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Hypergraphic polytopes: combinatorial properties
and antipode
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Abstract. Given a hypergraph G, its hypergraphic polytope PG is the Minkowski sum
of simplices corresponding to each hyperedge of G. Using a notion of orientation on
G, we prove that the faces of PG are in bijective correspondence with acyclic orien-
tations of G. This allows us to give a geometric understanding of the antipode in a
cocommutative Hopf algebra of hypergraphs. We also give a characterization of when
a hypergraphic polytope is a simple polytope. The correspondence between faces and
acyclic orientations is used to prove some combinatorial properties of nestohedra and
generalized Pitman–Stanley polytopes.
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1 Introduction

We let [n] = {1, 2, . . . , n} for any positive integer n. The standard basis of Rn will be
denoted by e1, e2, . . . , en. Let 2V denote the collection of subsets of a finite set V, and let

HG[V] =
{

G ⊆ 2V | U ∈ G implies |U| ≥ 2
}

.

An element G ∈ HG[V] is a hypergraph on V. We will write HG[n] in place of HG[[n]].
For any U ⊆ [n] we let ∆U ⊂ Rn denote the simplex which is the convex hull of the
vectors {ei : i ∈ U}. Given any hypergraph G on [n] we define the hypergraphic polytope
associated to G to be the Minkowski sum

PG := ∑
U∈G

∆U.

In the special case that G is a simple graph, the hypergraphic polytope is the graphic
zonotope. In general, hypergraphic polytopes belong to a class of polytopes known as
generalized permutahedra [8]. Consider the following example.
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Example 1.1. For the hypergraph G =
1

4
2

3 , we have

e1

e2 e3
e3

e4

∆123 ∆34 PG = ∆123 + ∆34

which is a 3-dimensional polytope in R4.

Our work here is motivated by recent developments in combinatorial Hopf algebras
and monoids. Cancellation free formulas for the antipodes in Hopf algebras of both
graphs and simplicial complexes have been given [2, 3, 7]. In each case the antipode
formula is given in terms of acyclic orientations. Aguiar and Ardila have considered a
Hopf monoid of generalized permutahedra and provided a formula for the antipode in
this Hopf monoid [1]. The antipode in the Hopf monoid of generalized permutahedra
be used to recover the known antipode formulas for graphs and simplicial complexes.1

In [4] the first two authors have given an antipode formula in a cocommutative Hopf
monoid of hypergraphs in terms of a notion of acyclic orientations. Moreover, it is shown
that understanding the antipode for hypergraphs leads to understanding the antipode
for a large class of Hopf monoids known as linearized Hopf monoids. However, the an-
tipode formula is not completely cancellation free. One of our main results is providing
a new geometric understanding of the antipode in terms of faces of hypergraphic poly-
topes. This allows for the coefficients of the antipode of a hypergraph G to be computed
as the Euler characteristic of certain faces of PG.

In this extended abstract we will exposit various results on hypergraphic polytopes.
Our main tool will be a correspondence between faces of the polytope and acyclic ori-
entations. This tool will allow us to give an interpretation of the antipode in a Hopf
algebra on hypergraphs in terms of the hypergraphic polytope. The correspondence
between faces and acyclic orientations can be used to obtain combinatorial information
about hypergraphic polytopes. We are able to use it to give a proof that nestohedra are
simple polytopes. We also use the correspondence to compute the f -vectors of a family
of polytopes generalizing the Pitman–Stanley polytope.

2 Acyclic orientations and faces

In this section we will give the correspondence between faces and acyclic orientations.
We first recall some definitions from [4].

1To avoid confusion we remark that the Hopf algebra on hypergraphs we define in Section 3 is a
cocommutative Hopf algebra. In [1, Section 20] a different Hopf structure, which is not cocommutative,
on hypergraphs is considered.
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Definition 2.1 (Orientation). Given a hypergraph G, an orientation (a, b) of a hyperedge
U ∈ G is an ordered set partition (a, b) of U. We will refer to a as the head of the
orientation. If |U| = n, then there are a total of 2n− 2 possible orientations. An orientation
of G is an orientation of all its hyperedges. Given an orientation O on G, we say that
(a, b) ∈ O if it is the orientation of a hyperedge U in G.

In general, given a hypergraph G on the vertex set V and an orientation O of G, we
construct a directed multigraph G/O on vertex set V/O as follows. We let V/O be
the set of equivalence classes of the equivalence relation on V defined by the transitive
closure of the relation a ∼ a′ if a, a′ ∈ a for some head a of O. For each oriented
hyperedge (a, b) of O, we have |b| oriented edges ([a], [b]) in G/O where [a], [b] ∈ V/O
are equivalence classes and b ∈ b. Let us now consider an example.

Example 2.2. With G =
{
{b, c}, {a, b, e}, {a, d, e, f }, {b, c, e}, { f , c}

}
, we can orient the

edge U = {a, b, e} in 23 − 2 = 6 different ways; three with a head of size 1: ({a}, {b, e}),
({b}, {a, e}), ({e}, {a, b}), and three with a head of size 2: ({b, e}, {a}), ({a, e}, {b}),
({a, b}, {e}). We represent this graphically as follows:

a b

e

,
a b

e

,
a b

e

,
a

be ,
b

ae
,

e

ab

.

To orient G, we have to make a choice of orientation for each hyperedge. For example
we can chooseO =

{
({b}, {c}), ({a}, {b, e}), ({a, e}, {d, f }), ({b, c}, {e}), ({ f }, {c})

}
and

we represent this as

G/O = ae
bc

d

f

Definition 2.3 (Acyclic orientation). An orientation O of G is acyclic if the oriented multi-
graph G/O has no cycles.

Example 2.4. Let G =
{
{1, 2, 4}, {2, 3, 4}

}
be a hypergraph on V = {1, 2, 3, 4}. As

we can see the orientations O =
{
({4}, {1, 2}), ({2, 4}, {3})

}
and O′ =

{
({4}, {1, 2}),

({2, 3}, {4})
}

are not acyclic, but O′′ =
{
({4}, {1, 2}), ({4}, {2, 3})

}
is acyclic:

2 1

3 4
24

1

3

23 1

4

2 1

3 4

G G/O G/O′ G/O′′



4 Carolina Benedetti, Nantel Bergeron, and John Machacek

Out of the possible 36 orientations of G only 20 are acyclic:

{({4},{1,2}),({4},{2,3})}; {({4},{1,2}),({3},{2,4})}; {({4},{1,2}),({3,4},{2})}; {({2},{1,4}),({3},{2,4})};
{({2},{1,4}),({2},{3,4})}; {({2},{1,4}),({2,3},{4})}; {({1},{2,4}),({4},{2,3})}; {({1},{2,4}),({3},{2,4})};
{({1},{2,4}),({2},{3,4})}; {({1},{2,4}),({2,3},{4})}; {({1},{2,4}),({2,4},{3})}; {({1},{2,4}),({3,4},{2})};
{({1,2},{4}),({3},{2,4})}; {({1,2},{4}),({2},{3,4})}; {({1,2},{4}),({2,3},{4})}; {({1,4},{2}),({4},{2,3})};
{({1,4},{2}),({3},{2,4})}; {({1,4},{2}),({3,4},{2})}; {({2,4},{1}),({3},{2,4})}; {({2,4},{1}),({2,4},{3})}.

For a hypergraph G of vertex set V we let O(G) denote the set of all acyclic orienta-
tions of G. Notice that if |V| = n, this set decomposes as

O(G) =
n−1⊎
k=0

Ok(G)

where
Ok(G) := {O ∈ O(G) : |V(G/O)| = |V(G)| − k}.

Also, for any subset I ⊆ V define G
∣∣

I = {U ∈ G : U ⊆ I} which is the hypergraph
obtained by restricting G to I. If A = A1/A2/ · · · /A` is a set partition of [n] we define

G
∣∣

A := G
∣∣

A1
] G

∣∣
A2
] · · · ] G

∣∣
A`

.

Definition 2.5 (Flats). For a hypergraph G of vertex set V, given a set partition A of V
we say that G

∣∣
A is a flat of G. The set of all flats of G is denoted by Flats(G).

The reader familiar with the lattice of flats of a matroid should observe that in the
case G is a simple graph this definition of flat agrees with the definition of flat when
considering the graphic matroid. The nonstandard definition of flat used here is natural
from the point of view of the Hopf algebra which will be defined in Section 3.

Given a F ∈ Flats(G), let A = (A1, A2, . . . , A`) be a finest set composition such that
F = G

∣∣
A. Any permutation of the parts of A gives the same flat F and the set partition

A1/A2/ · · · /A` is unique and well defined. We denote by G/F the hypergraph we
obtain from G by contracting all the hyperedges in F which is a hypergraph on vertex
set V/F = {A1, A2, · · · , A`}.

Example 2.6. Let G = {{a, d, f , e}, {a, b, e}, {b, c, e}, {c, f }} be a hypergraph on V =
{a, b, c, d, e, f } and F = {{b, c, e}, {c, f }} ∈ Flats(G). Then V/F = {{a}, {b, c, e, f }, {d}}
and the hypergraph, flat, and contraction can be visualized as:

a b c

d
e

f

a b c

d
e

f

a

d
ebc f

G F G/F
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We are now ready to state the main theorem.

Theorem 2.7. For any hypergraph G on n vertices, the faces of PG are indexed by⋃
F∈Flats(G)

O(G/F).

Moreover, an orientation O ∈ O(G/F) where (G/F)/O has k vertices corresponds to a face of
PG of dimension n− k.

The proof of Theorem 2.7 is omitted in this extended abstract and will appear in the
full version. The proof works by considering the normal fan to the polytope PG. We
illustrate the theorem now with an example.

Example 2.8. For the hypergraph G = {{a, b, c}} on V = {a, b, c}, the hypergraphic
polytope PG is a 2-dimensional simplex in R3. In this case Flats(G) = {{}, G}. The
polytope PG is shown both with its normal fan, and with its faces labeled by (G/F)/O
for F ∈ Flats(G) and O ∈ O(G):

ea eb

ec

xa=xb≥xc

xb=xc≥xaxa=xc≥xb

xc≥xa , xc≥xb

xb≥xa ,
xb≥xc

xa≥xb ,
xa≥xa

•xa=xb=xc

ea eb

ec

c
ab

bc aac
b

c

b
a

c

b
ac

b
a

abc

3 A Hopf algebra of hypergraphs

Given two hypergraphs G, G′ ∈ HG[V], we say the G and G′ are isomorphic if there
exists a permutation σ : V → V such that G′ =

{
σ(U) | U ∈ G

}
. In this case we write

G ∼ G′. Let H be the graded vector space

H =
⊕
n≥0

Hn =
⊕
n≥0

QHG[n]
/
∼.

That is, for each n ≥ 0, we consider Hn = QHG[n]
/
∼ the linear span of isomorphism

classes of hypergraphs on [n]. This space has a structure of graded Hopf algebra given
by the following operations.

Multiplication: Let ↑m
n : [n]→ {1 + m, . . . , n + m} be the map that sends i ∈ [n] to i + m.

This induces a map from HG[n] to HG[{1 + m, . . . , n + m}] where

G↑
m
n =

{
{i + m : i ∈ U} | U ∈ G

}
.
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For all m, n ≥ 0, we have well defined associative linear operations µm,n : Hm ⊗ Hn →
Hm+n given by

µm,n(G1 ⊗ G2) = G1 ∪ G↑
m
n

2 ,

for G1 ∈ HG[m] and G2 ∈ HG[n]. This operation extends to equivalence classes of
hypergraphs, in particular, it is commutative since(

G1 ∪ G↑
m
n

2
)
∼
(
G2 ∪ G↑

n
m

1

)
.

and thus µ = ∑m,n µm,n : H ⊗ H → H defines a graded, associative, commutative mul-
tiplication on H. The unit u for this operation is given by the unique hypergraph
∅ ∈ HG[0].

Comultiplication: Given K ⊆ [n] let k = |K| and let St : K → [k] be the unique order
preserving bijection between K and [k]. Given a hypergraph G ∈ HG[n] we let

G
∣∣
K = {U ∈ G | U ⊆ K} ∈ HG[K].

We can then use the map St to get a hypergraph St(G
∣∣
K) ∈ HG[k]. For all m, n ≥ 0, we

now have a well defined coassociative linear operation ∆m,n : Hm+n → Hm⊗ Hn given by

∆m,n(G) = ∑
K∪L=[m+n]
|K|=m, |L|=n

St(G
∣∣
K)⊗ St(G

∣∣
L),

for G ∈ HG[m + n]. This operation is clearly cocommutative. We have that ∆ =

∑m,n ∆m,n : H → H ⊗ H defines a graded, coassociative, cocommutative comultiplica-
tion on H. The counit for this operation is given by the map ε : H → Q defined by

ε(G) =

{
1 if G = ∅ ∈ HG[0],
0 otherwise.

The structure (H, µ, u, ∆, ε) gives a structure of graded, connected, commutative and
cocommutative bialgebra on H. In the next section we recall that there is a unique
antipode S : H → H that gives a structure of graded, connected, commutative and co-
commutative Hopf algebra on H.

For any graded connected bialgebra H the existence of the antipode map S : H → H
is guaranteed and it can be computed using Takeuchi’s formula [10] as follows. For any
x ∈ Hn with n ≥ 1,

S(x) = ∑
α|=n

(−1)`(α)µα∆α(x). (3.1)

Here, for `(α) = 1, we have µα = ∆α = Id the identity map on Hn, and for α = (a1, . . . , ak)
with k > 1,

µα = µa1,n−a1(Id⊗ µa2,...,ak) and ∆α = (Id⊗ ∆a2,...,ak)∆a1,n−a1 .
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Given a set composition A |= I we get an integer composition using cardinalities: α(A) =
(|A1|, |A2|, . . . , |Ak|) |= |I| and `(A) = `(α(A)). In the case of hypergraphs, for G ∈
HG[n], the antipode formula gives

S(G) = ∑
A|=[n]

(−1)`(A)µα(A)

(
St(G

∣∣
A1
)⊗ · · · ⊗ St(G

∣∣
Ak
)
)

But up to a permutation of [n], we have that

µα(A)

(
St(G

∣∣
A1
)⊗ · · · ⊗ St(G

∣∣
Ak
)
)
∼ G

∣∣
A1
∪ G

∣∣
A2
∪ · · · ∪ G

∣∣
Ak

.

We denote the right hand side by G
∣∣

A = G
∣∣

A1
∪ G

∣∣
A2
∪ · · · ∪ G

∣∣
Ak

and the antipode
formula in this case is

S(G) = ∑
A|=[n]

(−1)`(A)G
∣∣

A (3.2)

which contains lots of cancellations. In [4] a new formula using acyclic orientations of
hypergraphs which refines Equation (3.2) is given. The antipode formula is

S(G) = ∑
F∈Flats(G)

a(G/F)F

where
a(G/F) = ∑

O∈O(G/F)
(−1)|([n]/F)/O|

for G ∈ HG[n]. This refined formula still contains some cancellations. The following
corollary, which follows from Theorem 2.7, gives a geometric reason why these cancel-
lations are still present.

Corollary 3.1. For a hypergraph G ∈ HG[n], the coefficient of a flat F ∈ Flats(G) in S(G) is
a(G/F), and (−1)na(G/F) is the Euler characteristic of the complex given by the union of the
faces of PG indexed by the acyclic orientations of G/F.

Example 3.2. For G =
1

3
2 , the flats of G are G, {{2, 3}}, ∅. The coefficient of each flat

F in S(G) is given by the Euler characteristic of the faces of PG = ∆123 + ∆23 indexed by
acyclic orientations of G/F:

123

1
23

1
23

•

• •

•

1

3
2 1

3
2

1

3
2

1

3
2

13 212
3

S(G) = −1 ·
1

3
2 + 2 ·

1

3
2 − 2 ·

1

3
2
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Example 3.3. For the hypergraph G =
1

4
2

3 in Example 1.1, the flats are of G are

G,{{3, 4}},{{1, 2, 3}} and ∅. Thus, we have that S(G) is given by

•

•
•

•
•
•

−1 ·
1 4
2

3 + 0 ·
1 4
2

3 + 2 ·
1 4
2

3 + 0 ·
1 4
2

3

Antipode formula for a hypergraph G is complicated by the fact that for a given
flat F two acyclic orientations O and O′ of G/F can correspond to faces of different
dimensions in PG. Notice the Example 3.3 shows that not all flats of G need not occur
in the antipode as a(G/F) may be zero for a certain F ∈ Flats(G). This pathology
disappears if one only considers hypergraphs G such that {i, j} ∈ G whenever i, j ∈
U ∈ G with i 6= j. Thus, if one considers simple graphs or abstract simplicial complexes
a cancellation free formula for the antipode can be given and each flat will be present
with nonzero coefficient. For simple graphs a cancellation free formula was originally
given by Humpert and Martin [7]. Using the technique of sign reversing involutions
Benedetti and Sagan, as well as Bergeron and Ceballos, were able to give cancellation
free formulas of antipodes using acyclic orientations of graphs [3, 5]. In the case of
simplicial complexes a cancellation free formula was given by Benedetti, Hallam, and
Machacek [2]. Aguiar and Ardila have computed a cancellation free formula for the
antipode in the Hopf monoid of generalized permutahedra for which the antipode of
graphs and simplicial complexes can be deduced [1].

4 Simple polytopes

For any polytope P let P(1) denote the 1-skeleton of P which is a graph consisting of the
0-dimensional faces and 1-dimensional faces of P. If P is a d-dimensional polytope, then
P is called simple if and only if P(1) is a d-regular graph. Recall that a graph is d-regular
if every vertex is incident on exactly d edges.

By Theorem 2.7 the vertex set of P(1)
G is in one-to-one correspondence with O0(G)

and the edge set is in one-to-one correspondence with

O1(G) ]
⊎

e∈G
|e|=2

O0(G/e).

Any directed acyclic graph D determines a poset on the vertices of D, and we let
Hasse(D) denote the Hasse diagram of this poset. We will think of Hasse(D) as a di-
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rected acyclic graph which is a subgraph of D containing only the edges which give
covering relations in the poset determined by D. In other words, we take Hasse(D) to
be the transitive reduction of D.

Lemma 4.1. Let G be a hypergraph. The vertex corresponding to O ∈ O0(G) is incident on the
edge corresponding to

O′ ∈ O1(G) ]
⊎

e∈G
|e|=2

O0(G/e)

if and only if Hasse(G/O′) is obtained from Hasse(G/O) by contracting an edge.

Proof. In terms of the normal fan of PG, the acyclic orientation O corresponds to some
cone. Contracting an edge (a, b) of the Hasse diagram replaces an inequality xa ≥ xb
defining this cone with an equality xa = xb. Contracting an edge of G/O that is not an
edge in Hasse(G/O) results in a graph which is not acyclic. The lemma then follows
from Theorem 2.7 since faces of the polytope PG, equivalently cones in the normal fan,
are in one-to-one correspondence with by acyclic orientations.

Theorem 4.2. Let G be a hypergraph. The polytope PG is a simple polytope if and only if for
every O ∈ O0(G) the Hasse diagram Hasse(G/O) is a forest.

Proof. If G has n vertices, then the dimension of PG is n− c where c is the number of con-
nected components of G. Observe that G/O will have c connected components for any
acyclic orientation O, and hence Hasse(G/O) will also have c connected components.
Now PG is a simple polytope if and only if each vertex of PG is incident on exactly n− c
edges of PG. By Lemma 4.1 we know that the edges of the polytope PG incident to the
vertex corresponding to O ∈ O0(G) are in bijective correspondence with the edges of
Hasse(G/O). The theorem follows since Hasse(G/O) has n− c edges if and only if it is
a forest.

4.1 Nestohedra

A building set B on [n] is a collection of nonempty subsets of [n] satisfying the following
two conditions

(i) if I, J ∈ B and I ∩ J 6= ∅, then I ∪ J ∈ B,

(ii) and {i} ∈ B for all i ∈ [n].

The nestohedron PB associated to a building set B defined to be the Minkowski sum

PB := ∑
I∈B

∆I .
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Given a building set B we will consider the hypergraph GB with vertex set [n] and hyper-
edge set consisting of I ∈ B such that |I| ≥ 2. Note that the hypergraphic polytope PGB
and the nestohedron PB only differ by translation. Nestohedra are known to be simple
polytopes from work of Postnikov [8, Theorem 7.4] as well as Feichtner and Sturmfels [6,
Theorem 3.14]. We now provide another proof on this fact using Theorem 4.2.

Proposition 4.3. Any nestohedron is a simple polytope.

Proof. Let B be any building set and let G = GB. We will show for any O ∈ O0(G)
that Hasse(G/O) is a forest. The corollary will then follow from Theorem 4.2. In order
for Hasse(G/O) to be a forest, we must not be able to find a cycle in the underlying
undirected graph. Assume we could find a cycle in Hasse(G/O), then we could find
vertices a, b, and c such that (a, c) and (b, c) are edges in Hasse(G/O). This would mean
there are hyperedges I, J with a, c ∈ I and b, c ∈ J such that a is the source of I and b
is the source of J in O. Since B is a building set, this implies we must also have the
hyperedge I ∪ J. For O to be acyclic either a or b must be the source of I ∪ J. However,
this means either a < b or b < a which contradicts both (a, c) and (b, c) being edges in
the Hasse diagram.

4.2 Pitman–Stanley polytopes

For any finite set of positive integers A we define the polytope

PSA := ∑
a∈A

∆[a].

The polytope PS[n] is the Pitman–Stanley polytope [9]. A parking function of length n
is a sequence of nonnegative integers α = (a1, a2, . . . , an) such that bi ≤ i − 1 where
b1 ≤ b2 ≤ · · · ≤ bn is the increasing rearrangement of α. For any set of nonnegative
integers B we define Parkn,B to be the collection of parking functions of length n which
are sequences of integers from B. Given a finite set of positive integers A with n =
max A, define Ā := {n− a : a ∈ A}. Let G be a connected hypergraph on n vertices. It
follows from [8, Corollary 9.4] that the normalized volume of an hypergraphic polytope
PG is equal to the number of sequences (e1, e2, . . . , en−1) of hyperedges of G such that
|ei1 ∪ ei2 ∪ · · · ∪ eik | ≥ k + 1 for any distinct ii, i2, · · · , ik.

Proposition 4.4. Consider A = {a1 < a2 < · · · < ak = n} with 1 < a1. The polytope PSA is
a simple polytope with f -vector entries

f j = ∑
(α1,α2,...,αk)

0≤αi≤ai−ai−1
α1+α2+···+αk=j

k

∏
i=1

(
ai − ai−1 + 1

αi + 1

)
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where a0 = 1. The normalized volume of PSA is given by Vol(PSA) = |Parkn−1,Ā|.

Proof. Let G = {[a1], [a2], · · · , [ak]}. So, PSA = PG is a hypergraphic polytope. The
polytope PSA is simple by Proposition 4.3 since G is the hypergraph of a building set.

Flats of G are Fi = G
∣∣

Ai
where Ai = ([ai], {ai+1}, . . . , {n}) for 0 ≤ i ≤ k. The

j-faces of PSn,A will correspond to acyclic orientations O of G′ = G/F where F is a
flat and G′/O has n − j vertices. Such orientations O can be described by sequences
of sets (S1, S2, . . . , Sk) where Si ⊆ ([ai] \ [ai−1]) ∪ {∗}. Given such a sequence of sets
we get an acyclic orientation by declaring the sources of the hyperedge [ai] to be Si
if Si ⊆ [ai] \ [ai−1] or otherwise Si ∪ Si+1 if ∗ ∈ Si. If Si = [ai] for some i, then let
i∗ = max{i : Si = [ai]}. In this case the orientation constructed above is an acyclic
orientation of G/Fi∗ .

If we have an acyclic orientation O of G/Fi∗ we use [ai] = {i∗, i∗ + 1, . . . , i} to denote
a representation the image of the hyperedge [ai] in the contraction for any i > i∗. We
obtain a sequence of sets (S1, S2, . . . , Sk) by letting Si = [ai] for 1 ≤ i ≤ i∗ and otherwise
letting Si be

• the sources of [ai] in O if the sources of [ai] are disjoint from the sources of [ai−1],

• or alternatively the sources of [ai] in O along with ∗ if the sources of [ai] are not
disjoint from the sources of [ai−1].

This process is inverse to the process of constructing an acyclic orientation from a se-
quence of sets. We have used the fact that if e ⊂ f are hyperedges, then in any acyclic
orientation the sources of f must either contain all sources of e or must be disjoint from
them. It is clear that there are

∑
(α1,α2,...,αk)

0≤αi≤ai−ai−1
α2+α3+···+αk=j

k

∏
i=1

(
ai − ai−1 + 1

αi + 1

)

such sequences of sets. The result on the f -vector follows.
It remains to compute the volume of PG. The volume of PG is the number of sequences

(e1, e2, . . . , en−1) of hyperedges of G such that |ei1 ∪ ei2 ∪ · · · ∪ eik | ≥ k + 1 for any distinct
ii, i2, · · · , ik. We will exhibit a bijection between the set of such sequences and Parkn−1,Ā.
We claim the map

(e1, e2, . . . , en−1) 7→ (n− |e1|, n− |e2|, . . . , n− |en−1|)

gives this desired bijection between the sequences of hyperedges contributing to the
volume of PG and Parkn−1,Ā. The inverse map is

(a1, a2, · · · , an−1) 7→ (e1, e2, . . . , en−1)

where ei is the unique hyperedge in G with |ei| = n− ai.
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