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Abstract. We define a lattice structure and a Hopf algebra on integer posets and use
them to recover relevant structures on the elements, the intervals and the faces in the
permutahedron, the associahedron, the cube and more generally all permutreehedra.

Résumé. Nous définissons une structure de treillis et une algèbre de Hopf sur les
ordre partiels sur les entiers, et nous les utilisons pour retrouver des structures impor-
tantes sur les éléments, les intervalles et les faces du permutaèdre, de l’associaèdre, du
cube et en général de tous les permutarbroèdres.

Our original motivation is the fascinating interplay between the permutations, the
binary trees, and the binary sequences. These combinatorial objects are deeply related,
in particular through their lattice structures (weak order, Tamari lattice, and boolean
lattice), their Hopf algebras (Malvenuto–Reutenauer algebra [11], Loday–Ronco alge-
bra [10], and descent algebra [6]), and their polytopes (permutahedron, associahedron,
and cube). These connections have been largely explained in [13], where permutations,
binary trees and binary sequences are all seen as special instances of permutrees. More-
over, permutrees allow to interpolate between these families, leading to combinatorial
objects that are structurally “half” permutations and “half” binary trees.

This abstract reports on further developments in this direction, with the objective to
provide a unified understanding not only for the elements, but also for the intervals
and the faces of the permutahedron, the associahedron and the cube. As explained in
Section 2, the integer posets (i.e. posets on [n]) provide a convenient model for all these
combinatorial objects. This abstract presents two algebraic structures on integer posets:
• In Section 1, we define the weak order on integer posets and show that it is a lattice.

It contains as subposets (and even sometimes sublattices) the classical weak order,
the Tamari lattice, their interval lattices and their facial lattices [9, 12, 5].
• In Section 3, we define a Hopf algebra on integer posets. The vertices, intervals and

faces of the permutahedra index certain quotients of this algebra, and the vertices,
intervals and faces of the associahedra index subalgebras of these quotients.

This abstract relies on three papers connected to this topic: one on permutrees [13],
one on the weak order on posets [4], and one on Hopf algebras on integer posets [14].
More details and proofs can be found in the long versions.
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1 Weak order on integer posets

1.1 Integer binary relations

An integer binary relation of size n is a binary relation on [n] := {1, . . . , n}, that is, a sub-
set R of [n]2. As usual, we write equivalently (a, b) ∈ R or a R b. We only consider
reflexive relations and let Rn be the set of all reflexive binary relations on [n].

The increasing and decreasing subrelations of an integer relation R ∈ Rn are the rela-
tions defined by RInc := {(a, b) ∈ R | a ≤ b} and RDec := {(b, a) ∈ R | a ≤ b}. In our pic-
tures, we always represent an integer relation R ∈ Rn as follows: we write the numbers
1, . . . , n from left to right and we draw the increasing relations of R above in blue and the
decreasing relations of R below in red. Although we only consider reflexive relations,
we always omit the relations (i, i) in the pictures. See e.g. Figure 1.

We consider the weak order on Rn, defined by R 4 S if RInc ⊇ SInc and RDec ⊆ SDec.
It is clearly a graded lattice with meet R ∧R S = (RInc ∪ SInc) ∪ (RDec ∩ SDec) and join
R ∨R S = (RInc ∩ SInc) ∪ (RDec ∪ SDec). The name chosen for this order is explained in
Section 2, where we explore its connection to various relevant combinatorial lattices.

1.2 Integer posets

An integer poset is a reflexive (a R a), antisymmetric (a R b ∧ b R a =⇒ a = b) and tran-
sitive (a R b ∧ b R c =⇒ a R c) integer relation. We denote by Pn the set of integer
posets on [n]. We want to show that the subposet of the weak order induced by integer
posets is a lattice. Note that ∧R and ∨R do not preserve transitivity, so that Pn does not
induce a sublattice of the weak order on Rn. For R ∈ Rn, define the transitive closure Rtc,
the transitive decreasing deletion Rtdd and the transitive increasing deletion Rtid as

Rtc := {(u, w) ∈ [n]2 | ∃ v1, . . . , vp ∈ [n] such that u = v1 R v2 R . . . R vp−1 R vp = w}
Rtdd :=R r {(b, a) ∈ RDec | ∃ i ≤ b and j ≥ a such that i R b R a R j while i 6R j},
Rtid :=R r {(a, b) ∈ RInc | ∃ i ≥ a and j ≤ b such that i R a R b R j while i 6R j}.

Note that in these definitions, i and j may coincide with a and b (since we assumed that
all our relations are reflexive). The next statement is illustrated below and in Figure 1.

Theorem 1.1. The subposet of the weak order induced by integer posets is a lattice with meet and join
R∧P S =

(
(RInc ∪ SInc)tc ∪ (RDec ∩ SDec)

)tdd and R∨P S =
(
(RInc ∩ SInc) ∪ (RDec ∪ SDec)tc

)tid.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

R ∈ P4 S ∈ P4 (RInc ∪ SInc) (RInc ∪ SInc)tc R∧P S ∈ P4
∪(RDec ∩ SDec) ∪(RDec ∩ SDec)
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Figure 1: The weak order on integer posets of size 3.
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2 Relevant families of integer posets

In this section, we observe that certain relevant combinatorial objects can be interpreted
by specific integer posets and that the subposets of the weak order induced by these
integer posets correspond to classical lattice structures on these combinatorial objects.

2.1 Permutations

For a permutation σ ∈ Sn, a pair (a, b) ∈ [n]2 is a version if a ≤ b and σ−1(a) ≤ σ−1(b),
and an inversion if a ≥ b and σ−1(a) ≤ σ−1(b). The weak order on Sn is the lattice
defined by inclusion of inversions: σ 4 τ ⇐⇒ inv(σ) ⊆ inv(τ) ⇐⇒ ver(σ) ⊇ ver(τ).
Geometrically, its Hasse diagram can be interpreted as the graph of the permutahedron
Perm(n) := conv {(σ(1), . . . , σ(n)) | σ ∈ Sn} oriented from [1, 2, . . . , n] to [n, . . . , 2, 1].

Each permutation σ ∈ Sn corresponds to a weak order element poset Cσ defined
by u Cσ v if σ−1(u) ≤ σ−1(v). See Figure 2 for an example with σ = [2, 7, 5, 1, 3, 4, 6].
Define WOEPn := {Cσ | σ ∈ Sn}. The following statement motivates Section 1.

Proposition 2.1. • A poset C is in WOEPn if and only if a C b or a B b for all a, b ∈ [n].
• For any σ ∈ Sn, the increasing (resp. decreasing) relations of Cσ are the versions (resp. in-

versions) of σ. Therefore, for any σ, σ′ ∈ Sn, we have Cσ 4 Cσ′ ⇐⇒ σ 4 σ′.
• Moreover, the weak order on WOEPn is a sublattice of the weak order on Pn.

We now present a similar approach to intervals of the weak order. For σ 4 σ′ ∈ Sn,
let [σ, σ′] := {τ ∈ Sn | σ 4 τ 4 σ′}. The permutations of [σ, σ′] are precisely the linear
extensions of the weak order interval poset C[σ,σ′] :=

⋂
σ4τ4σ′ Cτ = Cσ ∩Cσ′ = CInc

σ′ ∪C
Dec
σ .

Define WOIPn := {C[σ,σ′] | σ, σ′ ∈ Sn, σ 4 σ′}.
Proposition 2.2. • A poset C is in WOIPn if and only if it satisfies a C c⇒ (a C b or b C c)

and a B c⇒ (a B b or b B c) for all a < b < c [1, Theorem 6.8].
• For any σ 4 σ′ and τ 4 τ′ in Sn, we have C[σ,σ′] 4 C[τ,τ′] ⇐⇒ σ 4 τ and σ′ 4 τ′.
• The weak order on WOIPn is a lattice with meet C[σ,σ′] ∧WOIP C[τ,τ′] = C[σ∧Sτ, σ′∧Sτ′]

and join C[σ,σ′] ∨WOIP C[τ,τ′] = C[σ∨Sτ, σ′∨Sτ′]. However, the weak order on WOIPn is
not a sublattice of the weak order on Pn.

Finally, we consider a face of the permutahedron, that is, an ordered partition π of [n].
We see π as a weak order face poset Cπ defined by u Cπ v if π−1(u) < π−1(v). See Figure 3
for an example with π = 125|37|46. Define WOFPn := {Cπ | π ordered partition of [n]}.
Proposition 2.3. • A poset C is in WOFPn if and only if C ∈ WOIPn and (a C b⇔ b B c)

and (a B b⇔ b C c) for all a < b < c with a 6C c and a 6B c.
• For any ordered partitions π, π′ of [n], we have Cπ 4 Cπ′ ⇐⇒ π 4 π′ in the facial

weak order of [9, 12, 5].
• The weak order on WOFPn is a lattice but not a sublattice of the weak order on Pn, nor

on WOIPn.
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Cσ ∈ WOEPn CT ∈ TOEPn Cχ ∈ BOEPn CT ∈ PEPO

Figure 2: Posets for permutations, binary trees, binary sequences, and permutrees.

2.2 Binary trees

Let Bn be the set of rooted binary trees with n nodes (always labeled in inorder). The
Tamari lattice on Bn is the lattice 4 whose cover relations are given by right rotations
on binary trees. It was reinterpreted in [1, 15] as a lattice quotient of the weak order
as follows. Consider the surjection bt which maps a permutation σ := σ1 . . . σn ∈ Sn to
the binary tree bt(σ) ∈ Bn obtained by successive insertions of σn, . . . , σ1 in a binary
(search) tree. The fiber of a tree T is precisely the set of linear extensions of T. It is
an interval of the weak order whose minimal and maximal elements respectively avoid
the patterns 312 and 132. The Tamari order is given by T 4 T′ if and only if there
exist σ, σ′ ∈ Sn such that bt(σ) = T, bt(σ′) = T′ and σ 4 σ′. Geometrically, the Hasse
diagram of the Tamari lattice is the graph of the associahedron [8] oriented from the left
comb to the right comb.

We aim at reinterpreting the Tamari lattice, its interval lattice and its facial interval lat-
tice using specific posets. Each tree T corresponds to a Tamari order element poset CT, de-
fined by i CT j when i is a descendant of j in T. In other words, the Hasse diagram of CT
is the tree T oriented towards its root. See Figure 2. Define TOEPn := {CT | T ∈ Bn}.

Proposition 2.4. • A poset C is in TOEPn if and only if (i) (a C c ⇒ b C c) and
(a B c⇒ a B b) for all a < b < c and (ii) there exists a < b < c such that a C b B c for
all a < c incomparable in C.
• For any binary trees T, T′ ∈ Bn, we have CT 4 CT′ ⇐⇒ T 4 T′.
• Moreover, the Tamari lattice on TOEPn is a sublattice of the weak order on Pn.
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For T 4 T′ ∈ Bn, consider the Tamari interval [T, T′] := {S ∈ Bn | T 4 S 4 T′}. We
see it as the Tamari order interval poset C[T,T′] :=

⋂
T4S4T′ CT = CT ∩CT′ = CInc

T′ ∩C
Dec
T .

Define TOIPn := {C[T,T′] | T, T′ ∈ Bn, T 4 T′}.

Proposition 2.5. • A poset C is in TOIPn if and only if (a C c ⇒ b C c) and (a B c ⇒
a B b) for all a < b < c.

• For any S 4 S′ and T 4 T′ in Bn, we have C[S,S′] 4 C[T,T′] ⇐⇒ S 4 T and S′ 4 T′.
• Moreover, the weak order on TOIPn is a sublattice of the weak order on Pn.

Consider now a face of the associahedron, that is, a Schröder tree S (a rooted tree
where each internal node has at least two children). We label the angles between two
consecutive children in inorder, meaning that each angle is labeled after the angles in
its left child and before the angles in its right child. We associate to S the poset CS
where i CS j if and only if the angle labeled i belongs to the left or to the right
child of the angle labeled j. See Figure 3. Note that CS = C[Tmin,Tmax], where Tmin

(resp. Tmax) is obtained by replacing the nodes of S by left (resp. right) combs. De-
fine TOFPn := {CS | S Schröder tree on [n]}.

Proposition 2.6. • A poset C is in TOFPn if and only if C ∈ TOIPn and for all a < c
incomparable in C, either there exists a < b < c such that a 6B b 6C c, or for all a < b < c
we have a B b C c.
• For any Schröder trees S, S′, we have CS 4 CS′ ⇐⇒ S 4 S′ in the facial weak order

on the associahedron Asso(n) studied in [12, 5]. This order is a quotient of the facial weak
order on the permutahedron by the fibers of the Schröder tree insertion st.
• The weak order on TOFPn is a lattice but not a sublattice of the weak order on Pn, nor

on WOIPn, nor on TOIPn.

ordered partition π Schröder tree S ternary sequence ξ Schröder permutree S
125|37|46
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1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Cπ ∈ WOFPn CS ∈ TOFPn Cξ ∈ BOFPn CS ∈ PFPO

Figure 3: Posets for ordered partitions, Schröder trees, ternary sequences, and
Schröder permutrees.
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Finally, we want to show that the binary tree insertion and the Schröder tree insertion
can as well be directly understood at the level of posets. For this, define the TOIP deletion
by CTOIPd :=Cr ({(a, c) | ∃ a < b < c, b 6C c} ∪ {(c, a) | ∃ a < b < c, a 6B b}).
Proposition 2.7. For any permutation σ, weak order interval σ 4 σ′, and ordered partition π,
(Cσ)TOIPd = Cbt(σ), (C[σ,σ′])

TOIPd = C[bt(σ), bt(σ′)] and (Cπ)TOIPd = Cst(π).

2.3 Permutrees

To conclude this section, we want to mention that the statements of Sections 2.1 & 2.2
extend to the permutrees, a common generalization of permutations and binary trees.

A permutree is an oriented tree T with nodes labeled by [n], such that
• any node has either one or two parents and either one or two children,
• if the node j has two parents (resp. children), then all labels in its left ancestor

(resp. descendant) subtree are smaller than j while all labels in its right ancestor
(resp. descendant) subtree are larger than j.

See e.g. Figure 2. The orientation of a permutree T is O(T) = (O+, O−) where O+ is the
set of labels of the nodes with two parents while O− is the set of labels of the nodes with
two children. We denote by P(O) the set of permutrees with a given orientation O. As
illustrated in Figure 2, a permutree with orientation (∅,∅) (resp. (∅, [n]), resp. ([n], [n]))
is nothing else but a permutation (resp. a binary tree, resp. a binary sequence).

To each permutree T corresponds its permutree element poset CT where i CT j if there
is an oriented path from i to j in T. Define PEPO := {CT | T ∈ P(O)}. Many properties
of permutations and binary trees extend to permutrees. In particular:
• For a permutree T ∈ P(O), the set of linear extensions L(T) of CT is an interval in

the weak order on Sn whose minimal element avoids1 the patterns 31-2 and 2-31,
and whose maximal element avoids the patterns 13-2 and 2-31.
• For any orientation O of [n], the set {L(T) | T ∈ P(O)} forms a partition of Sn.

This defines a surjection2 ΨO : Sn → P(O), which sends a permutation σ ∈ Sn to
the unique permutree T ∈ P(O) such that σ ∈ L(T).
• This partition defines a lattice congruence of the weak order (see [16, 15, 13] for

details). This yields the permutree lattice3, defined by T 4 T′ if and only if there
exist σ, σ′ ∈ Sn such that ΨO(σ) = T, ΨO(σ

′) = T′ and σ 4 σ′. Its minimal
(resp. maximal) element is the left (resp. right) O-comb: it is a chain where each
vertex in O+ has an additional empty left (resp. right) parent, while each vertex
in O− has an additional empty right (resp. left) child.
• Geometrically, the Hasse diagram of the permutree lattice is the graph of the per-

mutreehedron PT(O) [13, Section 3] oriented from the left to the right O-comb.
1A permutation σ contains the pattern 31-2 if σ = σ1caσ2bσ3 with a < b < c and b ∈ O−.
2This surjection can also be described directly as an insertion algorithm, see [13, Section 2.2].
3This lattice structure can equivalently be described by right rotations in permutrees [13, Section 2.6].



8 Vincent Pilaud and Viviane Pons

The next statement extends Propositions 2.1 & 2.4. An orientation O = (O+, O−) is
said to be covering if {2, . . . , n− 1} ⊆ O+ ∪O−.

Proposition 2.8. • PEPO is characterized by local conditions4 as in Propositions 2.1 & 2.4.
• For any permutrees T, T′ ∈ P(O), we have CT 4 CT′ ⇐⇒ T 4 T′.
• The permutree lattice on PEPO is always a sublattice of the weak order on WOIPn. It is a

sublattice of the weak order on Pn when O is covering, but not in general.

We now consider intervals in the permutree lattice. For two permutrees T, T′ ∈ P(O)
with T 4 T′, let [T, T′] := {S ∈ P(O) | T 4 S 4 T′}. It corresponds to the permutree in-
terval poset C[T,T′] :=CInc

T′ ∩C
Dec
T . Define PIPO := {C[T,T′] | T, T′ ∈ P(O), T 4 T′}. The next

statement extends Propositions 2.2 & 2.5.

Proposition 2.9. • A poset C is in PIPO if and only if C ∈ WOIPn and for any a < b < c,
we have (a C c ⇒ a C b) and (a B c ⇒ b B c) when b ∈ O+, and (a C c ⇒ b C c)
and (a B c⇒ a B b) when b ∈ O−.
• For any S 4 S′ and T 4 T′ in P(O), we have C[S,S′] 4 C[T,T′] ⇐⇒ S 4 T and S′ 4 T′.
• The weak order on PIPO is always a sublattice of the weak order on WOIPn. It is a sublattice

of the weak order on Pn when O is covering, but not in general.

To extend Propositions 2.3 & 2.6, we now consider facial intervals of the permutree
lattice. The faces of the permutreehedron PT(O) correspond to the Schröder permutrees
with orientation O, which are obtained from the permutrees of P(O) by edge con-
tractions5. Define the permutree face poset CS = C[Tmin,Tmax], where Tmin (resp. Tmax) is
obtained by replacing the nodes of S by left (resp. right) combs (with the correct orien-
tations). See Figure 3. Define PFPO := {CS | S Schröder permutree with orientation O}.

Proposition 2.10. • PFPO is characterized by local conditions2 as in Propositions 2.3 & 2.6.
• For any Schröder permutrees S, S′, we have CS 4 CS′ ⇐⇒ S 4 S′ in the facial weak

order on the permutreehedron PT(O) studied in [13, 5].
• The weak order on PFPO is a lattice but not a sublattice of the weak order on Pn, nor

on WOIPn, nor on PIPO.

Finally, for C ∈ Pn, we define its PIPO deletion CPIPOd to be the poset obtained by
removing simultaneously from C all increasing relations (a, c) such that:
• either ∃ a < b1 < · · · < bk < c with a 6C b1 6C · · · 6C bk 6C c (preventing C ∈ WOIP),
• or ∃ a ≤ n < p ≤ c with n ∈ {a} ∪O−, p ∈ {c} ∪O+, and n 6C p.

and their analogue decreasing relations. We now give an analogue of Proposition 2.7.

Proposition 2.11. For any permutation σ, weak order interval σ 4 σ′, and ordered partition π,
(Cσ)PIPOd = CΨO(σ)

, (C[σ,σ′])
PIPOd = C[ΨO(σ), ΨO(σ′)] and (Cπ)PIPOd = CΨO(π),

where ΨO(σ) (resp. ΨO(π)) is the permutree (resp. Schröder permutree) associated to σ (resp. π).
4The detailed conditions are too intricate for this abstract but can be found in [4, Propositions 60 & 63].
5A more direct but more technical definition of Schröder permutrees can also be found in [13, Section 5].
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3 Hopf algebra on integer posets

In this section, we construct a Hopf algebra on integer posets. We then show that the
permutations, the weak order intervals, and the ordered partitions index certain quo-
tients of the integer poset algebra, and that the binary trees, the Tamari intervals, and
the Schröder trees index subalgebras of these quotients. Define RN :=

⊔
n≥0Rn and

similarly for the other families of relations considered in this paper.

3.1 Hopf algebras on binary relations and integer posets

As for the weak order, we first define our Hopf algebra at the level of binary relations.
We consider the vector space KRN :=

⊕
n≥0 KRn indexed by all integer binary relations

of arbitrary size. We denote by RX :=
{
(i, j) ∈ [k]2

∣∣ xi R xk
}

the restriction of an integer
relation R ∈ Rn to a subset X = {x1, . . . , xk} ⊆ [n]. We define:
• the product of two integer relations R ∈ Rm and S ∈ Rn by R · S := ∑ T where T

ranges over all integer relations T ∈ Rm+n with T[m] = R and T[n+m]r[m] = S.
• the coproduct of an integer relation T ∈ R(p) by 4(T) := ∑ TX ⊗ TY where the sum

ranges over all partitions X tY ⊆ [p] such that x T y and y 6T x for all (x, y) ∈ X×Y.

E.g. 1 2 · 1 = 1 2 3 + 1 2 3 + 1 2 3 + · · · + 1 2 3 + · · · + 1 2 3 ,

and 4
(

1 2 3
)
= 1 2 3 ⊗ ∅ + 1 ⊗ 1 2 + 1 2 ⊗ 1 + ∅ ⊗ 1 2 3 ,

where the terms in the coproduct arise from X ranging in {1, 2, 3}, {1}, {1, 3}, and ∅.
Note that the product R · S is the sum over the interval between R\S :=R∪ S∪ ([m]× [n])
and R/S :=R∪ S∪ ([n]× [m]) in the weak order on Rm+n (where we denote the shifts
S := {(m + i, m + j) | (i, j) ∈ S} and [n] := [m + n]r [m]).

Proposition 3.1. The product · and coproduct 4 endow KRN with a Hopf algebra structure,
i.e. 4(R · S) = 4(R) · 4(S) where the last product is (a⊗ b) · (c⊗ d) = (a · c)⊗ (b · d).

We now use this Hopf algebra on binary relations to get a Hopf algebra on posets.

Proposition 3.2. If R ∈ RN is not a poset, then none of the summands in R · S (resp. 4(R))
is a poset (resp. the tensor product of two posets). In other words, the vector subspace of KRN

generated by integer relations which are not posets is a Hopf ideal of (KRN, ·,4). The quotient
of (KRN, ·,4) by this ideal is thus a Hopf algebra (KPN, ·,4) on integer posets.

E.g. 1 2 · 1 = 1 2 3 + 1 2 3 + 1 2 3 + 1 2 3 + 1 2 3 + 1 2 3 in KPN.

Proposition 3.3. For C ∈ Pm and J ∈ Pn, the product C ·J is the interval between C\J and
C/J in the weak order on Pm+n.
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3.2 Hopf algebras on permutations, intervals, and ordered partitions

We now want to construct Hopf algebras on WOEPN, WOIPN and WOFPN as quotients
of the integer poset Hopf algebra (PN, ·,4). The important point is that all these families
of posets are defined by local conditions on their relations, and that a contradiction to
these conditions cannot be destroyed by the product or the coproduct.

We start with weak order element posets WOEPN. For two permutations σ ∈ Sm
and τ ∈ Sn, define the shifted shuffle σ� τ (resp. the convolution σ ? τ) as the permutation
of Sm+n whose first m values (resp. positions) are in the same relative order as σ and
whose last n values (resp. positions) are in the same relative order as τ. For example,

12� 231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312},
and 12 ? 231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}.

Recall that the Malvenuto–Reutenauer Hopf algebra [11] is the Hopf algebra on permu-
tations with product σ · τ := ∑ρ∈σ� τ ρ and coproduct 4(ρ) := ∑ρ∈σ?τ σ⊗ τ. This Hopf
algebra can be interpreted as a quotient of the integer poset Hopf algebra (KPN, ·,4).

Proposition 3.4. • The vector subspace of KPN generated by non-total integer posets is a
Hopf ideal of (KPN, ·,4). The quotient of the poset Hopf algebra (KPN, ·,4) by this
ideal is thus a Hopf algebra (KWOEPN, ·,4) on total orders.
• The map σ 7→ Cσ defines a Hopf algebra isomorphism from the Malvenuto–Reutenauer

Hopf algebra on permutations [11] to (KWOEPN, ·,4).
• For any permutations σ ∈ Sm and τ ∈ Sn, the product Cσ ·Cτ is the interval between
Cσ\Cτ and Cσ/Cτ in the weak order on WOEPm+n.

E.g. 1 2 · 1 = 1 2 3 + 1 2 3 + 1 2 3 in KWOEPN.

We now consider weak order interval posets WOIPN, characterized in Proposition 2.2.

Proposition 3.5. • The vector subspace of KPN generated by PN rWOIPN is a Hopf ideal
of (KPN, ·,4). The quotient of the integer poset algebra (KPN, ·,4) by this ideal is thus
a Hopf algebra (KWOIPN, ·,4) on weak order intervals.
• For any σ 4 σ′ ∈ Sm and τ 4 τ′ ∈ Sn, the product C[σ,σ′] ·C[τ,τ′] is the interval between
C[σ,σ′]\C[τ,τ′] and C[σ,σ′]/C[τ,τ′] in the weak order on WOIPm+n.

E.g. 1 2 · 1 = 1 2 3 + 1 2 3 + 1 2 3 + 1 2 3 + 1 2 3 in KWOIPN.

Finally, a similar statement holds for weak order face posets WOFPN, characterized
in Proposition 2.3. It turns out that the resulting algebra was studied in [2].
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Proposition 3.6. • The vector subspace of KPN generated by PN rWOIPN is a Hopf ideal
of (KPN, ·,4). The quotient of the poset Hopf algebra (KPN, ·,4) by this ideal is thus a
Hopf algebra (KWOFPN, ·,4) on faces of the permutahedron.
• The map π 7→ Cπ defines a Hopf algebra isomorphism from the Chapoton Hopf algebra on

ordered partitions [2] to (KWOFPN, ·,4).
• For any ordered partitions π of [m] and ω of [n], the product Cπ · Cω is the interval

between Cπ\Cω and Cπ/Cω in the weak order on WOFPm+n.

E.g. 1 2 · 1 = 1 2 3 + 1 2 3 + 1 2 3 in KWOFPN.

3.3 Hopf algebras on binary trees, Tamari intervals, and Schröder trees

To conclude, we use the TOIP deletion defined in the end of Section 2.2 to construct Hopf
subalgebras of KWOEPN, KWOIPN and KWOFPN respectively indexed by TOEPN,
TOIPN and TOFPN. This idea mimics the construction of the Loday–Ronco algebra
on binary trees [10, 7], that can be defined as a Hopf subalgebra of the Malvenuto–
Reutenauer algebra on permutations [11].

Proposition 3.7. • The vector subspace KTOEPN of KWOEPN generated by the sums of
the fibers

{
C ∈ WOEPN

∣∣ CTOIPd = J
}

for all J ∈ TOEPN is stable by · and 4.
• For any binary trees S ∈ Bm and T ∈ Bn, the product CS ·CT is the interval between
CS\CT and CS/CT in the weak order on TOEPm+n.
• The map T 7→ CT is a Hopf algebra isomorphism from the Loday–Ronco algebra on binary

trees [10, 7] to (KTOEPN, ·,4).

We now proceed to the same construction for Tamari intervals. To the best of our
knowledge, our approach provides the first Hopf algebra on Tamari intervals.

Proposition 3.8. • The vector subspace KTOIPN of KWOIPN generated by the sums of the
fibers

{
C ∈ WOIPN

∣∣ CTOIPd = J
}

for all J ∈ TOIPN is stable by · and 4.
• For any Tamari intervals S 4 S′ ∈ Bm and T 4 T′ ∈ Bn, the product C[S,S′] ·C[T,T′] is

the interval between C[S,S′]\C[T,T′] and C[S,S′]/C[T,T′] in the weak order on WOIPm+n.

The same construction for faces recovers Chapoton’s Schröder trees Hopf Algebra [2].

Proposition 3.9. • The vector subspace KTOFPN of KWOFPN generated by the sums of
the fibers

{
C ∈ WOFPN

∣∣ CTOIPd = J
}

for all J ∈ TOFPN is stable by · and 4.
• For any Schröder trees σ[S] on [m] and T on [n], the product CS ·CT is the interval between
CS\CT and CS/CT in the weak order on WOFPm+n.
• The map S 7→ CS is a Hopf algebra isomorphism from the Chapoton algebra on Schröder

trees [2] to (KTOFPN, ·,4).
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Finally, let us mention that similar ideas can be used to uniformly construct Hopf
algebra structures on permutrees, permutree intervals, and Schröder permutrees. Fol-
lowing [3, 13], one first defines some decorated versions of the Hopf algebras KWOEPN,
KWOIPN and KWOFPN, where each poset on [n] appears 4n times with all possible dif-
ferent orientations. One then constructs Hopf algebras on KPEP, KPIP and KPFP using
the fibers of the surjective map (C, O) 7→ CPIPOd. See [13, 14] for details.
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