Séminaire Lotharingien de Combinatoire **80B** (2018) Article #59, 12 pp.

On *e*-positivity and *e*-unimodality of chromatic quasisymmetric functions

Soojin Cho*1 and JiSun Huh^{$\dagger 1$}

¹Department of Mathematics, Ajou University, Suwon 16499 Republic of Korea

Abstract. The *e*-positivity conjecture and the *e*-unimodality conjecture of chromatic quasisymmetric functions are proved for some classes of natural unit interval orders. Recently, J. Shareshian and M. Wachs introduced chromatic *quasisymmetric* functions as a refinement of Stanley's chromatic symmetric functions and conjectured the *e*-positivity and the *e*-unimodality of these functions. Our work resolves the Stanley's conjecture on chromatic symmetric functions of (3 + 1)-free posets for two classes of natural unit interval orders.

Résumé. La conjecture d'*e*-positivité ainsi que celle d'*e*-unimodalité sur les fonctions chromatiques quasi-symétriques ont été démontrées pour quelques classes d'ordres naturels sur l'ensemble des intervalles unitaires. Récemment, J. Shareshian et M. Wachs ont introduit les fonctions chromatiques quasi-symétriques comme un raffinement des fonctions chromatiques symétriques, et ont conjecturé qu'elles sont *e*-positives et *e*-unimodales. L'*e*-positivité d'une fonction chromatique quasi-symétrique implique celle de la fonction chromatique symétrique correspondante, et ce travail résout donc la conjecture de Stanley pour les fonctions chromatiques symétriques symétriques des ensembles ordonnés sans (3 + 1) pour deux ordres naturels sur les intervalles unitaires.

Keywords: chromatic quasisymmetric function, *e*-positivity, *e*-unimodality, (3 + 1)-free poset, natural unit interval order

1 Introduction

In 1995, R. Stanley [8] introduced the *chromatic symmetric function* $X_G(\mathbf{x})$ associated with any simple graph *G*, which generalizes the chromatic polynomial $\chi_G(n)$ of *G*. One of the long standing and well known conjecture due to Stanley on chromatic symmetric functions states that a chromatic symmetric function of any (3 + 1)-free poset is a linear sum of elementary symmetric function basis $\{e_{\lambda}\}$ with *nonnegative* coefficients. Recently, Shareshian and Wachs [7] introduced a chromatic *quasisymmetric* refinement $X_G(\mathbf{x}, t)$ of chromatic symmetric function $X_G(\mathbf{x})$ for a graph *G*. They conjectured the *e*-positivity

^{*}chosj@ajou.ac.kr. This work is supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01057476).

[†]hyunyjia@ajou.ac.kr

and the *e*-unimodality of the chromatic quasisymmetric functions of natural unit interval orders: That is, if $X_G(\mathbf{x}, t) = \sum_{j=0}^m a_j(\mathbf{x})t^j$ for the incomparability graph *G* of a natural unit interval order, then $a_j(\mathbf{x})$, $0 \le j \le m$, is a nonnegative linear sum of e_{λ} 's, which is a refinement of the Stanley's conjecture. Moreover, *e*-unimodality conjecture states that $a_{j+1}(\mathbf{x}) - a_j(\mathbf{x})$ is a sum of e_{λ} 's with nonnegative coefficients for $0 \le j < \frac{m-1}{2}$.

In this paper, we give combinatorial proofs of the conjectures on *e*-positivity and *e*unimodality of chromatic quasisymmetric functions for certain classes of natural unit interval orders. We use the Schur function expansion of chromatic quasisymmetric functions in terms of Gasharov's *P*-tableaux ([2]), that was done by Shareshian and Wachs in [7]. We use the Jacobi–Trudi expansion of Schur functions into elementary symmetric functions to write chromatic quasisymmetric functions as a sum of elementary symmetric functions with coefficients of signed sum of positive *t* polynomials. We then define a sign reversing involution to cancel out negative terms and obtain only positive terms. We use an inductive argument on *P*-tableaux to find explicit *e*-expansion formulae of $X_G(\mathbf{x}, t)$ and this shows the *e*-unimodality. We remark that one class of natural unit interval orders we consider (in Section 3.1) was considered by Stanley–Stembridge and recently by Harada–Precup and the *e*-positivity of the corresponding chromatic symmetric functions was proved (Remark 4.4 in [11], [6]).

2 Preliminaries

2.1 Chromatic quasisymmetric functions and the positivity conjecture.

We set $\mathbb{P} = \{1, 2, ...\}$ and $[n] = \{1, 2, ..., n\}$. For $n \in \mathbb{P}$, a partition $\lambda = (\lambda_1, ..., \lambda_\ell)$ of n is a sequence of positive integers such that $\lambda_i \ge \lambda_{i+1}$ for all i and $\sum_i \lambda_i = n$. For a partition λ , the conjugate of λ is the partition $\lambda' = (\lambda'_1, ..., \lambda'_{\lambda_1})$ with $\lambda'_j = |\{i \mid \lambda_i \ge j\}|$. For $n \in \mathbb{P}$, the n^{th} elementary symmetric function e_n is defined as $e_n = \sum_{i_1 < \cdots < i_n} x_{i_1} \cdots x_{i_n}$, and the Q-algebra Λ_Q of symmetric functions is the subalgebra of Q[[$x_1, x_2, ...$]] generated by the e_n 's; $\Lambda_Q = \Lambda = \mathbb{Q}[e_1, e_2, ...]$. Then $\Lambda = \bigoplus_{n=0}^{\infty} \Lambda^n$, where Λ^n is the subspace of symmetric functions of degree n, and $\{e_\lambda \mid \lambda \vdash n\}$ is a basis of Λ^n , where $e_\lambda = e_{\lambda_1} \cdots e_{\lambda_\ell}$. The set of Schur functions $\{s_\lambda \mid \lambda \vdash n\}$ forms another basis of Λ^n , where $s_\lambda = \det[e_{\lambda'_i - i + j}]$ is a determinant of a $\lambda_1 \times \lambda_1$ matrix, that is called Jacobi–Trudi identity. A proper coloring of a simple graph G = (V, E) is a function $\kappa : V \to \mathbb{P}$ satisfying $\kappa(u) \neq \kappa(v)$ for any $u, v \in V$ such that $\{u, v\} \in E$. For a proper coloring κ , asc $(\kappa) = \{\{i, j\} \in E \mid i < j \text{ and } \kappa(i) < \kappa(j)\}$.

Definition 2.1 ([7]). For a simple graph G = (V, E) which has a vertex set $V \subset \mathbb{P}$, the chromatic quasisymmetric function of *G* is a sum over all proper colorings of *G*:

$$X_G(\mathbf{x},t) = \sum_{\kappa} t^{\operatorname{asc}(\kappa)} \mathbf{x}_{\kappa}.$$

Note that chromatic quasisymmetric function $X_G(\mathbf{x}, t)$ is a refinement of Stanley's *chromatic symmetric function* $X_G(\mathbf{x})$ introduced in [8]; $X_G(\mathbf{x}, t)|_{t=1} = X_G(\mathbf{x})$.

The *incomparability graph* inc(P) of a poset *P* is a graph which has as vertices the elements of *P*, with edges connecting pairs of incomparable elements. *Natural unit interval orders* are the posets we are interested in.

Definition 2.2 ([7]). Let $\mathbf{m} := (m_1, m_2, ..., m_{n-1})$ be a list of integers satisfying $i \leq m_i \leq m_{i+1} \leq n$ for all *i*. The corresponding natural unit interval order $P(\mathbf{m})$ is the poset on [n] with the order relation given by $i <_{P(\mathbf{m})} j$ if i < n and $j \in \{m_i + 1, m_i + 2, ..., n\}$.

Note that Catalan number $C_n = \frac{1}{n+1} {\binom{2n}{n}}$ counts the natural unit interval orders with n elements. Shareshian and Wachs showed that if G is the incomparability graph of a natural unit interval order then $X_G(\mathbf{x}, t)$ is a polynomial with very nice properties. They also made a conjecture on the *e*-positivity and the *e*-unimodality of $X_G(\mathbf{x}, t)$. Remember that a symmetric function $f(\mathbf{x}) \in \Lambda^n$ is *b*-positive if the expansion of $f(\mathbf{x})$ in the basis $\{b_\lambda\}$ has nonnegative coefficients when $\{b_\lambda | \lambda \vdash n\}$ is a basis of Λ^n .

Theorem 2.3 (Theorem 4.5 and Corollary 4.6 in [7]). If G is the incomparability graph of a natural unit interval order then the coefficients of t^i in $X_G(\mathbf{x}, t)$ are symmetric functions and form a palindromic sequence in the sense that $X_G(\mathbf{x}, t) = t^{|E|}X_G(\mathbf{x}, t^{-1})$.

Conjecture 2.4 ([7]). If G is the incomparability graph of a natural unit interval order, then $X_G(\mathbf{x}, t)$ is e-positive and e-unimodal. That is, if $X_G(\mathbf{x}, t) = \sum_{i=0}^{m} a_i(\mathbf{x})t^i$ then $a_i(\mathbf{x})$ is e-positive for all *i*, and $a_{i+1}(\mathbf{x}) - a_i(\mathbf{x})$ is e-positive whenever $0 \le i < \frac{m-1}{2}$.

A finite poset *P* is called (r + s)-free if *P* does not contain an induced subposet isomorphic to the direct sum of an *r* element chain and an *s* element chain. Due to the result by Guay-Paquet [4], Conjecture 2.4 specializes to the famous *e*-positivity conjecture on the chromatic symmetric functions of Stanley and Stembridge:

Conjecture 2.5 ([8, 11]). If a poset P is (3+1)-free, then $X_{inc(P)}(\mathbf{x})$ is e-positive.

Since e_{λ} is *s*-positive, Conjecture 2.4 implies the *s*-positivity of $X_G(\mathbf{x}, t)$, that was proved using the notion of *P*-tableaux by Shareshian–Wachs and Gasharov (t = 1):

Definition 2.6 (Gasharov [2]). *Given a poset* P *with n elements and a partition* λ *of n, a* P-tableau of shape λ *is a filling* $T = [a_{i,j}]$ *of a Young diagram of shape* λ *in English notation*

a _{1,1}	a _{1,2}	
a _{2,1}	a _{2,2}	
:	:	

with all elements of P so that $a_{i,j} <_P a_{i,j+1}$ and $a_{i+1,j} <_P a_{i,j}$ for all i and j.

Definition 2.7 ([7]). For a finite poset P on a subset of \mathbb{P} and a P-tableau T, let G be the incomparability graph of P. An edge $\{i, j\} \in E(G)$ is a G-inversion of T if i < j and i appears below j in T. We let $inv_G(T)$ be the number of G-inversions of T.

The following theorem is the *s*-positivity result for the chromatic quasisymmetric functions of natural unit interval orders, which specializes to Gasharov's *s*-positivity result for chromatic symmetric functions of (3 + 1)-free posets.

Theorem 2.8 ([7],[2]). Let G be the incomparability graph of a natural unit interval order P. If we let $\lambda(T)$ be the shape of T, then $X_G(\mathbf{x}, t) = \sum_T t^{inv_G(T)} s_{\lambda(T)}$, where the sum is over all *P*-tableaux and therefore, $X_G(\mathbf{x}, t)$ is s-positive.

We state some related results that are useful for our arguments.

Lemma 2.9 ([10]). If A(t) and B(t) are unimodal and palindromic polynomials with nonnegative coefficients and centers of symmetry m_A , m_B respectively, then A(t)B(t) is unimodal and palindromic with nonnegative coefficients and center of symmetry $m_A + m_B$.

From Lemma 2.9, if *G* is the incomparability graph of a natural unit interval order and $X_G(\mathbf{x}, t) = \sum_{i=0}^{m} a_i(\mathbf{x}) t^i = \sum_{\lambda \vdash n} C_{\lambda}(t) e_{\lambda}(\mathbf{x})$, then

- $X_G(\mathbf{x}, t)$ is palindromic in t with center of symmetry $\frac{m}{2}$ if and only if $C_{\lambda}(t)$ is a palindromic polynomial with center of symmetry $\frac{m}{2}$,
- *X_G*(**x**, *t*) is *e*-positive if and only if *C_λ*(*t*) is a polynomial with nonnegative coefficients for all *λ*,
- $X_G(\mathbf{x}, t)$ is *e*-unimodal with center of symmetry $\frac{m}{2}$ if every $C_{\lambda}(t)$ is unimodal with the same center of symmetry $\frac{m}{2}$.

Theorem 2.10 ([7]). For G = inc(P) of a natural unit interval order P on [n], if we let $X_G(\mathbf{x},t) = \sum C_{\lambda}(t) e_{\lambda}(\mathbf{x})$, then $C_{(n)}(t) = [n]_t \prod_{i=2}^n [b_i]_t$ and is therefore positive and unimodal with center of symmetry $\frac{|E(G)|}{2}$. Here, $[n]_t = 1 + t + \dots + t^{n-1}$ and $b_i = |\{\{j,i\} \in E(G) \mid j < i\}|$.

We summarize known results on *e*-positivity and *e*-unimodality of $X_{inc(P)}(\mathbf{x}, t)$ for natural unit interval orders $P = P(\mathbf{m})$ on [n] with $\mathbf{m} = (m_1, m_2, ..., m_{n-1})$.

- 1. For $\mathbf{m} = (2, 3, ..., n)$, Stanley obtained the formula for the generating function and Haiman [5] showed that $X_{inc(P)}(\mathbf{x}, t)$ is *e*-positive and *e*-unimodal.
- 2. For $\mathbf{m} = (m_1, m_2, n, ..., n)$, Shareshian and Wachs [7] obtained an *e*-positive and *e*-unimodal explicit formula of $X_{inc(P)}(\mathbf{x}, t)$.
- 3. For a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$ of n + k 1, let $m_1 = \dots = m_{\alpha_1 1} = \alpha_1$ and $m_i = \sum_{j=1}^{\ell} (\alpha_j 1) + 1$ if $\sum_{j=1}^{\ell-1} (\alpha_j 1) + 1 \le i \le \sum_{j=1}^{\ell} (\alpha_j 1)$ for $\ell \ge 2$. The graph inc(*P*) is a K_{α} -chain. Gebhard and Sagan [3] proved that $X_{\text{inc}(P)}(\mathbf{x})$ is *e*-positive.

- 4. For $\mathbf{m} = (2, 3, ..., m + 1, n, ..., n)$, the graph inc(P) is a *lollipop graph* $L_{m,n-m}$. Dahlberg and van Willigenburg [1] computed an explicit *e*-positive formula for $X_{L_{m,n-m}}(\mathbf{x})$.
- 5. For $\mathbf{m} = (r, m_2, m_3, \dots, m_r, n, \dots, n)$, the graph inc(P) is a complement graph of a bipartite graph. Stanley and Stembridge [11] proved that $X_{inc(P)}(\mathbf{x})$ is *e*-positive.

2.2 Basic setup

We often use Catalan paths from (0,0) to (n,n) to represent $P = P(m_1, m_2, ..., m_{n-1})$: The corresponding Catalan path of P has the *i*th horizontal step on the line $y = m_i$ for all $i \le n-1$ and the last horizontal step on the line y = n. Figure 1 shows an example.

Figure 1: The corresponding Catalan path of P = P(3, 3, 4, 6, 6) and inc(*P*).

If a graph *G* is a disjoint union of subgraphs G_1, \ldots, G_ℓ , then $X_G(\mathbf{x}, t) = \prod_{i=1}^{\ell} X_{G_i}(\mathbf{x}, t)$. Moreover, it is easy to see that $G = \operatorname{inc}(P)$ for $P = P(m_1, \ldots, m_{n-1})$ is connected if and only if $m_i > i$ for all *i* or equivalently, *C* meets the line y = x only at (0, 0) and (n, n). Hence, we may restrict our attention to natural unit interval orders $P(m_1, \ldots, m_{n-1})$ with $m_i \neq i$ for all $i = 1, \ldots, n-1$. Note that there are C_{n-1} such Catalan paths of length *n*. Given a Catalan path *C* of length *n*, define the *bounce path* of *C* as follows: Starting at (0, 0), and travel north until you encounter the beginning of an east step. Then turn east and travel straight until you hit the main diagonal y = x. Then turn north until you again encounter the beginning of an east step of *C*, then turn east and travel to the diagonal, etc. Continue in this way until you arrive at (n, n). The *bounce number* of *C* is the number of connected regions that the bounce path of *C* and the line y = x enclose; that is one less than the number of times the bounce path of *C* meets the line y = x.

The following useful lemmas can be proved using Theorems 2.8 and 2.3, respectively.

Lemma 2.11. Let *C* be the corresponding Catalan path of a natural unit interval order *P* and *r* be the bounce number of *C*. If we let $X_{inc(P)}(\mathbf{x}, t) = \sum_{\lambda} B_{\lambda}(t)s_{\lambda}$, then $B_{\lambda}(t) = 0$ for partitions $\lambda = (\lambda_1, \ldots, \lambda_k)$ with $\lambda_1 > r$.

Lemma 2.12. Given a natural unit interval order P of size n, let C be the corresponding Catalan path of P and G = inc(P). If \tilde{C} is the reflection of the Catalan path C about the line y = n - x, then $X_G(\mathbf{x}, t) = X_{\tilde{G}}(\mathbf{x}, t)$, where \tilde{P} is the corresponding natural unit interval order of the Catalan path \tilde{C} and $\tilde{G} = inc(\tilde{P})$.

3 Two *e*-positive classes of natural unit interval orders

In this section we provide two classes of natural unit interval orders $P = P(\mathbf{m})$ satisfying that $X_{inc(P)}(\mathbf{x}, t)$ is *e*-positive.

3.1 The first *e*-positive class

We consider natural unit interval orders $P = P(r, m_2, ..., m_r, n, ..., n)$ on [n] for r < n. Let G = inc(P). Figure 2 shows a corresponding Catalan path (solid line) of P. The dotted line indicates the bounce path, and the bounce number of P's we consider is *two*.

Figure 2: Catalan path, bounce path, and G = inc(P) of P(4, 4, 5, 6, 9, 9, 9, 9)

If we let $X_G(\mathbf{x}, t) = \sum_{\lambda \vdash n} B_{\lambda}(t) s_{\lambda}$, then by Lemma 2.11, $B_{\lambda}(t) \neq 0$ only for λ 's whose conjugate has only two parts. By Theorem 2.8, $B_{\lambda}(t) = \sum_{T \in \mathcal{T}_{P,\lambda}} t^{\text{inv}_G(T)}$, where $\mathcal{T}_{P,\lambda}$ is the set of *P*-tableaux of shape λ . Let *k* be the largest positive integer satisfying $B_{2^{k_1n-2k}}(t) \neq 0$. Due to Jacobi-Trudi identity, we have $s_{1^n} = e_n$ and $s_{2^{\ell_1n-2\ell}} = e_{(n-\ell,\ell)} - e_{(n-\ell+1,\ell-1)}$ for $\ell \geq 2$. Hence, we can derive the *e*-basis expansion of $X_G(\mathbf{x}, t)$ as follows.

$$\begin{aligned} X_G(\mathbf{x},t) &= B_{1^n}(t)s_{1^n} + \sum_{\ell=1}^k B_{2^\ell 1^{n-2\ell}}(t)s_{2^\ell 1^{n-2\ell}} \\ &= \sum_{\ell=0}^{k-1} (B_{2^\ell 1^{n-2\ell}}(t) - B_{2^{\ell+1} 1^{n-2\ell-2}}(t))e_{(n-\ell,\ell)} + B_{2^k 1^{n-2k}}(t)e_{(n-k,k)} \end{aligned}$$

By Lemma 2.9, if we show that $B_{2^{\ell}1^{n-2\ell}}(t) - B_{2^{\ell+1}1^{n-2\ell-2}}(t)$ is a polynomial in t with nonnegative coefficients for each $\ell = 0, 1, ..., k-1$, then $X_G(\mathbf{x}, t)$ is *e*-positive.

For a fixed $\ell \in \{0, 1, ..., k-1\}$, let $\mathcal{T}'_{P, 2^{\ell} 1^{n-2\ell}}$ be the subset of $\mathcal{T}_{P, 2^{\ell} 1^{n-2\ell}}$, each of whose elements $T = [a_{i,j}]$ has some $s \ge \ell + 2$ satisfying $a_{i,1} <_P a_{s,1}$ for all $\ell + 1 \le i \le s - 1$.

Now we define a map $\psi_{\ell} : \mathcal{T}_{P,2^{\ell+1}1^{n-2\ell-2}} \to \mathcal{T}'_{P,2^{\ell}1^{n-2\ell}}$. Given $T = [b_{i,j}] \in \mathcal{T}_{P,2^{\ell+1}1^{n-2\ell-2}}$, we let *s* be the smallest $i > \ell + 1$ such that $b_{i,1} \leq_P b_{\ell+1,2}$; otherwise $s = n - \ell$, then let $\psi_{\ell}(T)$ be the tableau obtained by inserting $b_{\ell+1,2}$ right below $b_{s-1,1}$. Then $\psi_{\ell}(T)$ is a *P*-tableau in $\mathcal{T}'_{P,2^{\ell}1^{n-2\ell}}$. We can show that ψ_{ℓ} is a weight preserving bijection:

We now turn to the construction of the inverse map of ψ_{ℓ} . Given $T = [a_{i,j}] \in \mathcal{T'}_{P,2^{\ell}1^{n-2\ell}}$, if we move $a_{s,1}$ to the right side of $a_{\ell+1,1}$, then we have the *P*-tableau $\psi_{\ell}^{-1}(T)$ in $\mathcal{T'}_{P,2^{\ell+1}1^{n-2\ell-2}}$.

Let $\overline{\mathcal{T}'}_{P,2^{\ell_1 n-2\ell}}$ be the set $\mathcal{T}_{P,2^{\ell_1 n-2\ell}} - \mathcal{T'}_{P,2^{\ell_1 n-2\ell}}$. Then

$$B_{2^{\ell}1^{n-2\ell}}(t) - B_{2^{\ell+1}1^{n-2\ell-2}}(t) = \sum_{T \in \overline{\mathcal{T}'}_{P,2^{\ell}1^{n-2\ell}}} t^{\mathrm{inv}_G(T)},$$

and this gives a combinatorial interpretation of the coefficient of $e_{(n-\ell,\ell)}$ in $X_G(\mathbf{x}, t)$.

We can now give our main result.

Theorem 3.1. Let $P = P(r, m_2, ..., m_{n-1})$ be a natural unit interval order and let G be the incomparability graph of P. If $2 \le r \le n-1$ and $m_{r+1} = n$, then

$$X_G(\mathbf{x},t) = \sum_{\ell=0}^{k} C_{(n-\ell,\ell)}(t) e_{(n-\ell,\ell)},$$

where k is a positive integer and

$$C_{(n-\ell,\ell)}(t) = \sum_{T \in \overline{\mathcal{T}'}_{P,2^{\ell_1 n-2\ell}}} t^{\mathrm{inv}_G(T)}$$

Here, $\overline{\mathcal{T}'}_{P,2^{\ell}1^{n-2\ell}}$ is the set of elements $T = [a_{i,j}] \in \mathcal{T}_{P,2^{\ell}1^{n-2\ell}}$ having no $s \ge \ell + 2$ such that $a_{i,1} <_P a_{s,1}$ for all $i \in \{\ell + 1, \ell + 2, \dots, s - 1\}$. Consequently $X_G(\mathbf{x}, t)$ is e-positive.

Example 3.2. Let P = P(2,3,4) be a natural unit interval order. There are 14 *P*-tableaux:

By definition, $\mathcal{T'}_{P,1^4} = \{T_{11} = \psi_0(T_3), T_{12} = \psi_0(T_4), T_{13} = \psi_0(T_5), T_{14} = \psi_0(T_6)\}$ and $\mathcal{T'}_{P,21^2} = \{T_5 = \psi_1(T_1), T_6 = \psi_1(T_2)\}$. Therefore, $\overline{\mathcal{T'}}_{P,1^4} = \{T_7, T_8, T_9, T_{10}\}, \overline{\mathcal{T'}}_{P,21^2} = \{T_3, T_4\}$, and $\overline{\mathcal{T'}}_{P,2^2} = \{T_1, T_2\}$, by Theorem 3.1,

$$\begin{aligned} X_G(\mathbf{x},t) &= \left(\sum_{i=1}^2 t^{\mathrm{inv}_G(T_i)}\right) e_{(2,2)} + \left(\sum_{i=3}^4 t^{\mathrm{inv}_G(T_i)}\right) e_{(3,1)} + \left(\sum_{i=7}^{10} t^{\mathrm{inv}_G(T_i)}\right) e_4 \\ &= (t+t^2) e_{(2,2)} + (t+t^2) e_{(3,1)} + (1+t+t^2+t^3) e_4. \end{aligned}$$

The next two corollaries follow easily from Theorem 3.1. Note that Corollary 3.3 is a quasisymmetric version of Remark 4.4 in [11].

Corollary 3.3. For G = inc(P) of a natural unit interval order P on [n], if induced subgraphs of G on $\{1, ..., r\}$ and $\{r + 1, ..., n\}$ are both complete graphs for some r, then $X_G(\mathbf{x}, t)$ is e-positive.

Corollary 3.4. Let $P_{n,r} = P(r, r+1, r+2, ..., n)$ be a natural unit interval order on [n] and let $G_{n,r}$ be the incomparability graph of $P_{n,r}$. If $r \ge \lfloor \frac{n}{2} \rfloor$, then $X_{G_{n,r}}(\mathbf{x}, t)$ is e-positive.

Remark 3.5. Corollary 3.4 is proved for r = 2, n - 2, n - 1 in [7].

3.2 The second *e*-positive class

In this section, we consider the natural unit interval orders $P = P(r, n - 1, m_3, ..., m_{n-2}, n)$ for some r > 1. If $m_{r+1} = n$, then $X_{inc(P)}(\mathbf{x}, t)$ is *e*-positive by Theorem 3.1. Hence, we consider the case when $m_{r+1} \neq n$. Figure 3 shows a corresponding Catalan path (solid line) of *P* with the bounce path (dotted line). In this case, the bounce number is 3 for *P*.

Figure 3: Catalan path, bounce path, and G = inc(P) of P(4, 8, 8, 8, 8, 8, 9, 9)

Using the similar method in the Section 3.1, we have the following theorem.

Theorem 3.6. Let *G* be the incomparability graph of a natural unit interval order $P = P(\mathbf{m})$. If $\mathbf{m} = (r, m_2, ..., m_{n-1})$ with $m_2 = \cdots = m_s = n-1$ and $m_{s+1}=n$ for $2 \le r < s \le n-2$, then

$$X_G(\mathbf{x},t) = \sum_{\lambda \in A} C_{\lambda}(t) e_{\lambda},$$

for $A = \{(n-2, 1, 1), (n-2, 2), (n-1, 1), (n)\}$. If we let

$$\begin{aligned} G_1 &= \{ [b_{i,j}] \in \mathcal{T}_{P,2^2 1^{n-4}} \mid b_{1,1} = 1, \ b_{1,2} <_P b_{2,2} \}, \\ G_2 &= \{ [b_{i,j}] \in \mathcal{T}_{P,2^2 1^{n-4}} \mid b_{1,1} = 1, \ b_{1,1} <_P b_{2,1}, \ b_{1,2} <_P b_{2,2} \}, \\ F_1 &= \{ [b_{i,j}] \in \overline{\mathcal{T}'}_{P,2^{1} 1^{n-2}} \mid b_{1,1} <_P b_{2,1} <_P b_{1,2} \}, \\ F_2 &= \{ [b_{i,j}] \in \overline{\mathcal{T}'}_{P,2^{1} 1^{n-2}} \mid b_{1,1} <_P b_{1,2} <_P b_{2,1} \}, \\ F_3 &= \{ [b_{i,j}] \in \mathcal{T'}_{P,2^{1} 1^{n-2}} \mid b_{1,1} = 1, \ 1 <_P b_{2,1} \} \\ & \cup \{ [b_{i,j}] \in \mathcal{T'}_{P,2^{1} 1^{n-2}} \mid b_{1,1} = 1, \ b_{2,1} <_P b_{3,1} <_P b_{1,2} \}, \end{aligned}$$

then, the coefficients of the e-basis expansion of $X_G(\mathbf{x}, t)$ are

$$C_{\lambda}(t) = \sum_{T \in U_{\lambda}} t^{\operatorname{inv}_{G}(T)}$$

where

$$\begin{array}{rcl} U_{(n-2,1,1)} &=& \mathcal{T}_{P,3^{1}1^{n-3}},\\ U_{(n-2,2)} &=& \mathcal{T}_{P,2^{2}1^{n-4}} - G_{1} - G_{2},\\ U_{(n-1,1)} &=& \mathcal{T}_{P,2^{1}1^{n-2}} - F_{1} - F_{2} - F_{3} - F_{4},\\ U_{(n)} &=& \overline{\mathcal{T}'}_{P,1^{n}}. \end{array}$$

Consequently $X_G(\mathbf{x}, t)$ is e-positive.

Corollary 3.7. Let G be the incomparability graph of a natural unit interval order on [n]. If G has the complete graph on $\{2, 3, ..., n - 1\}$ as a subgraph, then $X_G(\mathbf{x}, t)$ is e-positive.

Our proof for the *e*-positivity is to find sign reversing involutions on the signed sets of *P*-tableaux. Our hope is to extend it to cover all natural unit interval orders.

4 Some explicit formulae

In this section we give *e*-unimodal explicit formulae for some natural unit interval orders in the first *e*-positive class in Section 3.1. By Lemma 2.9, if we provide explicit formulae for all coefficients in the *e*-basis expansions of $X_{inc(P)}(\mathbf{x}, t)$ as sums of polynomials in *t* which are unimodal with center of symmetry $\frac{|E(inc(P))|}{2}$, then $X_{inc(P)}(\mathbf{x}, t)$ is *e*-unimodal.

4.1 The first explicit formula

In this section we consider natural unit interval orders $P = P(m_1, m_2, ..., m_{n-1})$ with $m_1 = \cdots = m_s = r$ and $m_{s+1} = \cdots = m_{n-1} = n$ for any positive integers $s \leq r \leq n-1$. Figure 4 shows a corresponding Catalan path of *P*.

Figure 4: A corresponding Catalan path of P(r, ..., r, n, ..., n)

Lemma 4.1 (Stanley [9]). Let $M = \{1^{c_1}, 2^{c_2}, ..., n^{c_n}\}$ be a multiset of cardinality $n = \sum_{i=1}^n c_i$ and S(M) be the set of permutations on M. An inversion of $\pi = \pi_1 \cdots \pi_n \in S(M)$ is a pair (π_i, π_j) with i < j and $\pi_i > \pi_j$. If we let $i(\pi)$ be the number of inversions of π , then

$$\sum_{\pi \in S(M)} t^{i(\pi)} = \frac{\lfloor n \rfloor_t!}{\lfloor c_1 \rfloor_t! \cdots \lfloor c_n \rfloor_t!}$$

By using Theorem 2.10, Theorem 3.1, and Lemma 4.1, we have an explicit formula $X_G(\mathbf{x}, t)$ in the *e*-basis expansion.

Proposition 4.2. Let G = inc(P) of a natural unit interval order $P = P(m_1, m_2, ..., m_{n-1})$. For r, s satisfying $1 \le s \le r \le n-1$, if $m_1 = \cdots = m_s = r$ and $m_{s+1} = n$, then

$$X_G(\mathbf{x},t) = \sum_{\ell=0}^{\min\{n-r,s\}} t^{(r-s)\ell} \frac{[n-r]_t![s]_t![r-\ell-1]_t![n-s-\ell-1]_t![n-2\ell]_t}{[n-r-\ell]_t![s-\ell]_t![r-s-1]_t!} e_{(n-\ell,\ell)}$$

Consequently, $X_G(\mathbf{x}, t)$ is e-positive and e-unimodal with center of symmetry $\frac{\binom{n}{2}-(n-r)s}{2}$.

Proof. Let $A_1 = \{1, \ldots, s\}$ and $A_2 = \{r + 1, \ldots, n\}$. For any $B_1 \subset A_1$ and $B_2 \subset A_2$ with $|B_1| = |B_2| = \ell$, let $\overline{\mathcal{T}'}_P(B_1, B_2)$ be the set of $T = [a_{i,j}]$ in $\overline{\mathcal{T}'}_{P,2^{\ell_1 n - 2\ell}}$ satisfying $\{a_{i,1} \mid 1 \leq i \leq \ell\} = B_1$ and $\{a_{i,2} \mid 1 \leq i \leq \ell\} = B_2$, then by Theorem 3.1,

$$C_{(n-\ell,\ell)}(t) = \sum_{\substack{B_1 \subset A_1 \\ B_2 \subset A_2}} \sum_{T \in \overline{\mathcal{T}'}_P(B_1,B_2)} t^{\operatorname{inv}_G(T)}$$

If we let S(A) be the set of permutations for some set A, then $C_{(n-\ell,\ell)}(t)$ is equal to

$$t^{(r-s)\ell} \left(\sum_{\pi \in S(B_1)} t^{i(\pi)}\right)^2 \left(\sum_{T^b \in \overline{\mathcal{T}'}_{R_\ell, 1^{n-2\ell}}} t^{\operatorname{inv}_{\operatorname{inc}(R_\ell)}(T^b)}\right) \left(\sum_{\sigma_1 \in S(M_1)} t^{i(\sigma_1)}\right) \left(\sum_{\sigma_2 \in S(M_2)} t^{i(\sigma_2)}\right),$$

where $i(\pi)$ is the number of inversions of π , $R_{\ell} = P(m_1, \dots, m_{n-2\ell-1})$ with $m_1 = \dots = m_{s-\ell} = r - \ell$ and $m_{s-\ell+1} = n$, and $M_1 = \{1^{s-\ell}2^\ell\}$, $M_2 = \{1^{n-r-\ell}2^\ell\}$ are multisets. By using Theorem 2.10 and Lemma 4.1, we can have $X_G(\mathbf{x}, t)$ in the *e*-basis expansion. \Box

The next two corollaries follow easily from Proposition 4.2.

Corollary 4.3. For $r \ge 2$, let $P = P(r, n \dots, n)$ be a natural unit interval order of size n then

$$X_{\text{inc}(P)}(\mathbf{x},t) = [n-2]_t!([n]_t[r-1]_te_n + t^{r-1}[n-r]_te_{(n-1,1)})$$

Corollary 4.4. Let $P = P(m_1, m_2, ..., m_{n-1})$ be a natural unit interval order and G be the incomparability graph of P. If $m_1 = \cdots = m_{r-1} = r$ and $m_r = n$ for $r \le n-1$, then

$$X_G(\mathbf{x},t) = \sum_{\ell=0}^{\min\{n-r,r-1\}} t^{\ell} [n-r]_t! [r-1]_t! [n-2\ell]_t e_{(n-\ell,\ell)}$$

4.2 The second explicit formula

In this section we consider natural unit interval orders $P = P(m_1, m_2, ..., m_{n-1})$ with $m_1 = r, m_2 = \cdots = m_s = n - 1$, and $m_{s+1} = \cdots = m_{n-1} = n$ for some $0 < s \le r \le n - 2$. Figure 5 shows a corresponding Catalan path of *P* with the bounce path in dotted line.

Figure 5: A corresponding Catalan path of P(r, n - 1, ..., n - 1, n, ..., n)

Proposition 4.5. Let $P = P(m_1, m_2, ..., m_{n-1})$ be a natural unit interval order and G = inc(P). If $m_1 = r, m_2 = \cdots = m_s = n-1$, and $m_{s+1} = n$ for some r, s with $2 \le s \le r \le n-2$, then

$$X_G(\mathbf{x},t) = [n-4]_t! (\bar{C}_{(n)}(t)e_n + \bar{C}_{(n-1,1)}(t)e_{(n-1,1)} + \bar{C}_{(n-2,2)}(t)e_{(n-2,2)})$$

where

$$\begin{split} \bar{C}_{(n)}(t) &= [n]_t [n-3]_t [r-1]_t [n-s-1]_t \\ \bar{C}_{(n-2,2)}(t) &= t^{n+r-s-3} [2]_t [n-r-1]_t [s-1]_t \\ \bar{C}_{(n-1,1)}(t) &= \frac{1}{2} [n-2]_t \{ t^{r-1} (1+t^{n-r-s}) [n-3]_t + t^{n-s-1} [2]_t [r-2]_t [s-1]_t \\ &+ t^{r-1} [2]_t [n-r-1]_t [n-s-2]_t \}. \end{split}$$

Moreover, $X_G(\mathbf{x}, t)$ *is e-positive and e-unimodal with center of the symmetry* $\frac{\binom{n}{2}-(n-r+s-1)}{2}$.

Proof. By Theorem 2.10, we already know the formula of $C_{(n)}(t)$ which is *e*-unimodal with center of symmetry $\frac{|E(G)|}{2} = \frac{\binom{n}{2} - (n-r+s-1)}{2}$.

Let $\overline{\mathcal{T}'}_{P,(i,j)}$ be the set of all \overline{P} -tableaux of $\overline{\mathcal{T}'}_{P,2^{1}1^{n-2}} \cup \overline{\mathcal{T}'}_{P,2^{2}1^{n-4}}$ such that the first row is occupied by i and j. If $G - \{i, j\}$ is the induced subgraph of G with vertex set $V(G) - \{i, j\}$, and $X_{G-\{i,j\}}(\mathbf{x}, t) = D_{(n-2)}(t)e_{(n-2)} + D_{(n-3,1)}(t)e_{(n-3,1)}$, then by Theorem 3.1,

$$\sum_{T\in\overline{\mathcal{T}'}_{P,(i,j)}}t^{\mathrm{inv}_G(T)} = t^{b_i+b_j}(D_{(n-2)}(t)e_{(n-1,1)} + D_{(n-3,1)}(t)e_{(n-2,2)}),$$

where $b_k = |\{\{j,k\} \in E(G) \mid j < k\}|$. By Corollary 4.3, we can evaluate $\sum_{T \in \overline{\mathcal{T}'}_{P,(i,j)}} t^{\text{inv}_G(T)}$ and then have formulae of $C_{(n-2,2)}(t)$ and $C_{(n-1,1)}(t)$. By using Lemma 2.12 and Theorem 2.3, we can show that $C_{(n-1,1)}(t)$ is *e*-unimodal with center of symmetry $\frac{|E(G)|}{2}$.

Acknowledgements

The authors would like to thank Stephanie van Willigenburg for helpful conversations.

References

- S. Dahlberg and S. van Willigenburg. "Lollipop and Lariat symmetric functions". SIAM J. Discrete Math. 32.2 (2018), pp. 1029–1039. DOI: 10.1137/17M1144805.
- [2] V. Gasharov. "Incomparability graphs of (3 + 1)-free posets are *s*-positive". *Discrete Math.* 157.1-3 (1996), pp. 193–197. DOI: 10.1016/S0012-365X(96)83014-7.
- [3] D.D. Gebhard and B.E. Sagan. "A chromatic symmetric function in noncommuting variables". J. Algebraic Combin. 13.3 (2001), pp. 227–255. DOI: 10.1023/A:1011258714032.
- [4] M. Guay-Paquet. "A modular law for the chromatic symmetric functions of (3 + 1)-free posets". 2013. arXiv: 1306.2400v1.
- [5] M. Haiman. "Hecke algebra characters and immanant conjectures". J. Amer. Math. Soc. 6.3 (1993), pp. 569–595. DOI: 10.2307/2152777.
- [6] M. Harada and M. Precup. "The cohomology of abelian Hessenberg varieties and the Stanley-Stembridge conjecture". 2017. arXiv: 1709.06736v1.
- J. Shareshian and M. Wachs. "Chromatic quasisymmetric functions". *Adv. Math.* 295 (2016), pp. 497–551. DOI: 10.1016/j.aim.2015.12.018.
- [8] R.P. Stanley. "A symmetric function generalization of the chromatic polynomial of a graph". *Adv. Math.* **111**.1 (1995), pp. 166–194. DOI: 10.1006/aima.1995.1020.
- [9] R.P. Stanley. *Enumerative combinatorics. Volume 1.* Second. Vol. 49. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2012, pp. x iv+626.
- [10] R.P. Stanley. Log-concave and unimodal sequences in algebra, combinatorics, and geometry. Vol. 576. Ann. New York Acad. Sci. New York Acad. Sci., New York, 1989, pp. 500–535. DOI: 10.1111/j.1749-6632.1989.tb16434.x.
- [11] R.P. Stanley and J.R. Stembridge. "On immanants of Jacobi-Trudi matrices and permutations with restricted position". J. Combin. Theory Ser. A 62.2 (1993), pp. 261–279. DOI: 10.1016/0097-3165(93)90048-D.