Actions of the 0-Hecke monoids of affine symmetric groups

Eric Marberg*1
${ }^{1}$ Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Abstract

There are left and right actions of the 0-Hecke monoid of the affine symmetric group \tilde{S}_{n} on involutions whose cycles are labeled periodically by nonnegative integers. Using these actions we construct two bijections, which are length-preserving in an appropriate sense, from the set of involutions in \tilde{S}_{n} to the set of \mathbb{N}-weighted matchings in the n-element cycle graph. As an application, we show that the bivariate generating function counting the involutions in \tilde{S}_{n} by length and absolute length is a rescaled Lucas polynomial. The 0-Hecke monoid of \tilde{S}_{n} also acts on involutions (without any cycle labelling) by Demazure conjugation. The atoms of an involution $z \in \tilde{S}_{n}$ are the minimal length permutations w which transform the identity to z under this action. We prove that the set of atoms for an involution in \tilde{S}_{n} is naturally a bounded, graded poset, and give a formula for the set's minimum and maximum elements.

Keywords: Affine symmetric groups, 0-Hecke monoids, involutions, Bruhat order

1 Introduction

For each integer $n \geq 1$, let \tilde{S}_{n} be the affine symmetric group of rank n, consisting of the bijections $w: \mathbb{Z} \rightarrow \mathbb{Z}$ with $w(i+n)=w(i)+n$ for all $i \in \mathbb{Z}$ and $w(1)+w(2)+\cdots+$ $w(n)=\binom{n+1}{2}$. If $n=1$ then $\tilde{S}_{1}=\{1\}$. Assume $n \geq 2$, and define $s_{i} \in \tilde{S}_{n}$ for $i \in \mathbb{Z}$ as the permutation which exchanges $i+m n$ and $i+1+m n$ for each $m \in \mathbb{Z}$, while fixing every integer not congruent to i or $i+1$ modulo n. The elements $s_{1}, s_{2}, \ldots, s_{n}$ generate \widetilde{S}_{n}, and with respect to these generators \tilde{S}_{n} is the Coxeter group of type \tilde{A}_{n-1}.

If W is any Coxeter group with simple generating set S and length function $\ell: W \rightarrow$ \mathbb{N}, then there is a unique associative product $\circ: W \times W \rightarrow W$ such that $w \circ s=w$ if $\ell(w s)<\ell(w)$ and $w \circ s=w s$ if $\ell(w s)>\ell(w)$ for $w \in W$ and $s \in S$ [16, Theorem 7.1]. The product \circ is often called the Demazure product, and the pair $(W, 0)$ is usually referred to as the 0 -Hecke monoid or Richardson-Springer monoid of (W, S). This extended abstract discusses three actions of the $0-H e c k e$ monoid of \tilde{S}_{n}. Each action will be on objects related to the group's involutions, that is, the elements $z \in \tilde{S}_{n}$ with $z^{2}=1$.

[^0]Let I_{n} be the set of involutions in the finite symmetric group S_{n}, which we identify with the parabolic subgroup of \tilde{S}_{n} generated by $s_{1}, s_{2}, \ldots, s_{n-1}$. Elements of I_{n} may be viewed as matchings on $\{1,2, \ldots, n\}$. For example,

$$
\begin{equation*}
(1,4)(2,7)(3,6) \in I_{8} \quad \text { corresponds to } \tag{1.1}
\end{equation*}
$$

One adapts this model to the elements of $\tilde{I}_{n}=\left\{z \in \tilde{S}_{n}: z^{2}=1\right\}$ by representing $z \in \tilde{I}_{n}$ as the matching on \mathbb{Z} in which i and j are connected by an edge whenever $z(i)=j \neq i=z(j)$. This gives a bijection between \tilde{I}_{n} and matchings on \mathbb{Z} which are " n-periodic" in the sense of having $\{i, j\}$ as an edge if and only if $\{i+n, j+n\}$ is also an edge. We can make this model more compact by converting n-periodic matchings on \mathbb{Z} to \mathbb{Z}-weighted matchings on $\{1,2, \ldots, n\}$: to represent $z \in \tilde{I}_{n}$, include the edge $\{i, j\}$ labeled by $m \in \mathbb{Z}$ whenever $i<j$ and $z(i)=j+m n$ and $z(j)=i-m n$. For example,

corresponds to $z=\prod_{m \in \mathbb{Z}}(1+m n, 12+m n)(7+m n, 10+m n)(3+m n, 6+m n) \in \tilde{I}_{8}$. Diagrams of this type are most useful when \tilde{S}_{n} is viewed as a semidirect product $S_{n} \ltimes$ \mathbb{Z}^{n-1}. When the structure of \tilde{S}_{n} as a Coxeter group is significant, a better approach is to view n-periodic matchings as winding diagrams. To construct the winding diagram of $z \in \tilde{I}_{n}$, arrange $1,2, \ldots, n$ clockwise on a circle, and whenever $i<z(i) \equiv j(\bmod n)$, connect i to j by an arc winding $\frac{z(i)-i}{n}$ times in the clockwise direction around the circle's exterior. For the involution in (1.2), this produces the picture

Formally, a winding diagram is a collection of continuous paths between disjoint pairs of marked points on the boundary of the plane minus an open disc, up to homotopy. Each winding diagram corresponds to a unique involution in some affine symmetric group.

Write $\ell(w)$ for the usual Coxeter length of $w \in \tilde{S}_{n}$, and define the absolute length $\ell^{\prime}(z)$ of $z \in \tilde{I}_{n}$ to be the number of arcs in its winding diagram. Our first main result, Theorem 2.12, identifies two bijections ω_{R} and ω_{L} from \tilde{I}_{n} to the set \mathcal{M}_{n} of \mathbb{N}-weighted matchings in \mathcal{C}_{n}, the cycle graph on n vertices. These bijections preserve length and
absolute length, where the absolute length of an \mathbb{N}-weighted matching is its number of edges and the length is its number of edges plus twice the sum of their weights. The images of the element $z \in \tilde{I}_{8}$ in our running example (1.3) are

and indeed it holds that $\ell^{\prime}(z)=3$ and $\ell(z)=25$. The statement of Theorem 2.12 relies on the construction of a left and right action of the 0 -Hecke monoid of \tilde{S}_{n} on the set of weighted involutions. As an application, we show that $\sum_{z \in \tilde{I}_{n}} q^{\ell(z)} x^{\ell^{\prime}(z)}=\frac{1}{1+q^{n}} \operatorname{Luc}_{n}(1+$ $q, q x)$ where $\operatorname{Luc}_{n}(x, s)$ is the nth bivariate Lucas polynomial; see Corollary 2.17. This is an analogue of a more complicated identity proved in [20].

The 0-Hecke monoid of \tilde{S}_{n} also acts directly on \tilde{I}_{n} by Demazure conjugation: the right action mapping $(z, w) \mapsto w^{-1} \circ z \circ w$ for $z \in \tilde{I}_{n}$ and $w \in \tilde{S}_{n}$. This monoid action is a degeneration of the Iwahori-Hecke algebra representation studied by Lusztig and Vogan in $[18,19]$. The orbit of the identity under Demazure conjugation is all of \tilde{I}_{n}, and we define $\mathcal{A}(z)$ for $z \in \tilde{I}_{n}$ as the set of elements $w \in \tilde{S}_{n}$ of minimal length such that $z=w^{-1} \circ w$. Following $[9,10$], we call these permutations the atoms of z. There are a few reasons why these elements merit further study, beyond their interesting combinatorial properties. The sets $\mathcal{A}(z)$ may be defined for involutions in any Coxeter group and, in the case of finite Weyl groups, are closely related to the sets $W(Y)$ which Brion [3] attaches to B-orbit closures Y in a spherical homogeneous space G / H (where G is a connected complex reductive group, B a Borel subgroup, and H a spherical subgroup). Results of Hultman [14, 15], extending work of Richardson and Springer [21], show the atoms to be intimately connected to the Bruhat order of a Coxeter group restricted to its involutions. Finally, the atoms of involutions in S_{n} play a central role in recent work of Can, Joyce, Wyser, and Yong on the geometry of the orbits of the orthogonal group on the type A flag variety; see [4, 5, 24].

Our second objective is to generalise a number of results about the atoms of involutions in finite symmetric groups to the affine case. In Section 3, extending results in [10, 13], we show that there is a natural partial order which makes $\mathcal{A}(z)$ for $z \in \tilde{I}_{n}$ into a bounded, graded poset. We conjecture that this poset is a lattice. Generalising results of Can, Joyce, and Wyser [4, 5], we describe in Section 4 a "local" criterion for membership in $\mathcal{A}(z)$ involving a notion of (affine) standardisation; see Theorem 4.4. Using this result, one can prove that involutions in \tilde{S}_{n} have what we call the Bruhat covering property. For $i<j \not \equiv i(\bmod n)$, let $t_{i j}=t_{j i} \in \tilde{S}_{n}$ be the permutation which interchanges $i+m n$ and $j+m n$ for each $m \in \mathbb{Z}$ and which fixes all integers not in $\{i, j\}+n \mathbb{Z}$. The elements $t_{i j}$ are precisely the reflections in \tilde{S}_{n}.

Theorem 1.1 (Bruhat covering property). If $y \in \tilde{I}_{n}$ and $t \in \tilde{S}_{n}$ is a reflection, then there exists at most one $z \in \tilde{I}_{n}$ such that $\{w t: w \in \mathcal{A}(y)$ and $\ell(w t)=\ell(w)+1\} \cap \mathcal{A}(z) \neq \varnothing$.

The analogue of this result for involutions in S_{n} was shown in [12], and served as a key lemma in proofs of "transition formulas" for certain involution Schubert polynomials. We conjecture that the same property holds for arbitrary Coxeter systems, in the following sense. Let (W, S) be a Coxeter system with length function $\ell: W \rightarrow \mathbb{N}$ and Demazure product $\circ: W \times W \rightarrow W$. Suppose $w \mapsto w^{*}$ is an automorphism of W with $S^{*}=S$. The corresponding set of twisted involutions is $I_{*}=\left\{w \in W: w^{-1}=w^{*}\right\}$. For $y \in I_{*}$ let $\mathcal{A}_{*}(y)$ be the set of elements of minimal length with $\left(w^{*}\right)^{-1} \circ w=y$.

Conjecture 1.2. If $y \in I_{*}$ is a twisted involution in an arbitrary Coxeter group and $t \in$ $\left\{w s w^{-1}: w \in W, s \in S\right\}$, then there exists at most one twisted involution $z \in I_{*}$ such that $\left\{w t: w \in \mathcal{A}_{*}(y)\right.$ and $\left.\ell(w t)=\ell(w)+1\right\} \cap \mathcal{A}_{*}(z) \neq \varnothing$.

We anticipate that these results will be useful in developing a theory of affine involution Stanley symmetric functions, simultaneously generalising [17] and [9, 11, 8]. For the sake of brevity, we have omitted in this extended abstract most proofs, which will appear elsewhere.

2 Weighted involutions

Throughout, let \mathbb{Z} be the set of all integers and let $\mathbb{N}=\{0,1,2, \ldots\}$, and define $[n]=$ $\{1,2, \ldots, n\}$ for $n \in \mathbb{N}$. For any map $w: \mathbb{Z} \rightarrow \mathbb{Z}$, let

$$
\operatorname{Inv}(w)=\{(i, j) \in \mathbb{Z} \times \mathbb{Z}: i<j \text { and } w(i)>w(j)\}
$$

For $w \in \tilde{S}_{n}$, it then holds that $\ell(w)$ is the number of equivalence classes in $\operatorname{Inv}(w)$ under the relation on $\mathbb{Z} \times \mathbb{Z}$ generated by $(i, j) \sim(i+n, j+n)$ [2, Section 8.3]. For $z \in \tilde{I}_{n}$, let

$$
\mathcal{C}(z)=\{(i, j) \in \mathbb{Z} \times \mathbb{Z}: i<j=z(i)\}
$$

The absolute length $\ell^{\prime}(z)$ is then similarly the number of equivalence classes in $\mathcal{C}(z)$ under the relation on $\mathbb{Z} \times \mathbb{Z}$ generated by $(i, j) \sim(i+n, j+n)$.

Definition 2.1. A weighted involution in \tilde{S}_{n} is a pair (w, ϕ) where $w \in \tilde{I}_{n}$ and ϕ is a map $\mathcal{C}(w) \rightarrow \mathbb{N}$ with $\phi(i, j)=\phi(i+n, j+n)$ for all $(i, j) \in \mathcal{C}(w)$. We refer to ϕ as the weight map of (w, ϕ). Define the weight of (w, ϕ) as the number $\mathrm{wt}(w, \phi)=\sum_{\gamma} \phi(\gamma)$ where the sum is over a set of cycles γ representing the distinct equivalence classes in $\mathcal{C}(w)$ under the relation $(i, j) \sim(i+n, j+n)$. Let \mathcal{W}_{n} be the set of all weighted involutions in \tilde{S}_{n}.

Example 2.2. We draw a weighted involution $(w, \phi) \in \mathcal{W}_{n}$ as the winding diagram of w with its arcs labeled by the values of ϕ. For example, if $\theta_{1}, \theta_{2}, \theta_{3} \in \mathcal{W}_{5}$ are

and $\theta_{i}=\left(w_{i}, \phi_{i}\right)$, then $w_{1}=t_{1,2} t_{3,10}, w_{2}=t_{0,2} t_{3,11}$, and $w_{3}=t_{0,3} t_{2,11}$, while $\phi_{1}(1,2)=2$ and $\phi_{1}(3,10)=3, \phi_{2}(3,11)=\phi_{2}(5,7)=2$, and $\phi_{3}(2,11)=2$ and $\phi_{3}(5,8)=1$.

We identify \tilde{I}_{n} with the subset of weighted involutions of the form $(w, 0) \in \mathcal{W}_{n}$ with 0 denoting the unique weight map $\mathcal{C}(w) \rightarrow\{0\}$. We extend ℓ and ℓ^{\prime} to \mathcal{W}_{n} by setting

$$
\ell(\theta)=\ell(w)+2 \mathrm{wt}(\theta) \quad \text { and } \quad \ell^{\prime}(\theta)=\ell^{\prime}(w) \quad \text { for } \theta=(w, \phi) \in \mathcal{W}_{n} .
$$

Given $(w, \phi) \in \mathcal{W}_{n}$, define the right form of ϕ to be the map $\phi_{R}: \mathbb{Z} \rightarrow \mathbb{N}$ with $\phi_{R}(i)=$ $\phi(w(i), i)$ if $w(i)<i$ and with $\phi_{R}(i)=0$ otherwise. Likewise, define the left form of ϕ to be the map $\phi_{L}: \mathbb{Z} \rightarrow \mathbb{N}$ with $\phi_{L}(i)=\phi(i, w(i))$ if $i<w(i)$ and with $\phi_{L}(i)=0$ otherwise. Clearly ϕ_{L} and ϕ_{R} each determine ϕ, given w.

Definition 2.3. Let $\theta=(w, \phi) \in \mathcal{W}_{n}$ and $i \in \mathbb{Z}$. We define $\theta \pi_{i}, \pi_{i} \theta \in \mathcal{W}_{n}$ as follows:
(a) If $\phi_{R}(i)>\phi_{R}(i+1)$ then let $\theta \pi_{i}=\left(s_{i} w s_{i}, \psi\right) \in \mathcal{W}_{n}$ where ψ is the unique weight map with $\psi_{R}(j)=\phi_{R}(i)-1$ if $j \equiv i+1(\bmod n), \psi_{R}(j)=\phi_{R}(i+1)$ if $j \equiv i(\bmod n)$, and $\psi_{R}(j)=\phi_{R}(j)$ otherwise. If $\phi_{R}(i) \leq \phi_{R}(i+1)$ then let $\theta \pi_{i}=\theta$.
(b) If $\phi_{L}(i+1)>\phi_{L}(i)$ then let $\pi_{i} \theta=\left(s_{i} w s_{i}, \chi\right) \in \mathcal{W}_{n}$ where χ is the unique weight map with $\chi_{L}(j)=\phi_{L}(i+1)-1$ if $j \equiv i(\bmod n), \chi_{L}(j)=\phi_{L}(i)$ if $j \equiv i+1(\bmod n)$, and $\chi_{L}(j)=\phi_{L}(j)$ otherwise. If $\phi_{L}(i+1) \leq \phi_{L}(i)$ then let $\pi_{i} \theta=\theta$.
Example 2.4. Define $\theta_{1}, \theta_{2}, \theta_{3} \in \mathcal{W}_{5}$ as in Example 2.2. Then $\theta_{1} \pi_{5}=\theta_{2} \pi_{1}=\theta_{2}$ and $\theta_{2} \pi_{2}=\theta_{3}$. Form $\theta_{2}^{\prime} \in \mathcal{W}_{5}$ from θ_{2} by replacing the label of the short arc in the picture in Example 2.2 by 1 and the label of the long arc by 3 . Then $\pi_{5} \theta_{1}=\theta_{2}^{\prime}$ and $\pi_{2} \theta_{2}^{\prime}=\theta_{3}$.

It may hold that $\left(\pi_{i} \theta\right) \pi_{j} \neq \pi_{i}\left(\theta \pi_{j}\right)$; for example, if $\theta=(w, \phi)$ where $w=s_{1} \in \tilde{S}_{2}$ and $\phi(1,2)=1$, then $\pi_{0} \theta=\left(\pi_{0} \theta\right) \pi_{2} \neq \pi_{0}\left(\theta \pi_{2}\right)=\theta \pi_{2}$. We always have $\pi_{i}=\pi_{i+n}$.

Proposition 2.5. The left (respectively, right) operators π_{i} satisfy (a) $\pi_{i}^{2}=\pi_{i}$, (b) $\pi_{i} \pi_{j}=\pi_{j} \pi_{i}$ if $i \not \equiv j \pm 1(\bmod n)$, and (c) $\pi_{i} \pi_{i+1} \pi_{i}=\pi_{i+1} \pi_{i} \pi_{i+1}$ for all $i, j \in \mathbb{Z}$.

For each $g \in \tilde{S}_{n}$, we may therefore define a right (respectively, left) operator π_{g} on \mathcal{W}_{n} by setting $\pi_{g}=\pi_{i_{1}} \pi_{i_{2}} \cdots \pi_{i_{k}}$ where $g=s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ is any reduced expression.

Corollary 2.6. The map $g \mapsto \pi_{g}$ defines a right and left action of $\left(\tilde{S}_{n}, \circ\right)$ on \mathcal{W}_{n}.
Theorem-Definition 2.7. Let $\theta=(w, \phi) \in \mathcal{W}_{n}$. There are unique permutations $g, h \in \tilde{S}_{n}$ with $\ell(g)=\ell(h)=\mathrm{wt}(\theta)$ and $\mathrm{wt}\left(\pi_{g} \theta\right)=\mathrm{wt}\left(\theta \pi_{h}\right)=0$. Define $g_{L}(\theta)=g^{-1}$ and $g_{R}(\theta)=h$, and set $\omega_{L}(\theta)=\pi_{g} \theta$ and $\omega_{R}(\theta)=\theta \pi_{h}$.

Example 2.8. If $\theta_{1}, \theta_{2}, \theta_{3} \in \mathcal{W}_{5}$ are as in Example 2.2, then we have

There is a simple relationship between the left and right versions of these constructions. Define $\tau: \mathbb{Z} \rightarrow \mathbb{Z}$ by $\tau(i)=n+1-i$ and let $w^{*}=\tau w \tau$ for $w \in \tilde{S}_{n}$. For $\phi: \mathcal{C}(w) \rightarrow \mathbb{N}$ let ϕ^{*} be the map $\mathcal{C}\left(w^{*}\right) \rightarrow \mathbb{N}$ given by $(\tau(j), \tau(i)) \mapsto \phi(i, j)$. Extend $*$ to \mathcal{W}_{n} by setting $\theta^{*}=\left(w^{*}, \phi^{*}\right)$ for $\theta=(w, \phi) \in \mathcal{W}_{n}$. Clearly $\left(\theta^{*}\right)^{*}=\theta$.

Lemma 2.9. If $\theta \in \mathcal{W}_{n}$ then $g_{L}\left(\theta^{*}\right)=g_{R}(\theta)^{*}$ and $\omega_{L}\left(\theta^{*}\right)=\omega_{R}(\theta)^{*}$.
An involution $w \in \tilde{I}_{n}$ has $\ell(w)=\ell^{\prime}(w)$ if and only if w is a product of commuting simple generators, i.e., $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{l}}$ where $i_{j} \not \equiv i_{k} \pm 1(\bmod n)$ for all $j, k \in[l]$.

Definition 2.10. Define \mathcal{M}_{n} as the set of $\theta=(w, \phi) \in \mathcal{W}_{n}$ with $\ell^{\prime}(w)=\ell(w)$.
The elements of \mathcal{M}_{n} are in bijection with \mathbb{N}-weighted matchings in \mathcal{C}_{n}, the cycle graph on n vertices, which explains our notation. The set \mathcal{M}_{4} consists of

where $a, b \in \mathbb{N}$ are arbitrary. The following is well-known; see [22, A034807].
Proposition 2.11. There are $\frac{n}{n-k}\binom{n-k}{k}$ distinct k-element matchings in \mathcal{C}_{n}.

Recall the definition of $t_{i j} \in \tilde{S}_{n}$ for $i<j \not \equiv i(\bmod n)$. Let \prec be the partial order on \mathcal{M}_{n} with $(w, \phi) \preceq\left(w^{\prime}, \phi^{\prime}\right)$ if and only if $w=w^{\prime}$ and $\phi(a, b) \leq \phi^{\prime}(a, b)$ for $(a, b) \in \mathcal{C}(w)$. Next, define \prec_{R} as the transitive closure of the relation on \tilde{I}_{n} with $z \prec_{R} t_{i j} z t_{i j}$ whenever $z(i)<i$ and $j=\min \{e \in \mathbb{Z}: i<e$ and $z(i)<z(e)\}$. Finally, define \prec_{L} similarly as the transitive closure of the relation on \tilde{I}_{n} with $z \prec_{L} t_{i j} z t_{i j}$ whenever $j<z(j)$ and $i=\max \{e \in \mathbb{Z}: e<j$ and $z(e)<z(j)\}$. The posets $\left(\tilde{I}_{n}, \prec_{R}\right)$ and $\left(\tilde{I}_{n}, \prec_{L}\right)$ are isomorphic via the $\operatorname{map} z \mapsto z^{*}$. One can show that these posets are graded with rank function $z \mapsto \frac{1}{2} \ell(z)$, and that both are subposets of the Bruhat order restricted to \tilde{I}_{n}.
Theorem 2.12. The maps $\omega_{R}:\left(\mathcal{M}_{n}, \prec\right) \rightarrow\left(\tilde{I}_{n}, \prec_{R}\right)$ and $\omega_{L}:\left(\mathcal{M}_{n}, \prec\right) \rightarrow\left(\tilde{I}_{n}, \prec_{L}\right)$ are isomorphisms of partially ordered sets which preserve ℓ and ℓ^{\prime}.

Consider the following variations of $g_{L}(\theta)$ and $g_{R}(\theta)$ from Theorem-Definition 2.7.
Definition 2.13. For $z \in \tilde{I}_{n}$ let θ_{R} and θ_{L} be the unique elements of \mathcal{M}_{n} such that $\omega_{R}\left(\theta_{R}\right)=\omega_{L}\left(\theta_{L}\right)=z$, and define $\alpha_{R}(z)=g_{R}\left(\theta_{R}\right) \in \tilde{S}_{n}$ and $\alpha_{L}(z)=g_{L}\left(\theta_{L}\right) \in \tilde{S}_{n}$.

One can derive a more explicit formula for these elements.
Proposition-Definition 2.14. If $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$ represent the distinct congruence classes modulo n then there is a unique $m \in \mathbb{Z}$ and a unique $w \in \tilde{S}_{n}$ such that $w(m+i)=a_{i}$ for $i \in[n]$. Moreover, it holds that $m=\frac{1}{n} \sum_{i=1}^{n}\left(a_{i}-i\right)$. Define $\left[a_{1}, a_{2}, \ldots, a_{n}\right]=w \in \tilde{S}_{n}$.

If $a_{1}, a_{2}, \ldots, a_{N} \in \mathbb{Z}$ represent all congruence classes modulo n, and $i_{1}<i_{2}<\cdots<i_{n}$ are the indices of the first representative of each class, then we define $\left[a_{1}, a_{2}, \ldots, a_{N}\right]=$ $\left[a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{n}}\right] \in \tilde{S}_{n}$. For example, if $n=3$ then $[1,0,1,3,8,4,2]=[1,0,8]$.

Theorem 2.15. Let $z \in \tilde{I}_{n}$ and $m \in \mathbb{Z}$. Suppose $a_{1}<a_{2}<\cdots<a_{l}$ and $d_{1}<d_{2}<\cdots<d_{l}$ are the elements of $m+[n]$ with $a_{i} \leq z\left(a_{i}\right)$ and $z\left(d_{i}\right) \leq d_{i}$. Define $b_{i}=z\left(a_{i}\right)$ and $c_{i}=z\left(d_{i}\right)$. Then $\alpha_{R}(z)=\left[a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{l}, b_{l}\right]^{-1}$ and $\alpha_{L}(z)=\left[c_{1}, d_{1}, c_{2}, d_{2}, \ldots, c_{l}, d_{l}\right]^{-1}$.
Example 2.16. One has $\alpha_{R}(1)=\alpha_{L}(1)=[1,1,2,2, \ldots, n, n]^{-1}=1$. If $z=t_{1,8} t_{2,7} \in \tilde{I}_{4}$ then $\alpha_{R}(z)=[1,8,2,7]^{-1}=[3,5,2,0]$ and $\alpha_{L}(z)=[-2,3,-3,4]^{-1}=[5,3,0,2]$.

Slightly abusing notation, we write $\tilde{I}_{n}(q, x)=\sum_{w \in \tilde{I}_{n}} q^{\ell(w)} x^{\ell^{\prime}(w)} \in \mathbb{N}[[q, x]]$.
Corollary 2.17. If $n \geq 1$ then $\tilde{I}_{n}(q, x)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{n}{n-k}\binom{n-k}{k}\left(\frac{q x}{1-q^{2}}\right)^{k}$.
Proof. Theorem 2.12 implies that $\tilde{I}_{n}(q, x)=\sum_{\theta \in \mathcal{M}_{n}} q^{2 \mathrm{wt}(\theta)}(q x)^{\ell^{\prime}(\theta)}$. By Proposition 2.11, the coefficient of x^{k} in the latter power series is $\frac{n}{n-k}\binom{n-k}{k} q^{k}\left(1+q^{2}+q^{4}+q^{6}+\ldots\right)^{k}$.
Corollary 2.18. If $n \geq 3$ then $\tilde{I}_{n}(q, x)=\tilde{I}_{n-1}(q, x)+\frac{q x}{1-q^{2}} \tilde{I}_{n-2}(q, x)$.
Define $\hat{\ell}(w)=\frac{1}{2}\left(\ell(w)+\ell^{\prime}(w)\right)$ for $w \in \tilde{I}_{n}$. Corollary 2.17 shows that $\hat{\ell}(w) \in \mathbb{N}$. Let $\hat{N}_{n}(m)$ be the number of involutions $w \in \tilde{I}_{n}$ with $\hat{\ell}(w)=m$.

Corollary 2.19. For each $n \geq 2$ and $m \geq 1$, it holds that $\hat{N}_{n}(m)=\sum_{j=1}^{\lfloor n / 2\rfloor} \frac{n}{n-j}\binom{n-j}{j}\binom{m-1}{j-1}$.
Remark. The numbers $\left\{\hat{N}_{n}(n)\right\}_{n=1,2,3, \ldots}=(0,2,3,10,25,71,196,554,1569, \ldots)$ are sequence [22, A246437], which gives the "type B analog for Motzkin sums." The numbers $\left\{\hat{N}_{n}(2 n)\right\}_{n=1,2,3, \ldots}=(0,2,3,18,50,215,735,2898, \ldots)$ are sequence [22, A211867].

3 Demazure conjugation

Recall the definition of the Demazure product $\circ: \tilde{S}_{n} \times \tilde{S}_{n} \rightarrow \tilde{S}_{n}$ from the introduction. The operation $(z, w) \mapsto w^{-1} \circ z \circ w$ for $z \in \tilde{I}_{n}$ and $w \in \tilde{S}_{n}$ defines another right action of the monoid $\left(\tilde{S}_{n}, \circ\right)$, which we call Demazure conjugation. If $z \in \tilde{I}_{n}$ and $i \in \mathbb{Z}$ then

$$
s_{i} \circ z \circ s_{i}= \begin{cases}s_{i} z s_{i} & \text { if } z(i)<z(i+1) \text { and }(i, i+1) \notin \mathcal{C}(z) \tag{3.1}\\ z s_{i} & \text { if } z(i)<z(i+1) \text { and }(i, i+1) \in \mathcal{C}(z) \\ z & \text { otherwise }\end{cases}
$$

Every $z \in \tilde{I}_{n}$ can be expressed as $z=w^{-1} \circ w$ for some $w \in \tilde{S}_{n}$, and we define $\mathcal{A}(z)$ as the set of elements $w \in \tilde{S}_{n}$ of shortest possible length such that $z=w^{-1} \circ w$. For example, if $z=t_{0,5}=[-4,2,3,9] \in \tilde{I}_{4}$ then $\mathcal{A}(z)=\left\{s_{1} s_{2} s_{3} s_{4}, s_{2} s_{1} s_{3} s_{4}, s_{3} s_{2} s_{1} s_{4}\right\}$.

The set $\mathcal{A}(z)$ is nonempty for all $z \in \tilde{I}_{n}$, and we refer to its elements as the atoms of z. Recall from Corollary 2.19 that $\hat{\ell}(z)=\frac{1}{2}\left(\ell(z)+\ell^{\prime}(z)\right)$. By (3.1), we have:

Proposition 3.1. If $z \in \tilde{I}_{n}$ then $\hat{\ell}(z)$ is the common value of $\ell(w)$ for $w \in \mathcal{A}(z)$.
Results in [10], building on work of Can, Joyce, and Wyser [4, 5], show that the sets $\mathcal{A}(z)$ for involutions $z \in I_{n} \subset \tilde{I}_{n}$ in the finite symmetric group are naturally bounded, graded posets. This phenomenon extends to all involutions in \tilde{S}_{n}. Recall the elements $\alpha_{R}(z)$ and $\alpha_{L}(z)$ from Definitions 2.13.

Definition 3.2. Given $z \in \tilde{I}_{n}$, let $\alpha_{\min }(z)=\alpha_{R}(z) z$ and $\alpha_{\max }(z)=\alpha_{L}(z) z$.
Corollary 3.3. Let $z \in \tilde{I}_{n}$ and $m \in \mathbb{Z}$ and define $a_{i}, b_{i}, c_{i}, d_{i}$ as in Theorem 2.15. Then $\alpha_{\min }(z)=$ $\left[b_{1}, a_{1}, b_{2}, a_{2}, \ldots, b_{l}, a_{l}\right]^{-1}$ and $\alpha_{\max }(z)=\left[d_{1}, c_{1}, d_{2}, c_{2}, \ldots, d_{l}, c_{l}\right]^{-1}$.

Example 3.4. If $z=t_{1,8} t_{2,7} \in \tilde{I}_{4}$ then $\alpha_{\min }(z)=[8,1,7,2]^{-1}$ and $\alpha_{\max }(z)=[3,-2,4,-3]^{-1}$.
Let $\lessdot_{\mathcal{A}}$ be the relation on \tilde{S}_{n} with $u \lessdot_{\mathcal{A}} v$ if and only if $u<s_{i+1} u=s_{i} v>v$ for some $i \in \mathbb{Z}$. Let $<_{\mathcal{A}}$ be the transitive closure of $\lessdot_{\mathcal{A}}$.

Theorem 3.5. Let $z \in \tilde{I}_{n}$. Restricted to $\mathcal{A}(z)$, the relation $<_{\mathcal{A}}$ is a bounded, graded partial order, and it holds that $\mathcal{A}(z)=\left\{w \in \tilde{S}_{n}: \alpha_{\min }(z) \leq_{\mathcal{A}} w\right\}=\left\{w \in \tilde{S}_{n}: w \leq_{\mathcal{A}} \alpha_{\max }(z)\right\}$.

Figure 1: Hasse diagram of $\left(\mathcal{A}(z),<_{\mathcal{A}}\right)$ for $z=t_{1,12} t_{2,11} t_{3,4} \in \tilde{I}_{6}$

The situation described by the preceding theorem has some formal similarities to Stembridge's results in [23, Section 4] about the top and bottom classes of a permutation.

Figure 1 shows an example of $\left(\mathcal{A}(z),<_{\mathcal{A}}\right)$. The lattice structure evident in this picture appears to be typical; we have used a computer to check the following conjecture for $z \in \tilde{I}_{n}$ in the 333,307 cases when $0<\hat{\ell}(z) n \leq 100$.

Conjecture 3.6. The graded poset $\left(\mathcal{A}(z),<_{\mathcal{A}}\right)$ is a lattice for all n and $z \in \tilde{I}_{n}$.
An element $w \in \tilde{S}_{n}$ is 321-avoiding if no integers $a<b<c$ have $w(a)>w(b)>w(c)$, and fully commutative if we cannot write $w=u s_{i} s_{i+1} s_{i} v$ for $u, v \in \tilde{S}_{n}$ and $i \in \mathbb{Z}$ with $\ell(w)=\ell(u)+\ell(v)+3$. The following extends [10, Corollary 6.11] to affine type A.
Corollary 3.7. Let $z \in \tilde{I}_{n}$. The following are equivalent: (a) $|\mathcal{A}(z)|=1$, (b) $\alpha_{\min }(z)=\alpha_{\max }(z)$, (c) $\alpha_{R}(z)=\alpha_{L}(z),(d) z$ is 321-avoiding, and (e) z is fully commutative.

The equivalence of (d) and (e) is well-known; see the results of Green [7, Theorem 2.7], Lam [17, Proposition 35], or Fan and Stembridge [6]. Biagioli, Jouhet, and Nadeau [1, Proposition 3.3] have derived a length generating function for the involutions in \tilde{S}_{n} with these equivalent properties.

4 Local characterisations of atoms

Fix a subset $E \subset[n]$ of size m. Let $\phi_{E}:[m] \rightarrow E$ and $\psi_{E}: E \rightarrow[m]$ be order-preserving bijections. The standardisation of $w \in S_{n}$ is the permutation $[w]_{E}=\psi_{w(E)} \circ w \circ \phi_{E} \in S_{m}$. If $w^{2}=1$ and $w(E)=E$, then $\left([w]_{E}\right)^{2}=1$.

The Demazure product \circ on \widetilde{S}_{n} restricts to an associative product $S_{n} \times S_{n} \rightarrow S_{n}$ and each involution $y \in I_{n}=\tilde{I}_{n} \cap S_{n}$ has $\mathcal{A}(y) \subset S_{n}$. Can, Joyce, and Wyser's description of $\mathcal{A}(y)$ for $y \in I_{n}$ in [5] implies that $w \in S_{n}$ belongs to $\mathcal{A}(y)$ if and only if $[w]_{E} \in \mathcal{A}\left([y]_{E}\right)$ for all subsets $E \subset[n]$ which are invariant under y and contain at most two y-orbits; see Corollary 3.19 in [12]. This "local" criterion for membership in $\mathcal{A}(y)$ was an important tool in the proofs of the main results in [12].

This result can be extended to the affine case, provided we give the right definition of the standardisation of an affine permutation. Fix $E \subset \mathbb{Z}$ with $|(E+n \mathbb{Z}) \cap[n]|=m$, and define $\tilde{\phi}_{E, n}$ as the unique order-preserving $\mathbb{Z} \rightarrow E+n \mathbb{Z}$ with $\tilde{\phi}_{E, n}([m]) \subset[n]$.
Lemma 4.1. Let $w \in \tilde{S}_{n}$. There is a unique order-preserving bijection $\tilde{\psi}_{E, w}: w(E)+n \mathbb{Z} \rightarrow \mathbb{Z}$ with $\tilde{\psi}_{E, w} \circ w \circ \tilde{\phi}_{E, n} \in \tilde{S}_{m}$. If $w \in \tilde{I}_{n}$ and $w(E)=E$ then $\tilde{\phi}_{E, n}$ and $\tilde{\psi}_{E, w}$ are inverses.

Given $w \in \tilde{S}_{n}$ and $E \subset \mathbb{Z}$ with $|(E+n \mathbb{Z}) \cap[n]|=m$, define $[w]_{E, n}=\tilde{\psi}_{E, w} \circ w \circ \tilde{\phi}_{E, n} \in$ \tilde{S}_{m}. We refer to $[w]_{E, n}$ as the (affine) standardisation of w. One has $[w]_{E, n}=[w]_{E+m n, n}$ for all $m \in \mathbb{Z}$. When n is clear from context, we write $[w]_{E}$ instead of $[w]_{E, n}$. If $E \subset[n]$ and $w \in S_{n} \subset \tilde{S}_{n}$, then $\left.\tilde{\phi}_{E, n}\right|_{[m]}=\phi_{E}$ and $\left.\tilde{\psi}_{E, w}\right|_{E}=\psi_{w(E)}$.
Corollary 4.2. If $E \subset \mathbb{Z}, y \in \tilde{I}_{n}$, and $y(E)=E$, then $[y]_{E} \in \tilde{I}_{n}$.
Example 4.3. Standardisation has a simple interpretation in terms of winding diagrams. If $E=y(E) \subset \mathbb{Z}$ then the winding diagram of $[y]_{E}$ is formed from that of $y \in \tilde{I}_{n}$ by erasing the vertices in $[n] \backslash(E+n \mathbb{Z})$ and their incident edges, and then relabelling the remaining numbers as consecutive integers. If $n=8$ and $E=\{2,4,6,7,8\}$, then

and

represent $y=t_{1,3} t_{2,12} t_{6,8} \in \tilde{I}_{8}$ and $[y]_{E}=t_{1,7} t_{3,5} \in \tilde{I}_{5}$, respectively.
Theorem 4.4. Let $y \in \tilde{I}_{n}, w \in \tilde{S}_{n}$, and $X=[n] \cup y([n])$. Then $w \in \mathcal{A}(y)$ if and only if $[w]_{E} \in \mathcal{A}\left([y]_{E}\right)$ for each subset $E=y(E) \subset X$ containing at most two y-orbits.

This result is the starting point for the proof of Theorem 1.1 in the introduction.

Acknowledgements

I thank Brendan Pawlowski and Graham White for helpful conversations.

References

[1] R. Biagioli, F. Jouhet, and P. Nadeau. "Combinatorics of fully commutative involutions in classical Coxeter groups". Discrete Math. 338.12 (2015), pp. 2242-2259. URL.
[2] A. Björner and F. Brenti. Combinatorics of Coxeter groups. Graduate Texts in Mathematics 231. Springer, New York, 2005.
[3] M. Brion. "The behaviour at infinity of the Bruhat decomposition". Comment. Math. Helv. 73.1 (1998), pp. 137-174. DOI: 10.1007/s000140050049.
[4] M.B. Can and M. Joyce. "Weak Order on Complete Quadrics". Trans. Amer. Math. Soc. 365.12 (2013), pp. 6269-6282. DOI: 10.1090/S0002-9947-2013-05813-8.
[5] M.B. Can, M. Joyce, and B. Wyser. "Chains in Weak Order Posets Associated to Involutions". J. Combin. Theory Ser. A 137 (2016), pp. 207-225. DOI: 10.1016/j.jcta.2015.09.001.
[6] C.K. Fan and J.R. Stembridge. "Nilpotent Orbits and Commutative Elements". J. Algebra 196.2 (1997), pp. 490-498. DOI: 10.1006/jabr.1997.7119.
[7] R.M. Green. "On 321-Avoiding Permutations in Affine Weyl Groups". J. Algebraic Combin. 15.3 (2002), pp. 241-252. DOI: 10.1023/A:1015012524524.
[8] Z. Hamaker, E. Marberg, and B. Pawlowski. "Fixed-point-free involutions and Schur Ppositivity". J. Combin. (in press), arXiv:1706.06665.
[9] Z. Hamaker, E. Marberg, and B. Pawlowski. "Involution words: counting problems and connections to Schubert calculus for symmetric orbit closures". J. Combin. Theory Ser. A 160 (2018), pp. 217-260. DOI: 10.1016/j.jcta.2018.06.012.
[10] Z. Hamaker, E. Marberg, and B. Pawlowski. "Involution words II: braid relations and atomic structures". J. Algebraic Combin. 45.3 (2017), pp. 701-743. DOI: 10.1007/s10801-016-0722-6.
[11] Z. Hamaker, E. Marberg, and B. Pawlowski. "Schur P-positivity and involution Stanley symmetric functions". Int. Math. Res. Not. IMRN (in press), 52 pp. DOI: $10.1093 / \mathrm{imrn} / \mathrm{rnx} 274$.
[12] Z. Hamaker, E. Marberg, and B. Pawlowski. "Transition formulas for involution Schubert polynomials". Selecta Math. (N.S.) 24.4 (2018), pp. 2991-3025. DOI: 10.1007/s00029-018-0423-1.
[13] J. Hu and J. Zhang. "On involutions in symmetric groups and a conjecture of Lusztig". Adv. Math. 287 (2016), pp. 1-30. DOI: 10.1016/j.aim.2015.10.003.
[14] A. Hultman. "Fixed points of involutive automorphisms of the Bruhat order". Adv. Math. 195.1 (2005), pp. 283-296. DOI: 10.1016/j.aim.2004.08.011.
[15] A. Hultman. "The combinatorics of twisted involutions in Coxeter groups". Trans. Amer. Math. Soc. 359.6 (2007), pp. 2787-2798. DOI: 10.1090/S0002-9947-07-04070-6.
[16] J.E. Humphreys. Reflection groups and Coxeter groups. Cambridge University Press, 1990.
[17] T. Lam. "Affine Stanley symmetric functions". Amer. J. Math. 128.6 (2006), pp. 1553-1586. DOI: 10.1353/ajm.2006.0045.
[18] G. Lusztig. "A bar operator for involutions in a Coxeter group". Bull. Inst. Math. Acad. Sinica (N.S.) 7.3 (2012), pp. 355-404.
[19] G. Lusztig and D.A. Vogan. "Hecke algebras and involutions in Weyl groups". Bull. Inst. Math. Acad. Sinica (N.S.) 7.3 (2012), pp. 323-354.
[20] E. Marberg and G. White. "Variations of the Poincaré series for affine Weyl groups and q-analogues of Chebyshev polynomials". Adv. in Appl. Math. 82 (2017), pp. 129-154. DOI: 10.1016/j.aam.2016.08.003.
[21] R.W. Richardson and T.A. Springer. "The Bruhat order on symmetric varieties". Geom. Dedicata 35.1-3 (1990), pp. 389-436. DOI: 10.1007/BF00147354.
[22] N.J.A. Sloane. "The On-Line Encyclopedia of Integer Sequences". Published electronically at http://oeis.org/. 2003.
[23] J.R. Stembridge. "Some combinatorial aspects of reduced words in finite Coxeter groups". Trans. Amer. Math. Soc. 349.4 (1997), pp. 1285-1332. DOI: 10.1090/S0002-9947-97-01805-9.
[24] B.J. Wyser and A. Yong. "Polynomials for symmetric orbit closures in the flag variety". Transform. Groups 22.1 (2017), pp. 267-290. DOI: 10.1007/s00031-016-9381-x.

[^0]: *eric.marberg@gmail.com

