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Abstract. We combinatorially describe the transition matrices which relate monomial
bases of the zero-weight space of the quantum matrix bialgebra. This description
leads to a combinatorial rule for evaluating induced sign characters of the (type A)
Hecke algebra Hn(q) at all elements of the form (1 + Tsi1

) · · · (1 + Tsim
), including the

Kazhdan–Lusztig basis elements indexed by 321-hexagon-avoiding permutations. This
result is the first subtraction-free rule for evaluating any character at all elements of a
basis of Hn(q).

Résumé. Nous décrivons les matrices de transition entre quelques bases de la bial-
gèbre quantique des matrices. Cette description donne une formule combinatoire pour
l’évaluation des caractères induits signés de l’algèbre de Hecke (type A) Hn(q) sur
chacque élément de la forme (1 + Tsi1

) · · · (1 + Tsim
). Cet ensemble inclut les éléments

de la base de Kazhdan–Lusztig indexés par les permutations qui évitent les motifs 321-
hexagonaux. Ce résultat est la première formule sans soustraction pour l’évaluation
d’un caractére dans tous les éléments d’une base de Hn(q).

1 Introduction

The symmetric group algebra Z[Sn] and the (Iwahori–) Hecke algebra (of type A) Hn(q) have
similar presentations as algebras over Z and Z[q

1
2 , q̄

1
2 ] respectively, with multiplicative

identity elements e and Te, generators s1, . . . , sn−1 and Ts1 , . . . , Tsn−1 , and relations

s2
i = e T2

si
= (q− 1)Tsi + qTe for i = 1, . . . , n− 1,

sisjsi = sjsisj Tsi Tsj Tsi = Tsj Tsi Tsj for |i− j| = 1,

sisj = sjsi Tsi Tsj = Tsj Tsi for |i− j| ≥ 2.

(1.1)

Analogous to the natural basis {w |w ∈ Sn} of Z[Sn] is the natural basis {Tw |w ∈ Sn}
of Hn(q), where we define Tw = Tsi1

· · · Tsi`
whenever si1 · · · si` is a reduced (short as
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possible) expression for w in Sn. We call ` the length of w and write ` = `(w). The
specialization of Hn(q) at q

1
2 = 1 is isomorphic to Z[Sn]. The Bruhat order on Sn is

defined by u ≤ v if every reduced expression for v contains a reduced expression for u.
In addition to the natural basis of Hn(q), we have the (modified) Kazhdan–Lusztig basis

{qe,wC′w(q) |w ∈ Sn}, where we define qe,w := q
`(w)

2 . (See [5] for definitions.)
Representations of Hn(q) are often studied in terms of Z[q

1
2 , q̄

1
2 ]-linear functionals

called characters. The Z[q
1
2 , q̄

1
2 ]-span of these characters is called the space of Hn(q)-

traces and has dimension equal to the number of integer partitions of n. Two well-
studied bases are the irreducible characters {χλ

q | λ ` n}, and induced sign characters
{ελ

q | λ ` n}, related to one another by the Kostka numbers, i.e., ελ
q = ∑µ`n Kµ>,λχ

µ
q , where

µ>denotes the transpose or conjugate of the partition µ.
The characters θq ∈ {χλ

q , ελ
q } satisfy θq(z) ∈ Z[q] for all z ∈ Hn(q) and λ ` n.

An ideal combinatorial formula for such evaluations would define sequences (Sk)k≥0,
(Rk)k≥0 of sets so that we have θq(z) = ∑k(−1)|Sk||Rk|qk, or simply θq(z) = ∑k |Rk|qk if
θq(z) ∈ N[q]. For z in the natural basis or modified Kazhdan–Lusztig basis of Hn(q) we
have the following results and open problems.

θq

Do we have
θq(Tw) ∈N[q]
for all w ∈ Sn?

Can we interpret
θq(Tw) as

∑k (−1)|Sk||Rk|qk

for all w ∈ Sn?

Do we have
θq(qe,wC′w(q)) ∈N[q]

for all w ∈ Sn?

Can we interpret
θq(qe,wC′w(q)) as

∑k |Rk|qk

for all w ∈ Sn?

ελ
q no open yes open

χλ
q no open yes open

The polynomials χλ
q (Tw) and ελ

q (Tw) may be computed via a q-extension of the
Murnaghan–Nakayama algorithm but neither has a conjectured expression of the type
asked for above. Interpretations of ελ

q (qe,wC′w(q)) and χλ
q (qe,wC′w(q)) are not known for

general w ∈ Sn, but nonnegativity is due to Haiman [4]. In the special case that w avoids
the patterns 3412 and 4231, interpretations are given in [2, Thms. 6.4, 8.1].

To obtain ideal combinatorial interpretations analogous to those asked for above, we
will consider ελ

q and the infinite spanning set of Hn(q) of all elements of the form

(1 + Tsi1
) · · · (1 + Tsim

) = q
m
2 C′si1

(q) · · ·C′sim
(q), (1.2)

where the index sequence si1 · · · sim varies over all products of generators of Sn. We
have ελ

q ((1 + Tsi1
) · · · (1 + Tsim

) ∈ N[q] since each product qe,uC′u(q)qe,vC′v(q) belongs to
spanN[q]{qe,wC′w(q) |w ∈ Sn}. (See [4, Appendix].) Interpretation of these polynomials
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is new, and is the first result of its kind to include evaluation of an Hn(q)-character at all
elements of a basis of Hn(q).

In Section 2 we introduce the quantum matrix bialgebra A and prove combinatorial
formulas for the entries of transition matrices that relate monomial bases of the zero-
weight space of A. In Sections 3–4 we define a function σ : A → Z[q

1
2 , q̄

1
2 ] which allows

us to compute θq((1 + Tsi1
) · · · (1 + Tsim

)) for any linear function θq : Hn(q) → Z[q
1
2 , q̄

1
2 ]

in terms of a generating function in A for θq. Finally, in Section 5 we use the map
σ to combinatorially evaluate induced sign characters of Hn(q) at all elements of the
spanning set (1.2).

2 The quantum matrix bialgebra

The quantum matrix bialgebra A = A(n, q) is the associative algebra with unit 1 generated
over Z[q

1
2 , q̄

1
2 ] by n2 variables x = (x1,1, . . . , xn,n), subject to the relations

xi,`xi,k = q
1
2 xi,kxi,`, xj,kxi,` = xi,`xj,k,

xj,kxi,k = q
1
2 xi,kxj,k, xj,`xi,k = xi,kxj,` + (q

1
2 − q̄

1
2 )xi,`xj,k,

(2.1)

for all 1 ≤ i < j ≤ n and 1 ≤ k < ` ≤ n. The counit and coproduct maps ε(xi,j) = δi,j,
∆(xi,j) = ∑n

k=1 xi,k ⊗ xk,j give A a bialgebra structure. Two closely related Hopf algebras
are the quantum coordinate rings of SLn(C) and GLn(C),

Oq(SLn(C)) ∼= C⊗A/(detq(x)− 1), Oq(GLn(C)) ∼= C⊗A[t]/(detq(x)t− 1),

where detq(x) := ∑v∈Sn(−q̄
1
2 )`(v)x1,v1 · · · xn,vn is the quantum determinant of the matrix

x = (xi,j). For k-element subsets I, J ⊂ [n]:={1, . . . , n}, the submatrix xI,J = (xi,j)i∈I,j∈J
of x and the quantum minor detq(xI,J) are defined in the obvious ways. Specializing A
at q

1
2 = 1, we obtain the commutative ring Z[x1,1, . . . , xn,n]. The submodule

A[n],[n] = span
Z[q

1
2 ,q¯

1
2 ]
{xu,v := xu1,v1 · · · xun,vn | u, v ∈ Sn} (2.2)

is called the zero weight space of A and has the natural basis {xe,w |w ∈ Sn}. Expanding
other monomials in the basis, we have the following.

Proposition 2.1. There are uniquely defined polynomials {ru,v,w(q1) | w ∈ Sn} in N[q1] which
satisfy

xu,v = ∑
w∈Sn

ru,v,w(q
1
2 − q̄

1
2 )xe,w. (2.3)

Moreover, we have ru,v,u−1v(q1) = 1 and ru,v,w(q1) = 0 unless w ≥ u−1v.

Proof of Proposition 2.1. Omitted.
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Corollary 2.2. For each fixed u ∈ Sn, the set {xu,v | v ∈ Sn} is a basis for A[n],[n].

To combinatorially interpret coefficients of the polynomials {ru,v,w(q1) | u, v, w ∈ Sn},
we consider a seemingly unrelated problem concerning sequences of permutations.

Definition 2.3. Fix permutations u, v, w ∈ Sn and a reduced expression si1 · · · sik for u. Define
Cb

u,v,w(si1 · · · sik) to be the set of sequences π = (π(0), . . . , π(k)) satisfying

1. π(0) = v, π(k) = w,

2. π(j) ∈ {sij π
(j−1), π(j−1)} for j = 1, . . . , k,

3. π(j) = sij π
(j−1) if sij π

(j−1) > π(j−1) for j = 1, . . . , k,

4. π(j) = π(j−1) for exactly b values of j for j = 1, . . . , k,

and define the polynomial pu,v,w(q1; si1 · · · sik) = ∑b |Cb
u,v,w(si1 · · · sik)|q

b
1 ∈N[q1].

Surprisingly, these polynomials do not depend upon the choice of a reduced expres-
sion for u, although each set Cb

u,v,w(si1 · · · sik) does depend upon such a choice.

Theorem 2.4. For u in Sn, the polynomials {ru,v,w(q1) | v, w ∈ Sn} defined in (2.3) satisfy
ru,v,w(q1) = pu,v,w(q1, si1 · · · sik), where si1 · · · sik is any reduced expression for u.

Proof of Theorem 2.4. (Omitted.)

3 Wiring diagrams and path matrices

To combinatorially evaluate induced sign characters at elements (1 + Tsi1
) · · · (1 + Tsim

)

of Hn(q), we will use standard Sn wiring diagrams, concatenations of the diagrams

G[1,2] = , G[2,3] = , G[3,4] = , . . . , G[n−1,n] = , G∅ = (3.1)

representing the elements s1, s2, s3, . . . , sn−1, e of Sn, respectively. Each wiring diagram
has n implicit vertices on the left and right, labeled source 1, . . . , source n and sink 1, . . . ,
sink n, respectively, from bottom to top. Edges are implicitly oriented from left to right.
Let π = (π1, . . . , πn) be a sequence of source-to-sink paths in an Sn wiring diagram G.
We call π a (bijective) path family if there exists a permutation w = w1 · · ·wn ∈ Sn such
that πi is a path from source i to sink wi. In this case, we say more specifically that π
has type w. We say that the path family covers G if it contains every edge exactly once.
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It is easy to see that the number of path families covering the wiring diagram

G = G[i1,i1+1] ◦ · · · ◦ G[im,im+1] (3.2)

of si1 · · · sim is 2m: for j = 1, . . . , m, the two paths intersecting at the central vertex of
G[ij,ij+1] either cross or do not cross at that vertex. In these two cases, we call the index j
a crossing or noncrossing, respectively.

The diagram (3.2) may be used to encode (1 + Tsi1
) · · · (1 + Tsim

) = ∑v∈Sn avTv in
Hn(q). Specifically, each coefficient av ∈ N[q] may be interpreted in terms of a path
family statistic called defects. Call index j a defect of path family π if the two paths
containing the central vertex of G[ij,ij+1] have previously crossed an odd number of times.
We will call index j a proper crossing or noncrossing if it is not defective. Letting d(π)

denote the number of defects in π we have av = ∑π qd(π), where the sum is over path
families of type v which cover G [3, Proposition 3.5]. Billey and Warrington [1, Theorem
1] showed that if si1 · · · sim is a reduced expression for w avoiding 321 and the hexagon
patterns 56781234, 56718234, 46781235, 46718235, then qe,wC′w(q) = (1 + Tsi1

) · · · (1 +

Tsim
).
One often enhances a planar network by associating to each edge a weight belonging

to some ring R, and by defining the weight of a path to be the product of its edge weights.
If R is noncommutative, then weights are multiplied in the order that the corresponding
edges appear in the path. For a family π = (π1, . . . , πn) of n paths in a planar network,
one defines wgt(π) = wgt(π1) · · ·wgt(πn). The (weighted) path matrix B = B(G) = (bi,j)
of G is defined by letting bi,j be the sum of weights of all paths in G from source i to sink
j. Thus the product b1,w1 · · · bn,wn is equal to the sum of weights of all path families of
type w in G.

Assigning weights to the edges of G (3.2) can aid in the evaluation of a linear function
θ : Z[Sn]→ Z at (1 + si1) · · · (1 + sim) by relating it to the generating function

Immθ(x) := ∑
w∈Sn

θ(w)x1,w1 · · · xn,wn ∈ Z[x1,1, . . . , xn,n], (3.3)

called the θ-immanant in [7, Section 3]. In particular, for j = 1, . . . , m, we assign weight
1 to the n − 2 horizontal edges of G[ij,ij+1], and we assign (commuting) indeterminate
weights zij,j,1, zij,j,2, zij+1,j,1, zij+1,j,2 to the remaining nonhorizontal edges a, b, c, d, re-
spectively,

c

a

d

b
. (3.4)

Thus networks corresponding to expressions si1si2si3 = s1s2s1 and si4si5si6 = s1s2s1 are
weighted differently because of the different indexing of the generators. Let zG be the
product of all 4m indeterminates zi,j,k, and for f ∈ Z[z1,1,1, . . . , zim,m,2], let [zG] f denote
the coefficient of zG in f . Then we have the following.
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Proposition 3.1. Assign weights to the edges of G (3.2) as above and let B be the resulting path
matrix. Then for any linear function θ : Z[Sn]→ Z we have

θ((1 + si1) · · · (1 + sim)) = [zG]Immθ(B).

Example 3.2. Consider (1 + s1)(1 + s2)(1 + s1) = 2 + 2s1 + s2 + s1s2 + s2s1 + s1s2s1 in
Z[Sn] and its wiring diagram G = G[i1,i1+1] ◦ G[i2,i2+1] ◦ G[i3,i3+1] = G[1,2] ◦ G[2,3] ◦ G[1,2].
Assigning weights to the edges of G we have

3

2

1

3

2

1

z3,2,1 z3,2,2

z2,1,1 z2,1,2

z2,2,1 z2,2,2

z2,3,1 z2,3,2

z1,1,1 z1,1,2 z1,3,1 z1,3,2

(3.5)

and zG = z1,1,1 · · · z3,2,2. The weighted path matrix of G is

B =

z1,1,1zUz1,3,2 + z1,1,1zDz1,3,2 z1,1,1zUz2,3,2 + z1,1,1zDz2,3,2 z1,1,1z2,1,2z2,2,1z3,2,2
z2,1,1zUz1,3,2 + z2,1,1zDz1,3,2 z2,1,1zUz2,3,2 + z2,1,1zDz2,3,2 z2,1,1z2,1,2z2,2,1z3,2,2

z3,2,1z2,2,2z2,3,1z1,3,2 z3,2,1z2,2,2z2,3,1z2,3,2 z3,2,1z3,2,2

 (3.6)

where zU = z2,1,2z2,2,1z2,2,2z2,3,1, zD = z1,1,2z1,3,1. Now define θ : Z[Sn] → Z by θ(e) = 1,
θ(s1s2s1) = −1, θ(w) = 0 otherwise. We have θ((1 + s1)(1 + s2)(1 + s1)) = 1. Apply-
ing Lindström’s Lemma to the wiring diagram (3.5), one sees that the corresponding immanant
Immθ(x) = x1,1x2,2x3,3 − x1,3x2,2x3,1 = det(x13,13)x2,2 satisfies [zG]Immθ(B) = 1, since ex-
actly one family of paths π = (π1, π2, π3) from all sources to the corresponding sinks covers G
(has weight zG) and satisfies π1 ∩ π3 = ∅. (See (5.9).)

It is natural to ask for a q-analog of Proposition 3.1 which applies to the computation
of θq((1+ Tsi1

) · · · (1+ Tsim
)) for a linear function θq : Hn(q)→ Z[q

1
2 , q̄

1
2 ]. While the most

naive approach will not suffice, we will state and prove the desired q-analog in Section 4.

4 The q-immanant evaluation theorem for wiring diagrams

In order to evaluate a linear function θq : Hn(q)→ Z at (1+ Tsi1
) · · · (1+ Tsim

) by relating
this evaluation to the generating function

Immθq(x) := ∑
w∈Sn

θq(Tw)q−1
e,wx1,w1 · · · xn,wn ∈ A, (4.1)

we begin by assigning weights to the edges of the wiring diagram G (3.2) exactly as in
(3.4). But now we define two indeterminates zh,j,k, zh′,j′,k′ to commute only if j 6= j′ or
k 6= k′; otherwise we impose the relation

zij+1,j,kzij,j,k = q
1
2 zij,j,kzij+1,j,k. (4.2)



Bases of the quantum matrix bialgebra and induced sign characters of the Hecke algebra 7

Let ZG be the quotient of Z[q
1
2 , q̄

1
2 ]〈zij,j,1, zij,j,2, zij+1,j,1, zij+1,j,2 | j = 1, . . . , m, 〉 modulo the

ideal generated by the above commuting and quasicommuting relations, and assume
that q

1
2 , q̄

1
2 commute with all other indeterminates. Let zG be the product of all 4m

indeterminates zi,j,k, in lexicographic order.
This small change in the indeterminates z1,1,1, . . . , zim,m,2 does not imply that the most

naive q-analog of Proposition 3.1 holds, however. Indeed, the evaluation of an element
of A at a matrix is not well defined unless the entries of that matrix satisfy the relations
(2.1). We therefore define the Z[q

1
2 , q̄

1
2 ]-linear map

σB : A[n],[n] → Z[q
1
2 , q̄

1
2 ]

x1,v1 · · · xn,vn 7→ [zG]b1,v1 · · · bn,vn ,
(4.3)

where [zG]b1,v1 · · · bn,vn is the coefficient of zG in b1,v1 · · · bn,vn , taken after b1,v1 · · · bn,vn

is expanded in the lexicographic basis of ZG. Note that the substitution xi,j 7→ bi,j is
performed only for monomials of the form xe,v in A[n],[n]; we define σB(xu,w) by first
expanding xu,w in the basis {xe,v | v ∈ Sn}, and then performing the substitution.

Example 4.1. Let us compute σB(x2,2x1,1x3,3) for the path matrix B (3.6) of the wiring diagram
in (3.5). Using (2.1) and linearity of σB, we write

σB(x2,2x1,1x3,3) = σB(x1,1x2,2x3,3) + (q
1
2 − q̄

1
2 )σB(x1,2x2,1x3,3)

= [zG]b1,1b2,2b3,3 + (q
1
2 − q̄

1
2 )[zG]b1,2b2,1b3,3.

(4.4)

Expanding b1,1b2,2b3,3 and omitting terms with repeated indeterminates, we have

[zG]b1,1b2,2b3,3 = [zG](z1,1,1z1,1,2z1,3,1z1,3,2z2,1,1z2,1,2z2,2,1z2,2,2z2,3,1z2,3,2z3,2,1z3,2,2

+ z1,1,1z2,1,2z2,2,1z2,2,2z2,3,1z1,3,2z2,1,1z1,1,2z1,3,1z2,3,2z3,2,1z3,2,2).

Sorting indeterminates into lexicographic order and using (4.2), we see that this is

[zG](zG + qzG) = 1 + q.

Similarly computing [zG]b1,2b2,1b3,3, we obtain (q
1
2 + q

3
2 ). Thus Equation (4.4) gives

σB(x2,2x1,1x3,3) = (1 + q) + (q
1
2 − q̄

1
2 )(q

1
2 + q

3
2 ) = q + q2.

The map σB behaves well with respect to concatenation of star networks.

Proposition 4.2. Let G and H be wiring diagrams corresponding to expressions si1 · · · sik and
sik+1 · · · sim , with weighted path matrices B and C respectively, so that G ◦ H corresponds to
expression si1 · · · sim and has weighted path matrix BC. Then for all u, w ∈ Sn we have

σBC(xu,w) = ∑
v∈Sn

σB(xu,v)σC(xv,w). (4.5)
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Proof of Proposition 4.2. (Omitted.)

The special case of Proposition 4.2 in which we have m = k + 1 (so that H is the
wiring diagram of the single generator sik+1) leads to a simple formula for σBC(xu,w) in
terms of B.

Corollary 4.3. Let wiring diagrams G, H of expressions si1 · · · sik , sik+1 have weighted path
matrices B, C, respectively. Then for all w ∈ Sn we have

σBC(xu,w) = q
1
2 σB(xu,wsik+1 ) +

{
qσB(xu,w) if wsik+1 < w,
σB(xu,w) if wsik+1 > w.

Proof of Corollary 4.3. Use the combinatorial interpretation in Theorem 2.4, and the rela-
tions (4.2).

An important property of the map σB is that its evaluation at monomial basis ele-
ments of A[n],[n] is related to coefficients in the expansion of (1 + Tsi1

) · · · (1 + Tsim
).

Proposition 4.4. Let G be the wiring diagram in (3.2) with weighted path matrix B, and fix
w ∈ Sn. Then σB(xe,w) is equal to qe,w times the coefficient of Tw in (1 + Tsi1

) · · · (1 + Tsim
).

Proof of Proposition 4.4. (Idea.) Use induction, Proposition 4.2, Corollary 4.3, and the re-
lations (1.1).

As a consequence of Proposition 4.4, we now have a q-analog of Proposition 3.1.
Namely, when B is the path matrix of a wiring diagram, and θq : Hn(q) → Z[q

1
2 , q̄

1
2 ] is

linear, we may “evaluate” Immθq(x) at B by applying the map σB to Immθq(x).

Theorem 4.5. Let θq : Hn(q)→ Z[q
1
2 , q̄

1
2 ] be linear, and let wiring diagram G of si1 · · · sim have

weighted path matrix B. Then we have

θq((1 + Tsi1
) · · · (1 + Tsim

)) = σB(Immθq(x)). (4.6)

Proof of Theorem 4.5. Write (1 + Tsi1
) · · · (1 + Tsim

) = ∑v∈Sn avTv. Then the right-hand
side of (4.6) is

σB

(
∑

v∈Sn

θq(Tv)q−1
e,v xe,v

)
= ∑

v∈Sn

θq(Tv)q−1
e,v σB(xe,v) = ∑

v∈Sn

θq(Tv)q−1
e,v qe,vav = θq

(
∑

v∈Sn

avTv

)
,

by Proposition 4.4. But this is precisely the left-hand side of (4.6).

Now observe that if one fixes a reduced expression si1 · · · sim for each w ∈ Sn and
uses each such expression to define an element

Dw := (1 + Tsi1
) · · · (1 + Tsim

) ∈ Hn(q),

then {Dw |w ∈ Sn} forms a basis of Hn(q): we have Dw ∈ Tw + spanZ[q]{Tv | v < w}.
(See also [3, Corollary 3.6].) Thus we can evaluate θq(g) for every g ∈ Hn(q), provided
that we can expand g in this basis.
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5 G-tableaux and the evaluation of induced sign characters

Given a path family π covering a wiring diagram G, we will find it convenient to arrange
the paths of π into a Young diagram. We will call the resulting structure U a G-tableau,
or more specifically a π-tableau. If type(π) = w, we say that U has type w. We call U left
column-strict if πb appears above πa in a column only when a < b. We call U column-strict
it is left column-strict and no two paths in a column intersect. We call U column-closed if
in each column, the sets of source and sink indices of paths there are equal. We define
L(U) and R(U) to be the Young tableaux in which paths are replaced by their source
indices and sink indices, respectively.

Let U be a π-tableau of any shape λ ` n. Define invnc(U) to be the number of
inverted noncrossings of U, i.e., the number of occurrences of

πb

πa

, (5.1)

where πb appears in an earlier column of U than πa (whether or not b > a). Thus
inverted noncrossings may be proper or defective. Define c(U) = c(π) to be the number
of crossings of π, i.e., the number of occurrences of

πb

πa

or

πa

πb

.

This depends only upon π; not upon the locations of πa and πb in U. Define cdnc(U) to
be the number of defective noncrossings of pairs of paths appearing in the same column
of U, i.e., the number of occurrences of (5.1) where b < a and πb, πa appear in the same
column of U.

Proposition 5.1. Let wiring diagram G have weighted path matrix B. For u, w ∈ Sn we have

σB(xu,w) = ∑
π

q
c(π)

2 qinvnc(U), (5.2)

where the sum is over path families π of type u−1w covering G, and U = U(π, u, w) is the
unique π-tableau of shape (n) satisfying L(U) = u, R(U) = w.

Proof of Proposition 5.1. (Omitted.)

By Theorem 4.5, the map σB (4.3) can be used to evaluate ελ
q (Dw) when one has a

simple expression for the generating function Immελ
q
(x) and can evaluate σB(Immελ

q
(x)).

Such an expression was given by Konvalinka and the third author in [6, Theorem 5.4]:

Immελ
q
(x) = ∑

(I1,...,Ir)

detq(xI1,I1) · · ·detq(xIr,Ir), (5.3)
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where λ = (λ1, . . . , λr), detq, (xI,I) are defined as in Section 2, and the sum is over all
ordered set partitions of {1, . . . , n} satisfying |Ij| = λj. We will say that such an ordered
set partition has type λ. To evaluate σB(Immελ

q
(x)), we will expand the right-hand side

of (5.3) and recognize the resulting monomials as elements of bases {xu,v | v ∈ Sn} of
A[n],[n]. These bases are best described in terms of the Young subgroup Sλ of Sn, the
subgroup generated by {s1, . . . , sn−1}r {sλ1 , sλ1+λ2 , sλ1+λ2+λ3 , . . . , sn−λr}. Let S−λ be the
set of Bruhat-minimal representatives of cosets of the form Sλu, i.e., the elements u ∈ Sn
for which each of the subwords

u1 · · · uλ1 , uλ1+1 · · · uλ1+λ2 , . . . , un−λr+1 · · · un (5.4)

is strictly increasing. Such elements correspond bijectively to ordered set partitions
(I1, . . . , Ir) of [n] of type λ. Specifically, the correspondence u 7→ I(u) is given by

Ij = {uλ1+···+λj−1+1, . . . , uλ1+···+λj} for j = 1, . . . , r. (5.5)

We will let u(I) denote the permutation in S−λ which corresponds to I.
To interpret ελ

q ((1 + Tsi1
) · · · (1 + Tsim

)) = σB(Immελ
q
(x)), we refer to the treatment of

the formula (5.3) which appears in [2, Equation (6.1)]:

∑
(I1,...,Ir)

σB(detq(xI1,I1) · · ·detq(xIr,Ir)) = ∑
u∈S−λ

∑
y∈Sλ

(−1)`(y)q−1
e,y σB(xu,yu), (5.6)

where the first sum is over all ordered set partitions (I1, . . . , Ir) of [n] of type λ. To
interpret the final sum in (5.6) we need to consider evaluations of the form (5.2) only for
u ∈ S−λ for some partition λ = (λ1, . . . , λr) ` n, and v = yu for y ∈ S−λ . Since elements
of S−λ correspond bijectively to ordered set partitions I of [n] of type λ, and σB(xu,yu)
has the interpretation given in Proposition 5.1, it will be convenient to define

UI = UI(G) = {U(π, u, yu) |π covers G, u = u(I), type(π) = y ∈ Sλ}.

Note that our restriction on y forces the sink indices of paths located in the λj entries
(λ1 + · · ·+ λj−1 + 1), . . . , (λ1 + · · ·+ λj) of U(π, u, yu) to be a permutation of the source
indices of the same paths.

On the other hand, the final sum in (5.6) has both positive and negative signs. We will
obtain a subtraction-free expression for this sum by defining a sign-reversing involution
ζ = ζ I for each ordered set partition I of type λ = (λ1, . . . , λr). It will be convenient to
define this involution on a second set of tableaux, in obvious bijection with the first set.
For a wiring diagram G, let TI = TI(G) be the set of all column-closed, left column-strict
G-tableaux W of shape λ> such that L(W>)j = Ij (as sets) for j = 1, . . . , r. The bijection
δI : UI → TI maps U ∈ UI to the left column-strict tableau W of shape λ>whose jth
column consists of entries (λ1 + · · ·+ λj−1 + 1), . . . , (λ1 + · · ·+ λj) of U.

Since U and δI(U) contain the same path family, it is easy to see that δI does not
affect the statistic c. It changes the statistic invnc in a very simple way.
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Lemma 5.2. Let W = δI(U). Then we have invnc(U) = invnc(W) + cdnc(W).

Proof of Lemma 5.2. (Omitted.)

Fixing a wiring diagram G and ordered set partition I, we define a sign-reversing
involution ζ : TI → TI as follows.

1. If W is a column-strict tableau of type e, then define ζ(W) = W.

2. Otherwise,

(a) Let t be the greatest index such that column t of W is not column-strict.

(b) Let k be the greatest index such that two paths πj, πj′ with j, j′ ∈ It both pass
through the central vertex of the factor network G[ik,ik+1]

, and let π′j, π′j′ be the
paths obtained by swapping the terminal subpaths of πj and πj′ , beginning at
the central vertex of G[ik,ik+1]

.

(c) Using the above indices j, j′, define ζ(W) to be the tableau obtained from W
by replacing πj, πj′ by π′j, π′j′ , respectively.

Proposition 5.3. Fix W ∈ TI containing path family π = (π1, . . . , πn) and satisfying ζ(W) 6=
W. Let π′ be the path family in ζ(W) and let v = R(δ−1

I (W)), v′ = R(δ−1
I (ζ(W))). Then we

have invnc(ζ(W)) = invnc(W) and

cdnc(ζ(W)) +
c(π′)

2
=

{
cdnc(W) + c(π)+1

2 if v < v′,
cdnc(W) + c(π)−1

2 if v > v′.
(5.7)

Proof of Proposition 5.3. (Omitted.)

Now we can state and prove our main result.

Theorem 5.4. Let G be the wiring diagram of si1 · · · sim . Then for λ ` n we have

ελ
q ((1 + Tsi1

) · · · (1 + Tsim
)) = ∑

U
qinvnc(U)+c(U)/2,

where the sum is over all column-strict G-tableaux of type e and shape λ>.

Proof of Theorem 5.4. (Idea.) Apply Proposition 5.1 and Lemma 5.2 to all monomials in
(5.6) to obtain

∑
(y,π)

(−1)`(y)q−1
e,y q

c(π)
2 qinvnc(W)+cdnc(W), (5.8)

where the sum is over pairs (y, π) with y ∈ Sλ and π a path family of type u−1yu which
covers G. W = δI(U(π, u, yu)) is then uniquely determined by (y, π) and varies over all
tableaux in TI . Contributions from tableaux W, ζ(W) 6= W cancel one another, and by
Proposition 5.3 the remaining tableaux contribute the claimed powers of q.
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Corollary 5.5. Let G be the wiring diagram of a reduced expression for a 321-hexagon-avoiding
permutation w. Then we have

ελ
q (qe,wC′w(q)) = ∑

U
qinvnc(U)+c(U)/2,

where the sum is over all column-strict G-tableaux of type e and shape λ>.

Proof of Corollary 5.5 . Billey and Warrington [1, Theorem 1] showed that if this reduced
expression is si1 · · · sim then we have qe,wC′w(q) = (1+ Tsi1

) · · · (1+ Tsim
). (See page 5.)

To illustrate the theorem, we compute ε21
q ((1+Ts1)(1+Ts2)(1+Ts1)) using the wiring

diagram (3.5). There are two path families of type e which cover G, and one column-strict
G-tableau of shape 21>= 21 for each:

π3
π2
π1

, Uπ =
π3
π1 π2

;
ρ3
ρ2
ρ1

, Uρ =
ρ3
ρ2 ρ1

. (5.9)

Tableau Uπ contributes qinvnc(Uπ)qc(Uπ)/2 = q1q0/2 = q, since π has no crossings, and
only one of its noncrossings is inverted in Uπ: π3 intersects π2 from above and appears
in an earlier column of Uπ. Tableau Uρ contributes qinvnc(Uρ)qc(Uρ)/2 = q1q2/2 = q2, since
ρ has two crossings, and its unique noncrossing is inverted in Uρ: ρ3 intersects ρ1 from
above and appears in an earlier column of Uρ. Adding the two contributions together,
we have ε21

q ((1 + Ts1)(1 + Ts2)(1 + Ts1)) = q + q2.
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