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Abstract. There are left and right actions of the 0-Hecke monoid of the affine sym-
metric group S̃n on involutions whose cycles are labeled periodically by nonnegative
integers. Using these actions we construct two bijections, which are length-preserving
in an appropriate sense, from the set of involutions in S̃n to the set of N-weighted
matchings in the n-element cycle graph. As an application, we show that the bivariate
generating function counting the involutions in S̃n by length and absolute length is a
rescaled Lucas polynomial. The 0-Hecke monoid of S̃n also acts on involutions (with-
out any cycle labelling) by Demazure conjugation. The atoms of an involution z ∈ S̃n

are the minimal length permutations w which transform the identity to z under this
action. We prove that the set of atoms for an involution in S̃n is naturally a bounded,
graded poset, and give a formula for the set’s minimum and maximum elements.
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1 Introduction

For each integer n ≥ 1, let S̃n be the affine symmetric group of rank n, consisting of the
bijections w : Z → Z with w(i + n) = w(i) + n for all i ∈ Z and w(1) + w(2) + · · ·+
w(n) = (n+1

2 ). If n = 1 then S̃1 = {1}. Assume n ≥ 2, and define si ∈ S̃n for i ∈ Z as the
permutation which exchanges i + mn and i + 1 + mn for each m ∈ Z, while fixing every
integer not congruent to i or i + 1 modulo n. The elements s1, s2, . . . , sn generate S̃n, and
with respect to these generators S̃n is the Coxeter group of type Ãn−1.

If W is any Coxeter group with simple generating set S and length function ` : W →
N, then there is a unique associative product ◦ : W ×W → W such that w ◦ s = w
if `(ws) < `(w) and w ◦ s = ws if `(ws) > `(w) for w ∈ W and s ∈ S [16, Theorem
7.1]. The product ◦ is often called the Demazure product, and the pair (W, ◦) is usually
referred to as the 0-Hecke monoid or Richardson–Springer monoid of (W, S). This extended
abstract discusses three actions of the 0-Hecke monoid of S̃n. Each action will be on
objects related to the group’s involutions, that is, the elements z ∈ S̃n with z2 = 1.
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Let In be the set of involutions in the finite symmetric group Sn, which we identify
with the parabolic subgroup of S̃n generated by s1, s2, . . . , sn−1. Elements of In may be
viewed as matchings on {1, 2, . . . , n}. For example,

(1, 4)(2, 7)(3, 6) ∈ I8 corresponds to • • • • • • • •
1 2 3 4 5 6 7 8

. (1.1)

One adapts this model to the elements of Ĩn = {z ∈ S̃n : z2 = 1} by representing
z ∈ Ĩn as the matching on Z in which i and j are connected by an edge whenever
z(i) = j 6= i = z(j). This gives a bijection between Ĩn and matchings on Z which are
“n-periodic” in the sense of having {i, j} as an edge if and only if {i + n, j + n} is also
an edge. We can make this model more compact by converting n-periodic matchings on
Z to Z-weighted matchings on {1, 2, . . . , n}: to represent z ∈ Ĩn, include the edge {i, j}
labeled by m ∈ Z whenever i < j and z(i) = j + mn and z(j) = i−mn. For example,

•
1
•

−1

•
0
• • • • •

1 2 3 4 5 6 7 8
(1.2)

corresponds to z = ∏m∈Z(1 + mn, 12 + mn)(7 + mn, 10 + mn)(3 + mn, 6 + mn) ∈ Ĩ8.
Diagrams of this type are most useful when S̃n is viewed as a semidirect product Sn n
Zn−1. When the structure of S̃n as a Coxeter group is significant, a better approach is
to view n-periodic matchings as winding diagrams. To construct the winding diagram of
z ∈ Ĩn, arrange 1, 2, . . . , n clockwise on a circle, and whenever i < z(i) ≡ j (mod n),
connect i to j by an arc winding z(i)−i

n times in the clockwise direction around the circle’s
exterior. For the involution in (1.2), this produces the picture

•
1 •

2
•3

•4
•
5•6

• 7

•
8

. (1.3)

Formally, a winding diagram is a collection of continuous paths between disjoint pairs of
marked points on the boundary of the plane minus an open disc, up to homotopy. Each
winding diagram corresponds to a unique involution in some affine symmetric group.

Write `(w) for the usual Coxeter length of w ∈ S̃n, and define the absolute length
`′(z) of z ∈ Ĩn to be the number of arcs in its winding diagram. Our first main result,
Theorem 2.12, identifies two bijections ωR and ωL from Ĩn to the setMn of N-weighted
matchings in Cn, the cycle graph on n vertices. These bijections preserve length and
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absolute length, where the absolute length of an N-weighted matching is its number of
edges and the length is its number of edges plus twice the sum of their weights. The
images of the element z ∈ Ĩ8 in our running example (1.3) are

ωR(z) =

•
1 •

2
•3

•4
•
5•6

• 7

•
8

8
1

2

and ωL(z) =

•
1 •

2
•3

•4
•
5•6

• 7

•
8

8

2

1

and indeed it holds that `′(z) = 3 and `(z) = 25. The statement of Theorem 2.12 relies
on the construction of a left and right action of the 0-Hecke monoid of S̃n on the set of
weighted involutions. As an application, we show that ∑z∈ Ĩn

q`(z)x`
′(z) = 1

1+qn Lucn(1 +

q, qx) where Lucn(x, s) is the nth bivariate Lucas polynomial; see Corollary 2.17. This is
an analogue of a more complicated identity proved in [20].

The 0-Hecke monoid of S̃n also acts directly on Ĩn by Demazure conjugation: the right
action mapping (z, w) 7→ w−1 ◦ z ◦ w for z ∈ Ĩn and w ∈ S̃n. This monoid action
is a degeneration of the Iwahori–Hecke algebra representation studied by Lusztig and
Vogan in [18, 19]. The orbit of the identity under Demazure conjugation is all of Ĩn,
and we define A(z) for z ∈ Ĩn as the set of elements w ∈ S̃n of minimal length such that
z = w−1 ◦w. Following [9, 10], we call these permutations the atoms of z. There are a few
reasons why these elements merit further study, beyond their interesting combinatorial
properties. The sets A(z) may be defined for involutions in any Coxeter group and,
in the case of finite Weyl groups, are closely related to the sets W(Y) which Brion [3]
attaches to B-orbit closures Y in a spherical homogeneous space G/H (where G is a
connected complex reductive group, B a Borel subgroup, and H a spherical subgroup).
Results of Hultman [14, 15], extending work of Richardson and Springer [21], show the
atoms to be intimately connected to the Bruhat order of a Coxeter group restricted to its
involutions. Finally, the atoms of involutions in Sn play a central role in recent work of
Can, Joyce, Wyser, and Yong on the geometry of the orbits of the orthogonal group on
the type A flag variety; see [4, 5, 24].

Our second objective is to generalise a number of results about the atoms of involu-
tions in finite symmetric groups to the affine case. In Section 3, extending results in [10,
13], we show that there is a natural partial order which makes A(z) for z ∈ Ĩn into a
bounded, graded poset. We conjecture that this poset is a lattice. Generalising results of
Can, Joyce, and Wyser [4, 5], we describe in Section 4 a “local” criterion for membership
in A(z) involving a notion of (affine) standardisation; see Theorem 4.4. Using this result,
one can prove that involutions in S̃n have what we call the Bruhat covering property. For
i < j 6≡ i (mod n), let tij = tji ∈ S̃n be the permutation which interchanges i + mn and
j + mn for each m ∈ Z and which fixes all integers not in {i, j}+ nZ. The elements tij
are precisely the reflections in S̃n.
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Theorem 1.1 (Bruhat covering property). If y ∈ Ĩn and t ∈ S̃n is a reflection, then there exists
at most one z ∈ Ĩn such that {wt : w ∈ A(y) and `(wt) = `(w) + 1} ∩ A(z) 6= ∅.

The analogue of this result for involutions in Sn was shown in [12], and served as
a key lemma in proofs of “transition formulas” for certain involution Schubert polynomi-
als. We conjecture that the same property holds for arbitrary Coxeter systems, in the
following sense. Let (W, S) be a Coxeter system with length function ` : W → N and
Demazure product ◦ : W ×W → W. Suppose w 7→ w∗ is an automorphism of W with
S∗ = S. The corresponding set of twisted involutions is I∗ = {w ∈ W : w−1 = w∗}. For
y ∈ I∗ let A∗(y) be the set of elements of minimal length with (w∗)−1 ◦ w = y.

Conjecture 1.2. If y ∈ I∗ is a twisted involution in an arbitrary Coxeter group and t ∈
{wsw−1 : w ∈ W, s ∈ S}, then there exists at most one twisted involution z ∈ I∗ such
that {wt : w ∈ A∗(y) and `(wt) = `(w) + 1} ∩ A∗(z) 6= ∅.

We anticipate that these results will be useful in developing a theory of affine involu-
tion Stanley symmetric functions, simultaneously generalising [17] and [9, 11, 8]. For the
sake of brevity, we have omitted in this extended abstract most proofs, which will appear
elsewhere.

2 Weighted involutions

Throughout, let Z be the set of all integers and let N = {0, 1, 2, . . . }, and define [n] =
{1, 2, . . . , n} for n ∈N. For any map w : Z→ Z, let

Inv(w) = {(i, j) ∈ Z×Z : i < j and w(i) > w(j)} .

For w ∈ S̃n, it then holds that `(w) is the number of equivalence classes in Inv(w) under
the relation on Z×Z generated by (i, j) ∼ (i + n, j + n) [2, Section 8.3]. For z ∈ Ĩn, let

C(z) = {(i, j) ∈ Z×Z : i < j = z(i)}

The absolute length `′(z) is then similarly the number of equivalence classes in C(z)
under the relation on Z×Z generated by (i, j) ∼ (i + n, j + n).

Definition 2.1. A weighted involution in S̃n is a pair (w, φ) where w ∈ Ĩn and φ is a map
C(w) → N with φ(i, j) = φ(i + n, j + n) for all (i, j) ∈ C(w). We refer to φ as the weight
map of (w, φ). Define the weight of (w, φ) as the number wt(w, φ) = ∑γ φ(γ) where the
sum is over a set of cycles γ representing the distinct equivalence classes in C(w) under
the relation (i, j) ∼ (i + n, j + n). LetWn be the set of all weighted involutions in S̃n.
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Example 2.2. We draw a weighted involution (w, φ) ∈ Wn as the winding diagram of w
with its arcs labeled by the values of φ. For example, if θ1, θ2, θ3 ∈ W5 are

•
1

•2

•3•4

• 5

2
3

•
1

•2

•3•4

• 5

2

2

•
1

•2

•3•4

• 5

2
1

and θi = (wi, φi), then w1 = t1,2t3,10, w2 = t0,2t3,11, and w3 = t0,3t2,11, while φ1(1, 2) = 2
and φ1(3, 10) = 3, φ2(3, 11) = φ2(5, 7) = 2, and φ3(2, 11) = 2 and φ3(5, 8) = 1.

We identify Ĩn with the subset of weighted involutions of the form (w, 0) ∈ Wn with
0 denoting the unique weight map C(w)→ {0}. We extend ` and `′ toWn by setting

`(θ) = `(w) + 2 wt(θ) and `′(θ) = `′(w) for θ = (w, φ) ∈ Wn.

Given (w, φ) ∈ Wn, define the right form of φ to be the map φR : Z → N with φR(i) =
φ(w(i), i) if w(i) < i and with φR(i) = 0 otherwise. Likewise, define the left form of φ to
be the map φL : Z→N with φL(i) = φ(i, w(i)) if i < w(i) and with φL(i) = 0 otherwise.
Clearly φL and φR each determine φ, given w.

Definition 2.3. Let θ = (w, φ) ∈ Wn and i ∈ Z. We define θπi, πiθ ∈ Wn as follows:

(a) If φR(i) > φR(i + 1) then let θπi = (siwsi, ψ) ∈ Wn where ψ is the unique weight
map with ψR(j) = φR(i)− 1 if j ≡ i+ 1 (mod n), ψR(j) = φR(i+ 1) if j ≡ i (mod n),
and ψR(j) = φR(j) otherwise. If φR(i) ≤ φR(i + 1) then let θπi = θ.

(b) If φL(i + 1) > φL(i) then let πiθ = (siwsi, χ) ∈ Wn where χ is the unique weight
map with χL(j) = φL(i + 1)− 1if j ≡ i (mod n), χL(j) = φL(i) if j ≡ i + 1 (mod n),
and χL(j) = φL(j) otherwise. If φL(i + 1) ≤ φL(i) then let πiθ = θ.

Example 2.4. Define θ1, θ2, θ3 ∈ W5 as in Example 2.2. Then θ1π5 = θ2π1 = θ2 and
θ2π2 = θ3. Form θ′2 ∈ W5 from θ2 by replacing the label of the short arc in the picture in
Example 2.2 by 1 and the label of the long arc by 3. Then π5θ1 = θ′2 and π2θ′2 = θ3.

It may hold that (πiθ)πj 6= πi(θπj); for example, if θ = (w, φ) where w = s1 ∈ S̃2 and
φ(1, 2) = 1, then π0θ = (π0θ)π2 6= π0(θπ2) = θπ2. We always have πi = πi+n.

Proposition 2.5. The left (respectively, right) operators πi satisfy (a) π2
i = πi, (b) πiπj = πjπi

if i 6≡ j± 1 (mod n), and (c) πiπi+1πi = πi+1πiπi+1 for all i, j ∈ Z.
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For each g ∈ S̃n, we may therefore define a right (respectively, left) operator πg on
Wn by setting πg = πi1πi2 · · ·πik where g = si1si2 · · · sik is any reduced expression.

Corollary 2.6. The map g 7→ πg defines a right and left action of (S̃n, ◦) onWn.

Theorem-Definition 2.7. Let θ = (w, φ) ∈ Wn. There are unique permutations g, h ∈ S̃n with
`(g) = `(h) = wt(θ) and wt(πgθ) = wt(θπh) = 0. Define gL(θ) = g−1 and gR(θ) = h, and
set ωL(θ) = πgθ and ωR(θ) = θπh.

Example 2.8. If θ1, θ2, θ3 ∈ W5 are as in Example 2.2, then we have

ωR(θ1) = ωR(θ2) = ωR(θ3) = t1,13t5,9 =

•
1

•2

•3•4

• 5 .

There is a simple relationship between the left and right versions of these construc-
tions. Define τ : Z → Z by τ(i) = n + 1 − i and let w∗ = τwτ for w ∈ S̃n. For
φ : C(w) → N let φ∗ be the map C(w∗) → N given by (τ(j), τ(i)) 7→ φ(i, j). Extend ∗ to
Wn by setting θ∗ = (w∗, φ∗) for θ = (w, φ) ∈ Wn. Clearly (θ∗)∗ = θ.

Lemma 2.9. If θ ∈ Wn then gL(θ
∗) = gR(θ)

∗ and ωL(θ
∗) = ωR(θ)

∗.

An involution w ∈ Ĩn has `(w) = `′(w) if and only if w is a product of commuting
simple generators, i.e., w = si1si2 · · · sil where ij 6≡ ik ± 1 (mod n) for all j, k ∈ [l].

Definition 2.10. DefineMn as the set of θ = (w, φ) ∈ Wn with `′(w) = `(w).

The elements of Mn are in bijection with N-weighted matchings in Cn, the cycle
graph on n vertices, which explains our notation. The setM4 consists of

•
1

•2

•
3

• 4

a •
1

•2

•
3

• 4

a

•
1

•2

•
3

• 4

a

•
1

•2

•
3

• 4

a •
1

•2

•
3

• 4

b

a

•
1

•2

•
3

• 4

b

a

where a, b ∈N are arbitrary. The following is well-known; see [22, A034807].

Proposition 2.11. There are n
n−k (

n−k
k ) distinct k-element matchings in Cn.
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Recall the definition of tij ∈ S̃n for i < j 6≡ i (mod n). Let ≺ be the partial order on
Mn with (w, φ) � (w′, φ′) if and only if w = w′ and φ(a, b) ≤ φ′(a, b) for (a, b) ∈ C(w).
Next, define ≺R as the transitive closure of the relation on Ĩn with z ≺R tijztij whenever
z(i) < i and j = min{e ∈ Z : i < e and z(i) < z(e)}. Finally, define ≺L similarly
as the transitive closure of the relation on Ĩn with z ≺L tijztij whenever j < z(j) and
i = max{e ∈ Z : e < j and z(e) < z(j)}. The posets ( Ĩn,≺R) and ( Ĩn,≺L) are isomorphic
via the map z 7→ z∗. One can show that these posets are graded with rank function
z 7→ 1

2`(z), and that both are subposets of the Bruhat order restricted to Ĩn.

Theorem 2.12. The maps ωR : (Mn,≺) → ( Ĩn,≺R) and ωL : (Mn,≺) → ( Ĩn,≺L) are
isomorphisms of partially ordered sets which preserve ` and `′.

Consider the following variations of gL(θ) and gR(θ) from Theorem-Definition 2.7.

Definition 2.13. For z ∈ Ĩn let θR and θL be the unique elements of Mn such that
ωR(θR) = ωL(θL) = z, and define αR(z) = gR(θR) ∈ S̃n and αL(z) = gL(θL) ∈ S̃n.

One can derive a more explicit formula for these elements.

Proposition-Definition 2.14. If a1, a2, . . . , an ∈ Z represent the distinct congruence classes
modulo n then there is a unique m ∈ Z and a unique w ∈ S̃n such that w(m + i) = ai for
i ∈ [n]. Moreover, it holds that m = 1

n ∑n
i=1(ai − i). Define [a1, a2, . . . , an] = w ∈ S̃n.

If a1, a2, . . . , aN ∈ Z represent all congruence classes modulo n, and i1 < i2 < · · · < in
are the indices of the first representative of each class, then we define [a1, a2, . . . , aN] =
[ai1 , ai2 , . . . , ain ] ∈ S̃n. For example, if n = 3 then [1, 0, 1, 3, 8, 4, 2] = [1, 0, 8].

Theorem 2.15. Let z ∈ Ĩn and m ∈ Z. Suppose a1 < a2 < · · · < al and d1 < d2 < · · · < dl
are the elements of m + [n] with ai ≤ z(ai) and z(di) ≤ di. Define bi = z(ai) and ci = z(di).
Then αR(z) = [a1, b1, a2, b2, . . . , al, bl]

−1 and αL(z) = [c1, d1, c2, d2, . . . , cl, dl]
−1.

Example 2.16. One has αR(1) = αL(1) = [1, 1, 2, 2, . . . , n, n]−1 = 1. If z = t1,8t2,7 ∈ Ĩ4 then
αR(z) = [1, 8, 2, 7]−1 = [3, 5, 2, 0] and αL(z) = [−2, 3,−3, 4]−1 = [5, 3, 0, 2].

Slightly abusing notation, we write Ĩn(q, x) = ∑w∈ Ĩn
q`(w)x`

′(w) ∈N[[q, x]].

Corollary 2.17. If n ≥ 1 then Ĩn(q, x) = ∑
b n

2 c
k=0

n
n−k (

n−k
k )
(

qx
1−q2

)k
.

Proof. Theorem 2.12 implies that Ĩn(q, x) = ∑θ∈Mn q2 wt(θ)(qx)`
′(θ). By Proposition 2.11,

the coefficient of xk in the latter power series is n
n−k (

n−k
k )qk(1 + q2 + q4 + q6 + . . . )k.

Corollary 2.18. If n ≥ 3 then Ĩn(q, x) = Ĩn−1(q, x) + qx
1−q2 Ĩn−2(q, x).

Define ˆ̀(w) = 1
2(`(w) + `′(w)) for w ∈ Ĩn. Corollary 2.17 shows that ˆ̀(w) ∈ N. Let

N̂n(m) be the number of involutions w ∈ Ĩn with ˆ̀(w) = m.
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Corollary 2.19. For each n ≥ 2 and m ≥ 1, it holds that N̂n(m) = ∑bn/2c
j=1

n
n−j (

n−j
j )(m−1

j−1 ).

Remark. The numbers {N̂n(n)}n=1,2,3,... = (0, 2, 3, 10, 25, 71, 196, 554, 1569, . . . ) are se-
quence [22, A246437], which gives the “type B analog for Motzkin sums.” The numbers
{N̂n(2n)}n=1,2,3,... = (0, 2, 3, 18, 50, 215, 735, 2898, . . . ) are sequence [22, A211867].

3 Demazure conjugation

Recall the definition of the Demazure product ◦ : S̃n × S̃n → S̃n from the introduction.
The operation (z, w) 7→ w−1 ◦ z ◦ w for z ∈ Ĩn and w ∈ S̃n defines another right action of
the monoid (S̃n, ◦), which we call Demazure conjugation. If z ∈ Ĩn and i ∈ Z then

si ◦ z ◦ si =


sizsi if z(i) < z(i + 1) and (i, i + 1) /∈ C(z)
zsi if z(i) < z(i + 1) and (i, i + 1) ∈ C(z)
z otherwise.

(3.1)

Every z ∈ Ĩn can be expressed as z = w−1 ◦ w for some w ∈ S̃n, and we define A(z)
as the set of elements w ∈ S̃n of shortest possible length such that z = w−1 ◦ w. For
example, if z = t0,5 = [−4, 2, 3, 9] ∈ Ĩ4 then A(z) = {s1s2s3s4, s2s1s3s4, s3s2s1s4}.

The set A(z) is nonempty for all z ∈ Ĩn, and we refer to its elements as the atoms of
z. Recall from Corollary 2.19 that ˆ̀(z) = 1

2(`(z) + `′(z)). By (3.1), we have:

Proposition 3.1. If z ∈ Ĩn then ˆ̀(z) is the common value of `(w) for w ∈ A(z).

Results in [10], building on work of Can, Joyce, and Wyser [4, 5], show that the sets
A(z) for involutions z ∈ In ⊂ Ĩn in the finite symmetric group are naturally bounded,
graded posets. This phenomenon extends to all involutions in S̃n. Recall the elements
αR(z) and αL(z) from Definitions 2.13.

Definition 3.2. Given z ∈ Ĩn, let αmin(z) = αR(z)z and αmax(z) = αL(z)z.

Corollary 3.3. Let z ∈ Ĩn and m ∈ Z and define ai, bi, ci, di as in Theorem 2.15. Then αmin(z) =
[b1, a1, b2, a2, . . . , bl, al]

−1 and αmax(z) = [d1, c1, d2, c2, . . . , dl, cl]
−1.

Example 3.4. If z = t1,8t2,7 ∈ Ĩ4 then αmin(z) = [8, 1, 7, 2]−1and αmax(z) = [3,−2, 4,−3]−1.

Let lA be the relation on S̃n with u lA v if and only if u < si+1u = siv > v for some
i ∈ Z. Let <A be the transitive closure of lA.

Theorem 3.5. Let z ∈ Ĩn. Restricted to A(z), the relation <A is a bounded, graded partial order,
and it holds that A(z) =

{
w ∈ S̃n : αmin(z) ≤A w

}
=
{

w ∈ S̃n : w ≤A αmax(z)
}

.
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[4, 6, 8, 7,−1,−3]

[4, 7, 8, 5, 0,−3] [5, 6, 8, 7,−3,−2]

[4, 8, 6, 5, 1,−3] [5, 7, 8, 3, 0,−2] [6, 4, 8, 7,−3,−1]

[5, 8, 6, 3, 1,−2] [6, 7, 8, 3,−2,−1] [7, 4, 8, 5,−3, 0]

[5, 9, 6, 1, 2,−2] [6, 8, 4, 3, 1,−1] [7, 5, 8, 3,−2, 0] [8, 4, 6, 5,−3, 1]

[6, 9, 4, 1, 2,−1] [7, 8, 4, 3,−1, 0] [8, 5, 6, 3,−2, 1]

[6, 10, 2, 1, 3,−1] [7, 9, 4,−1, 2, 0] [8, 6, 4, 3,−1, 1] [9, 5, 6, 1,−2, 2]

[7, 10, 2,−1, 3, 0] [8, 9, 4,−1, 0, 1] [9, 6, 4, 1,−1, 2]

[8, 10, 0,−1, 3, 1] [9, 7, 4,−1, 0, 2] [10, 6, 2, 1,−1, 3]

[9, 10, 0,−1, 1, 2] [10, 7, 2,−1, 0, 3]

[10, 8, 0,−1, 1, 3]

Figure 1: Hasse diagram of (A(z),<A) for z = t1,12t2,11t3,4 ∈ Ĩ6

The situation described by the preceding theorem has some formal similarities to
Stembridge’s results in [23, Section 4] about the top and bottom classes of a permutation.

Figure 1 shows an example of (A(z),<A). The lattice structure evident in this picture
appears to be typical; we have used a computer to check the following conjecture for
z ∈ Ĩn in the 333,307 cases when 0 < ˆ̀(z)n ≤ 100.

Conjecture 3.6. The graded poset (A(z),<A) is a lattice for all n and z ∈ Ĩn.

An element w ∈ S̃n is 321-avoiding if no integers a < b < c have w(a) > w(b) > w(c),
and fully commutative if we cannot write w = usisi+1siv for u, v ∈ S̃n and i ∈ Z with
`(w) = `(u) + `(v) + 3. The following extends [10, Corollary 6.11] to affine type A.

Corollary 3.7. Let z ∈ Ĩn. The following are equivalent: (a) |A(z)| = 1, (b) αmin(z) = αmax(z),
(c) αR(z) = αL(z), (d) z is 321-avoiding, and (e) z is fully commutative.

The equivalence of (d) and (e) is well-known; see the results of Green [7, Theorem
2.7], Lam [17, Proposition 35], or Fan and Stembridge [6]. Biagioli, Jouhet, and Nadeau
[1, Proposition 3.3] have derived a length generating function for the involutions in S̃n
with these equivalent properties.
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4 Local characterisations of atoms

Fix a subset E ⊂ [n] of size m. Let φE : [m] → E and ψE : E → [m] be order-preserving
bijections. The standardisation of w ∈ Sn is the permutation [w]E = ψw(E) ◦ w ◦ φE ∈ Sm.
If w2 = 1 and w(E) = E, then ([w]E)

2 = 1.
The Demazure product ◦ on S̃n restricts to an associative product Sn × Sn → Sn and

each involution y ∈ In = Ĩn ∩ Sn has A(y) ⊂ Sn. Can, Joyce, and Wyser’s description of
A(y) for y ∈ In in [5] implies that w ∈ Sn belongs to A(y) if and only if [w]E ∈ A([y]E)
for all subsets E ⊂ [n] which are invariant under y and contain at most two y-orbits; see
Corollary 3.19 in [12]. This “local” criterion for membership in A(y) was an important
tool in the proofs of the main results in [12].

This result can be extended to the affine case, provided we give the right definition
of the standardisation of an affine permutation. Fix E ⊂ Z with |(E + nZ) ∩ [n]| = m,
and define φ̃E,n as the unique order-preserving Z→ E + nZ with φ̃E,n([m]) ⊂ [n].

Lemma 4.1. Let w ∈ S̃n. There is a unique order-preserving bijection ψ̃E,w : w(E) + nZ→ Z

with ψ̃E,w ◦ w ◦ φ̃E,n ∈ S̃m. If w ∈ Ĩn and w(E) = E then φ̃E,n and ψ̃E,w are inverses.

Given w ∈ S̃n and E ⊂ Z with |(E + nZ) ∩ [n]| = m, define [w]E,n = ψ̃E,w ◦w ◦ φ̃E,n ∈
S̃m. We refer to [w]E,n as the (affine) standardisation of w. One has [w]E,n = [w]E+mn,n for
all m ∈ Z. When n is clear from context, we write [w]E instead of [w]E,n. If E ⊂ [n] and
w ∈ Sn ⊂ S̃n, then φ̃E,n|[m] = φE and ψ̃E,w|E = ψw(E).

Corollary 4.2. If E ⊂ Z, y ∈ Ĩn, and y(E) = E, then [y]E ∈ Ĩn.

Example 4.3. Standardisation has a simple interpretation in terms of winding diagrams.
If E = y(E) ⊂ Z then the winding diagram of [y]E is formed from that of y ∈ Ĩn by
erasing the vertices in [n] \ (E + nZ) and their incident edges, and then relabelling the
remaining numbers as consecutive integers. If n = 8 and E = {2, 4, 6, 7, 8}, then

•
1 •

2

•3

•4

•
5• 6

• 7

•
8

and

•
1

•2

•3•4

• 5

represent y = t1,3t2,12t6,8 ∈ Ĩ8 and [y]E = t1,7t3,5 ∈ Ĩ5, respectively.

Theorem 4.4. Let y ∈ Ĩn, w ∈ S̃n, and X = [n] ∪ y([n]). Then w ∈ A(y) if and only if
[w]E ∈ A([y]E) for each subset E = y(E) ⊂ X containing at most two y-orbits.

This result is the starting point for the proof of Theorem 1.1 in the introduction.
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