrix Conjecture, by D. Bressoud, for links between ASMs
and hypergeometric series, plane partitions, and lattice paths [3].
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Fix A = (aij)
n
i,j=1 ∈ ASM(n). The corner sum function is rA(i, j) =

i

∑
k=1

j

∑
`=1

ak`. Corner

sums define a lattice structure on ASM(n); say

A ≤ B if and only if rA(i, j) ≥ rB(i, j) for all 1 ≤ i, j ≤ n. (1.1)

Restricted to permutation matrices, (1.1) is the Bruhat order on the symmetric group Sn.
A. Lascoux and M.-P. Schützenberger showed that ASM(n) is the smallest lattice which
contains Sn as an order embedding [15, Lemma 5.4].

A permutation w is Grassmannian if it has a unique descent, i.e. a position i so that
w(i) > w(i + 1). A permutation u is biGrassmannian if both u and u−1 are Grassman-
nian. A. Lascoux and M.-P. Schützenberger showed that biGrassmannian permutations
are the basic elements of Sn, and hence ASM(n).

A partition λ = (λ1, λ2, . . . , λk) is a weakly decreasing sequence of nonnegative inte-
gers. Each λi is a part of lambda. The length `(λ) is the number of positive parts of λ.
Each partition λ has an associated (French) Young diagram which consists of left justified
boxes with λ1 boxes in the bottom row, λ2 in the next, and so on.

A reverse semistandard tableau is a filling of the Young diagram of λ with positive in-
tegers so that labels weakly decrease within rows (from left to right) and strictly decrease
(from bottom to top) within columns. Write RSSYT(λ, d) for the set of reverse semistan-
dard fillings of λ which use labels from the set [d] := {1, 2, . . . , d}.

Fix tuples of partitions and positive integers

λ = (λ(1), . . . , λ(k)) and d = (d1, . . . , dk) so that di ≥ `(λ(i)) for all i. (1.2)

Let
AllPrism(λ, d) = RSSYT(λ(1), d1)× · · · × RSSYT(λ(k), dk).

An element of AllPrism(λ, d) is called a prism tableau. We associate to each (λ, d) an
ASM, denoted Aλ,d, which is the least upper bound of a list of Grassmannian permu-
tations (see (2.2)). Conversely, for any A ∈ ASM(n), there exists some (λ, d) so that
A = Aλ,d. See Section 2 for details.

For the discussion which follows, it is not enough to think of a prism tableau as a tuple
of reverse semistandard tableaux. Rather, we position each of the component tableaux in
the Z>0 ×Z>0 grid. We use matrix coordinates to refer boxes in the grid; (i, j) indicates
the box in the ith row (from the top) and jth column (from the left) of the grid. The ith
antidiagonal of Z>0 ×Z>0 consists of the boxes

{(i, 1), (i− 1, 2), . . . , (1, i)}.

We identify the shape of each λ(i) with

λ(i) = {(a, b) : b ≤ λ
(i)
di−a+1} ⊆ Z>0 ×Z>0. (1.3)
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The prism shape for (λ, d) is obtained by overlaying the λ(i)’s:

S(λ, d) :=
k⋃

i=1

{(a, b) : b ≤ λ
(i)
di−a+1}. (1.4)

From this perspective, a prism tableau for (λ, d) is a filling of S(λ, d) which assigns a label
of color i from [di] to each (a, b) ∈ λ(i) so that labels of color i weakly decrease along rows
from left to right and strictly decrease along columns from bottom to top. Such fillings
are in immediate bijection with AllPrism(λ, d).

Weight T as follows:

wt(T ) =
∞

∏
i=1

xni
i

where ni is the number of antidiagonals which contain the label i (in any color).

Example 1.1. Let λ = ((1), (3, 2), (2, 1, 1)) and d = (2, 5, 6). Below, we give an example of
T ∈ AllPrism(λ, d).

T =

(
1 , 2 2

3 3 2 ,
1
2
6 3

)
←→

1

21 2
32 3 2
6 3

The corresponding weight monomial is wt(T ) = x2
1x3

2x3
3x6.

Let deg(λ, d) = min{deg(wt(T )) : T ∈ AllPrism(λ, d)}. Say T ∈ AllPrism(λ, d)
is minimal if deg(wt(T )) = deg(λ, d). Let `c be a label ` of color c. Labels {`c, `d, `′e}
in the same antidiagonal form an unstable triple if ` < `′ and replacing the `c with `′c
gives a prism tableau. For instance, in Example 1.1, there is an unstable triple in the fifth
antidiagonal; the blue 2 may be replaced with a 3. Write

Prism(λ, d) = {T ∈ AllPrism(λ, d) : T is minimal and has no unstable triples}. (1.5)

Let Aλ,d = ∑
T ∈Prism(λ,d)

wt(T ). Call Aλ,d an ASM polynomial.

If λ = (λ) and d = (d), the polynomial Aλ,d is the Schur polynomial sλ(x1, . . . , xd).
This follows immediately from the usual definition of sλ as a weighted sum over semistan-
dard tableaux. The Schubert polynomials {Sw : w ∈ S∞} of A. Lascoux and M.-P. Schützen-
berger [14] generalize Schur polynomials. The purpose of [18] was to provide a prism
formula for Schubert polynomials. We prove the following generalization.

Theorem 1.2. Aλ,d = ∑
w∈MinPerm(Aλ,d)

Sw.
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Here, MinPerm(A) denotes the set permutations above A which have the minimum
possible Coxeter length. Our proof of Theorem 1.2 is purely combinatorial; we give a
bijection between Prism(λ, d) and the set of maximum dimensional facets in a union of
the subword complexes of [11]. The Schubert polynomial is a weighted sum over the facets
of its corresponding subword complex [1, 5, 10].

Aλ,d also has a geometric interpretation; it is the multidegree of an alternating sign matrix
variety. Write Mat(n) for the space of n× n matrices over an algebraically closed field k.
Given M ∈ Mat(n), let M[i],[j] be the submatrix of M which consists of the first i rows and
j columns of M. We define the alternating sign matrix variety

XA := {M ∈ Mat(n) : rank(M[i],[j]) ≤ rA(i, j) for all 1 ≤ i, j ≤ n}. (1.6)

If w ∈ Sn, then Xw is a matrix Schubert variety as defined in [7].
ASM varieties are stable under multiplication by the group of invertible, diagonal

matrices T ⊂ GL(n). There is a corresponding Zn grading and multidegree

C(XA; x) ∈ Z[x1, . . . , xn].

Whenever w ∈ Sn, we have Sw = C(Xw; x). This was shown in [10] and is equivalent to
earlier statements in the language of equivariant cohomology [4] and degeneracy loci [7].
We show Aλ,d is the multidegree of the ASM variety XAλ,d .

Theorem 1.3. Fix λ and d as in (1.2). Then C(XAλ,d ; x) = Aλ,d.

The irreducible components of XA are always matrix Schubert varieties. Theorem 1.3
follows from Theorem 1.2 and the additivity of multidegrees.

We also discuss the explicit connection of prism tableaux to the Gröbner geometry of
XA. Let Z = (zij)

n
i,j=1 be the generic n× n matrix. Define the ASM ideal by

IA := 〈minors of size rA(i, j) + 1 in Z[i],[j]〉. (1.7)

It is immediate that IA provides set-theoretic equations for XA. In fact, for any A ∈
ASM(n), we have that IA is radical. This follows from the Frobenius splitting argument
given in [9, Section 7.2]. We make the connection to ASM varieties explicit.

Proposition 1.4 ([9]). Fix any antidiagonal term order ≺ on k[Z].

1. The essential (and hence defining) generators of IA form a Gröbner basis under ≺.

2. IA is radical and its initial ideal is a square-free monomial ideal.

3. The Stanley–Reisner complex of init(XA) is ∆(Qn×n, A).

Since Prism(λ, d) is in weight preserving bijection with the facets of maximum dimen-
sion in ∆(Qn×n, A), this yields a second proof of Theorem 1.3.
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2 Combinatorial Prism Models

We start by presenting a generalization of Rothe diagrams to ASMs. Plot A ∈ ASM(n)
in the n × n grid by placing a black dot for each 1 in A and a white dot for each −1.
Strike out hooks to the right and below each black dot which stop if they encounter the
boundary of a box which contains a white dot. The boxes which remain form the Rothe
diagram D(A). Equivalently, (i, j) ∈ D(A) if and only if (i, j) is an inversion of A (see
[17] for this definition). The essential set E ss(A) consists of the southeast most corners of
each connected component of D(A).

Example 2.1.

A =


0 0 0 1
0 1 0 0
1 −1 1 0
0 1 0 0

 D(A) =

The boxes of the diagram of A are shaded gray. The essential boxes are dark gray.

Notice that D(A) is similar to the ASM diagram defined by A. Lascoux [13]. However,
our conventions on inversions differ; we include the set of negative inversions. If w is a per-
mutation matrix, D(w) and E ss(w) coincide with the usual Rothe diagram and essential
set, as defined in [7]. Any permutation is uniquely determined by the restriction of the
corner sum function to its essential set [7, Lemma 3.10]. The same statement holds more
generally for ASMs, see Proposition 2.2.

BiGrassmannian permutations in Sn are naturally labeled by triples of integers (i, j, r)
which satisfy the following conditions:

(B1) 1 ≤ i, j

(B2) 0 ≤ r < min(i, j)

(B3) i + j− r ≤ n.

Let Ik denote the k× k identity matrix. Then we write

[i, j, r]b :=


Ir

Ii−r
Ij−r

In−i−j+r

 (2.1)

for the (unique) biGrassmannian encoded by this triple. In the case r = min(i, j), let
[i, j, r]b be the identity permutation.

Let biGr(A) be the set of maximal biGrassmannians below A in the lattice ASM(n).
Then A = ∨biGr(A). The next proposition shows how to recover biGr(A) from E ss(A).
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Proposition 2.2. biGr(A) = {[i, j, rA(i, j)]b : (i, j) ∈ E ss(A)}.

Proposition 2.2 is discussed in [15, Section 5], using essential points of monotone tri-
angles. It appears in a more general context in [6, Theorem 5.1]. As a consequence, A is
determined by the restriction of rA to E ss(A). This generalizes [7, Lemma 3.10].

Left justifying the Rothe diagram of a Grassmannian permutation u produces the
(French) Young diagram of partition λ(u). If d ≥ `(λ), write [λ, d]g for the (unique) Grass-
mannian with descent at position d and associated partition λ. If λ = (), then for any d
we say [λ, d]g = id. Then given (λ, d) as in (1.2), we define

Aλ,d = ∨{[λ(1), d1]g, . . . , [λ(k), dk]g}. (2.2)

We now describe two ways of taking A ∈ ASM(n) as a input and producing a pair
(λ, d) so that A = Aλ,d. Both procedures are entirely combinatorial. We start with Bi-
Grassmannian prism tableaux, which were defined in [18].

Definition 2.3 (BiGrassmannian Prism Tableaux). Suppose

E ss(A) = {(i1, j1), (i2, j2), . . . , (ik, jk)}.

Let
β(`) = (i` − rA(i`, j`))× (j` − rA(i`, j`)). (2.3)

Define βA = (β(1), . . . , β(k)) and bA = {i1, . . . , ik}. Elements of AllPrism(βA, bA) are
biGrassmannian prism tableaux.

We now introduce the parabolic prism model. Our definition uses the monotone trian-
gles of W. H. Mills, D. P. Robbins, and H. Rumsey [17]. Given A = (aij)

n
i,j=1 ∈ ASM(n)

let CA be the matrix of partial column sums, i.e. CA(i, j) = ∑i
`=1 a`j. The ith row of mA

records (in increasing order) the positions of the 1s in the ith row of CA. The array mA is
called a monotone triangle.

Example 2.4.

A =


0 0 1 0
1 0 −1 1
0 0 1 0
0 1 0 0

 CA =


0 0 1 0
1 0 0 1
1 0 1 1
1 1 1 1

 mA =

3
1 4

1 3 4
1 2 3 4

Given A and 1 ≤ ` ≤ n, we define

λ(A,`) = (mA(`, `)− `, mA(`, `− 1)− (`− 1), . . . , mA(`, 1)− 1). (2.4)

Since mA strictly increases along rows, λ(A,`) is a partition.
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Definition 2.5 (Parabolic Prism Tableaux). Write {i : (i, j) ∈ E ss(A)} = {i1, . . . , ik} for the
indices of essential rows of A. Let

ρA = (λ(A,i1), λ(A,i2), . . . , λ(A,ik)) and pA = (i1, . . . , ik).

Elements of AllPrism(ρA, pA) are parabolic prism tableaux.

Proposition 2.6. 1. A = AβA,bA .

2. A = AρA,pA .

3 Subword complexes and prism tableaux

Let P(S) denote the power set of S. A simplicial complex ∆ is a subset of P([N]) so
that whenever f ∈ ∆ and f ′ ⊆ f , we have f ′ ∈ ∆. An element f ∈ ∆ is called a face.
The dimension of f is dim( f ) = | f | − 1. Write dim(∆) = max{dim( f ) : f ∈ ∆}. If
f ∈ ∆, the codimension of f is codim( f ) = dim(∆) − dim( f ). The set of faces of ∆
ordered by inclusion form a poset. Let F(∆) denote the set of facets of ∆, i.e. the maximal
faces. Then define Fmax(∆) = { f ∈ ∆ : codim( f ) = 0}. Necessarily, Fmax(∆) ⊆ F(∆).
When this containment is an equality, ∆ is called pure. Given two simplicial complexes
∆1, ∆2 ⊆ P([N]), we may refer without ambiguity to the intersection (or union) of ∆1
and ∆2; it is precisely their intersection (or union) as sets. A straightforward verification
shows that ∆1 ∩ ∆2 and ∆1 ∪ ∆2 are themselves simplicial complexes.

We now recall the definition of a subword complex, following [11]. Let Π be a Coxeter
group generated by simple reflections Σ. A word is an ordered list Q = (s1, . . . , sm) of
simple reflections in Σ. A subword of Q is an ordered subsequence P = (sii , . . . , sik).
Subwords of Q are naturally identified with faces of the simplicial complex P([m]). A
word P represents w ∈ Π if w = s1 · · · sm and `(w) = m, i.e. the ordered product is a
reduced expression for w. We say Q contains w if Q has a subword which represents w.
Then define the subword complex ∆(Q, w) = {Q− P : P contains w}. We will abbreviate
FP := Q− P. Immediately by definition, FP ⊆ FP′ if and only if P ⊇ P′. A well known
characterization of the Bruhat order on Sn is via subwords:

w ≥ v if and only if some (and hence every) reduced word for w contains v. (3.1)

See [8, Section 5.10]. This is equivalent to the order on Sn as defined in (1.1). See [2,
Theorem 2.1.5] for a proof.

The Demazure algebra of (Π, Σ) over a ring R is freely generated by {ew : w ∈ Π}
with multiplication given by

ewes =

{
ews if `(ws) > `(w)

ew if `(ws) < `(w).
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If Q = (s1, . . . , sk), the Demazure product δ(Q) is defined by es1 · · · esm = eδ(Q). The faces
of ∆(Q, w) have a natural description in terms of the Demazure product.

Lemma 3.1 ([11, Lemma 3.4]). δ(P) ≥ w if an only if P contains w.

Notice ∆(Q, w) = {FP : δ(P) ≥ w}. This motivates the following definition. Let
Π = Sn and Σ = {(i, i + 1) : i = 1, . . . , n− 1} be the set of simple transpositions. Given
A ∈ ASM(n), define ∆(Q, A) = {FP : δ(P) ≥ A}. This is itself a simplicial complex, but
need not be a subword complex. Immediately from the definition,

if A ≥ B then ∆(Q, A) ⊆ ∆(Q, B). (3.2)

We will show that ∆(Q, A) is a union of subword complexes. In particular, if A ∈ ASM(m)
with m ≤ n each of these subword complexes correspond to permutations in Sm. Write
Min(S) for the minimal elements in S. Let Perm(A) := MIN({w ∈ Sn : w ≥ A}) and

MinPerm(A) := {w ∈ Perm(A) : `(w) = deg(A)}. (3.3)

Proposition 3.2. Fix a word Q and A ∈ ASM(n).

1. ∆(Q, A) =
⋃

w∈Perm(A)

∆(Q, w).

2. If A = ∨{A1, . . . , Ak} then ∆(Q, A) =
k⋂

i=1

∆(Q, Ai).

3. F(∆(Q, A)) = {FP : P is a reduced expression for some w ∈ Perm(A)}.
For the rest of this section, we focus on a fixed ambient word Q. Write si for the simple

transposition (i, i + 1) ∈ S2n. Define the square word

Qn×n = sn sn−1 · · · s1 sn+1 sn · · · s2 · · · s2n−1 s2n−2 · · · sn.

Order the boxes of the n× n grid by reading along rows from right to left, starting with
the top row and working down to the bottom. This ordering identifies each letter of Qn×n
with a cell in the n× n grid.

A plus diagram is a subset of the n× n grid. We indicate (i, j) is in the plus diagram
by marking its position in the grid with a +. The identification of the letters in Qn×n with
the grid defines a natural bijection between subwords of Qn×n and plus diagrams. As
such, we freely identify each word with its plus diagram.
Example 3.3. When n = 3, we have Qn×n = s3s2s1s4s3s2s5s4s3. Below, we label the entries
of the 3× 3 grid with their corresponding simple transpositions. We also give a subword
of Q3×3 and its corresponding plus diagram.

s1 s2 s3
s2 s3 s4
s3 s4 s5

s3 − − − s3 s2 − − −
· · +
+ + ·
· · ·
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Notice that P is not a reduced expression, s3s3s2 = s2. Therefore, it is not a facet of
∆(Qn×n, A) for any A ∈ ASM(n).

For brevity, write ∆A := ∆(Qn×n, A). Assign FP the weight wt(FP) =
n

∏
i=1

xni
i where

ni = |{j : (i, j) ∈ P}|. When w ∈ Sn, the complex ∆w is a pure simplicial complex. Its
facets are in immediate bijection with pipe dreams (also known as RC-graphs).

Theorem 3.4 ([1, 5, 10]). Sw = ∑
FP∈F(∆w)

wt(FP).

For permutations, ∆w is the Stanley–Reisner complex of a degeneration of the Schubert
determinantal ideal Iw [10, Theorem B]. The same holds for IA and ∆A. As a consequence
of Theorem 3.4, we have the following corollary.

Corollary 3.5. 1. ∑
w∈Perm(A)

Sw = ∑
FP∈F(∆A)

wt(FP).

2. ∑
w∈MinPerm(A)

Sw = ∑
FP∈Fmax(∆A)

wt(FP).

There is a natural map from AllPrism(λ, d) to the set of plus diagrams: if T has the
label i in an antidiagonal, place a plus in row i of this same antidiagonal. For instance,
continuing Example 1.1, we have

T =

1

21 2
32 3 2
6 3

7→ PT =

· + · + · · ·
· · + + · + ·
· · + + + · ·
· · · · · · ·
· · · · · · ·
+ · · · · · ·
· · · · · · ·

Our proof of Theorem 1.2 involves showing that the restriction of this map to Prism(λ, d)
is a bijection onto the maximum dimensional facets of ∆Aλ,d .

4 ASM varieties and determinantal ideals

Recall Mat(n) is the space of n × n matrices over an algebraically closed field k. Write
GL(n) for the invertible matrices in Mat(n) and T for the torus of diagonal matrices in
GL(n). There is a natural action of GL(n), and hence T, on Mat(n) by left multiplication.
A variety X ⊆ Mat(n) is T stable if TX ⊆ X.
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Recall Z = (zij)
n
i,j=1. Write k[Z] = k[z11, z12, . . . , znn] for the coordinate ring of Mat(n).

There is a multigrading defined by the action T on Mat(n). In particular, T stable subva-
rieties of Mat(n) have coordinate rings that are k[Z]-graded modules and define a mul-
tidegree. Multidegrees are characterized by three properties, normalization, additivity, and
degeneration [16, Theorem 8.44].

Fix X ⊆ Mat(n) with X being T stable. If k[Z]/I is the coordinate ring of X, write
C(X; x) := C(k[Z]/I; x) for its multidegree. By additivity, C(X; x) = ∑k

i=1 C(Xi; x) where
{X1, . . . , Xk} are the maximal dimensional irreducible components of X. Since I is radical,
this is a multiplicity free sum.

Given an n × n matrix M, write M[i],[j] for the submatrix of M which consists of the
first i rows and j columns of M. Fix w ∈ Sn. The matrix Schubert variety is

Xw := {M ∈ Mat(n) : rank(M[i],[j]) ≤ rw(i, j) for all 1 ≤ i, j ≤ n}. (4.1)

Matrix Schubert varieties generalize classical determinantal varieties. W. Fulton showed
that they are irreducible [7]. By [10, Theorem A], when w ∈ Sn, we have C(Xw; x) = Sw.

We define the alternating sign matrix variety

XA := {M ∈ Mat(n) : rank(M[i],[j]) ≤ rA(i, j) for all 1 ≤ i, j ≤ n}.

Immediately by definition, if A ≤ B then XA ⊇ XB. Furthermore, XA has the following
set theoretic descriptions as unions and intersections of other ASM varieties.

Proposition 4.1. 1. XA =
⋃

w∈Perm(A)

Xw.

2. If A = ∨{A1, . . . , Ak}, then XA =
k⋂

i=1

Ai.

W. Fulton showed that each Xw is defined by a smaller set of essential conditions,

Xw = {M ∈ Mat(n) : rank(M[i],[j]) ≤ rw(i, j) for all (i, j) ∈ E ss(w)}. (4.2)

By Proposition 4.1, XA =
⋂

u∈biGr(A)

Xu. Therefore, ASM varieties are defined by essential

conditions. The rank of any submatrix is preserved under the T action, so Xw is T stable.

Proposition 4.2. C(XA; x) = ∑
w∈MinPerm(A)

Sw.

Proof. As a consequence of Proposition 4.1, the top dimensional irreducible components
of XA are {Xw : w ∈ MinPerm(A)}. Then using the additivity property of multidegrees
we have C(XA; x) = ∑

w∈MinPerm(A)

C(Xw; x) = ∑
w∈MinPerm(A)

Sw.
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Theorem 1.3 follows as an immediate consequence of Proposition 4.2 and Theorem 1.2.
We now turn our discussion to defining ideals for ASM varieties. Recall the ASM ideal

IA := 〈minors of size rA(i, j) + 1 in Z[i],[j]〉. A matrix has rank at most r if and only if all
of its minors of size r + 1 vanish. As such, IA set-theoretically cuts out XA. Furthermore,
IA has generators which are homogeneous for the Zn grading on k[Z]. There is a smaller
generating set for IA. Write

EssGen(A) = {minors of size rA(i, j) + 1 in Z[i],[j] : (i, j) ∈ E ss(A)}.

for essential generators of IA.
We could have alternatively proved Proposition 4.2 by taking an explicit Gröbner de-

generation of IA with respect to an antidiagonal term order. In this case, the Stanley–Reisner
complex of IA is ∆(Qn×n, A). Furthermore, if A = Aλ,d, the maximum dimensional facets
of ∆(Qn×n, A) have a natural labeling by elements of Prism(λ, d). This produces a specific
connection between the Gröbner geometry of XA and prism tableaux.
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