# Signed Mahonian Identities on Permutations with Subsequence Restrictions 

Sen-Peng Eu* ${ }^{* 1}$, Tung-Shan Fu ${ }^{2}$, Hsiang-Chun Hsu ${ }^{3}$, Hsin-Chieh Liao ${ }^{4}$, and Wei-Liang Sun ${ }^{1}$<br>${ }^{1}$ Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taizan, ROC<br>${ }^{2}$ Department of Applied Mathematics, National Pingtung University, Pingtung 90003, Taiwan, ROC<br>${ }^{3}$ Department of Mathematics, Tamkang University, New Taipei City 25137, Taiwan, ROC<br>${ }^{4}$ Department of Mathematics, University of Miami, Coral Gables, FL 33124, USA


#### Abstract

In this paper, we present a number of results surrounding Caselli's conjecture on the equidistribution of the major index with sign over the two subsets of permutations of $\{1,2, \ldots, n\}$ containing respectively the word $12 \cdots k$ and the word $(n-k+1) \cdots n$ as a subsequence, under a parity condition of $n$ and $k$. We derive broader bijective results on permutations containing varied subsequences. As a consequence, we obtain the signed mahonian identities on families of restricted permutations, in the spirit of a well-known formula of Gessel and Simion, covering a combinatorial proof of Caselli's conjecture. We also derive an extension of the insertion lemma of Haglund, Loehr, and Remmel which allows us to obtain a signed enumerator of the major-index increments resulting from the insertion of a pair of consecutive numbers in any place of a given permutation.


Keywords: Signed mahonian statistics, major index with sign, subsequence restrictions

## 1 Introduction

### 1.1 Signed mahonians

Let $\mathfrak{S}_{n}$ be the set of permutations of $\{1,2 \ldots, n\}$. The inversion number and the major index are two well-known mahonian statistics of permutations. Let $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n}$ be a permutation in $\mathfrak{S}_{n}$, where $\sigma_{i}=\sigma(i)$ for $1 \leq i \leq n$. An inversion of $\sigma$ is a pair $\left(\sigma_{i}, \sigma_{j}\right)$, $1 \leq i<j \leq n$ such that $\sigma_{i}>\sigma_{j}$. The inversion number $\operatorname{inv}(\sigma)$ of $\sigma$ is defined to be the number of inversions of $\sigma$. A descent of $\sigma$ is an integer $i, 1 \leq i \leq n-1$ such that $\sigma_{i}>\sigma_{i+1}$. Let $\operatorname{Des}(\sigma)$ denote the set of descents of $\sigma$. The descent number (des) and major index (maj) of $\sigma$ are defined by $\operatorname{des}(\sigma)=|\operatorname{Des}(\sigma)|$ and $\operatorname{maj}(\sigma)=\sum_{i \in \operatorname{Des}(\sigma)} i$.

[^0]Percy MacMahon [6] proved that the major index statistic is equidistributed with the inversion number statistic over $\mathfrak{S}_{n}$, i.e.,

$$
\begin{equation*}
\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{maj}(\sigma)}=\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{inv}(\sigma)}=[2]_{q}[3]_{q} \cdots[n]_{q}, \tag{1.1}
\end{equation*}
$$

where $[j]_{q}=1+q+\cdots+q^{j-1}$ for any positive integer $j$. This result was extended to the group $B_{n}$ of signed permutations with respect to the flag major index statistic by Adin-Roichman [2].

Gessel and Simion obtained the following formula of the distribution of the major index with sign over $\mathfrak{S}_{n}$ (see [8, Corollary 2] for an interesting bijective proof)

$$
\begin{equation*}
\sum_{\sigma \in \mathfrak{S}_{n}}(-1)^{\operatorname{inv}(\sigma)} q^{\operatorname{maj}(\sigma)}=[2]_{-q}[3]_{q} \cdots[n]_{(-1)^{n-1} q} \tag{1.2}
\end{equation*}
$$

A type-B analogue of (1.2) was obtained by Adin-Gessel-Roichman [1, Theorem 1.5].
A word $W$ on a set $X$ is a finite sequence of elements in $X$. Unless specified otherwise, we consider only the words without repeated elements. The word $W$ is a permutation of $X$ if $W$ consists of all elements of $X$. Given a word $W=w_{1} w_{2} \cdots w_{k}$ on the set $\{1,2, \ldots, n\}$, we say that a permutation $\sigma \in \mathfrak{S}_{n}$ contains the word $W$ as a subsequence if there exists a sequence of indices $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$ such that $\sigma_{i_{j}}=w_{j}$ for all $j$, $1 \leq j \leq k$. Let $\mathfrak{S}_{n}(W)$ denote the subset of $\mathfrak{S}_{n}$ consisting of the permutations containing the word $W$ as a subsequence, i.e.,

$$
\mathfrak{S}_{n}(W):=\left\{\sigma \in \mathfrak{S}_{n}: \sigma^{-1}\left(w_{1}\right)<\sigma^{-1}\left(w_{2}\right)<\cdots \sigma^{-1}\left(w_{k}\right)\right\}
$$

In particular, for two integers $a, b \in\{1,2, \ldots, n\}, a<b$, let $\mathfrak{S}_{n}(a: b)$ denote the subset of permutations containing the word $a(a+1) \cdots b$ as a subsequence. For example, $\mathfrak{S}_{4}(2$ : 4) $=\{1234,2134,2314,2341\}$.

By a classical result of Stanley [7] and Foata-Schützenberger [4], the statistics maj and inv remain equidistributed on all permutations in $\mathfrak{S}_{n}$ containing the word $(n-k+$ 1) $\cdots n$ as a subsequence, for $1 \leq k \leq n-1$, i.e.,

$$
\begin{equation*}
\sum_{\sigma \in \mathfrak{S}_{n}(n-k+1: n)} q^{\operatorname{maj}(\sigma)}=\sum_{\sigma \in \mathfrak{S}_{n}(n-k+1: n)} q^{\operatorname{inv}(\sigma)}=[k+1]_{q}[k+2]_{q} \cdots[n]_{q} . \tag{1.3}
\end{equation*}
$$

Arising from the study of signed mahonians in parabolic quotients of Coxeter groups, Caselli [3, Corollary 3.4] obtained the following product formula for the distribution of the major index with sign over $\mathfrak{S}_{n}(n-k+1: n)$, which includes the formula in (1.2) as a special case.

$$
\begin{equation*}
\sum_{\sigma \in \mathfrak{S}_{n}(n-k+1: n)}(-1)^{\operatorname{inv}(\sigma)} q^{\operatorname{maj}(\sigma)}=[k+1]_{(-1)^{n k+n+k} q}[k+2]_{(-1)^{k+1} q} \cdots[n]_{(-1)^{n-1} q} \tag{1.4}
\end{equation*}
$$

Caselli remarked that the proof of (1.4) is quite involved, without algebraic or combinatorial insight. He also raised a question [3, Problem 5.8] about giving a bijective proof of the following observation.

## Conjecture 1.1. If $n$ is even or $k$ is odd then

$$
\sum_{\sigma \in \mathfrak{S}_{n}(1: k)}(-1)^{i n v(\sigma)} q^{\operatorname{maj}(\sigma)}=\sum_{\sigma \in \mathfrak{S}_{n}(n-k+1: n)}(-1)^{i n v(\sigma)} q^{\operatorname{maj}(\sigma)} .
$$

It is curious that the above equidistribution of signed major index depends on the parities of $n$ and $k$. The motivation of this paper is to solve Caselli's problem. We prove much broader results on permutations with varied subsequence restrictions.

### 1.2 Main results

Given a word $W=w_{1} w_{2} \cdots w_{k}$ on the set $\{1,2, \ldots, n\}$ and an integer $t$, let $W+t$ denote the word $w_{1}^{\prime} w_{2}^{\prime} \cdots w_{k}^{\prime}$ on the set $\{t+1, t+2, \ldots, t+n\}$ obtained from $W$ by incrementing each element by $t$, i.e., $w_{j}^{\prime}=w_{j}+t$. Our first main result gives a sign-preserving and descent set-preserving bijection between the two subsets of permutations containing respectively the word $W$ and the word $W+2$ as a subsequence.

Theorem 1.2. For any word $W$ on the set $\{1,2, \ldots, n-2\}$, there is a bijection $\phi: \sigma \rightarrow \sigma^{\prime}$ of $\mathfrak{S}_{n}(W)$ onto $\mathfrak{S}_{n}(W+2)$ such that

$$
\operatorname{Des}\left(\sigma^{\prime}\right)=\operatorname{Des}(\sigma) \quad \text { and } \quad \operatorname{inv}\left(\sigma^{\prime}\right) \equiv \operatorname{inv}(\sigma) \quad(\bmod 2)
$$

Hence we have the following identity

$$
\sum_{\sigma \in \mathfrak{S}_{n}(W)}(-1)^{\operatorname{inv}(\sigma)} t^{\operatorname{des}(\sigma)} q^{\operatorname{maj}(\sigma)}=\sum_{\sigma \in \mathfrak{S}_{n}(W+2)}(-1)^{\operatorname{inv}(\sigma)} t^{\operatorname{des}(\sigma)} q^{\operatorname{maj}(\sigma)}
$$

An immediate consequence of this result is that it proves the case of Conjecture 1.1 when $n$ and $k$ have the same parity.

Our next result establishes a connection between the two parts of the symmetric difference of $\mathfrak{S}_{n}(W)$ and $\mathfrak{S}_{n}(W+1)$ when the word $W$ is an increasing sequence of consecutive numbers.

Theorem 1.3. For $2 \leq k \leq n-1$ and $1 \leq b \leq n-k$, let $U$ and $V$ be the words of $k$ consecutive numbers respectively given by

$$
U=b(b+1) \cdots(b+k-1) \quad \text { and } \quad V=(b+1)(b+2) \cdots(b+k)
$$

Then there is a bijection $\gamma: \sigma \rightarrow \sigma^{\prime}$ of $\mathfrak{S}_{n}(U)-\mathfrak{S}_{n}(V)$ onto $\mathfrak{S}_{n}(V)-\mathfrak{S}_{n}(U)$ such that

$$
\operatorname{Des}\left(\sigma^{\prime}\right)=\operatorname{Des}(\sigma) \quad \text { and } \quad \operatorname{inv}\left(\sigma^{\prime}\right)-\operatorname{inv}(\sigma) \equiv k-1 \quad(\bmod 2)
$$

This result explains the case of Conjecture 1.1 when $n$ and $k$ have the opposite parities. Notice that Theorem 1.2 and Theorem 1.3 lead to the following analogous results of (1.4) for families of the permutations. This gives a complete picture of the Conjecture 1.1 for all parity cases of $n$ and $k$.

Corollary 1.4. For $2 \leq k \leq n-1$ and $1 \leq b \leq n-k+1$, the following results hold.

1. If $k$ is odd then we have

$$
\sum_{\sigma \in \mathfrak{S}_{n}(b: b+k-1)}(-1)^{i n v(\sigma)} q^{\operatorname{maj}(\sigma)}=[k+1]_{-q}[k+2]_{q} \cdots[n]_{(-1)^{n-1} q} .
$$

2. If $k$ is even and $n$ is even then we have

$$
\sum_{\sigma \in \mathfrak{S}_{n}(b: b+k-1)}(-1)^{\operatorname{inv}(\sigma)} q^{\operatorname{maj}(\sigma)}= \begin{cases}{[k+1]_{q}[k+2]_{-q}[k+3]_{q} \cdots[n]_{-q}} & \text { for } b \text { odd } \\ \left(2-[k+1]_{q}\right)[k+2]_{-q}[k+3]_{q} \cdots[n]_{-q} & \text { for } b \text { even } .\end{cases}
$$

3. If $k$ is even and $n$ is odd then we have

$$
\sum_{\sigma \in \mathfrak{S}_{n}(b: b+k-1)}(-1)^{\operatorname{inv}(\sigma)} q^{\operatorname{maj}(\sigma)}= \begin{cases}\left(2-[k+1]_{-q}\right)[k+2]_{-q}[k+3]_{q} \cdots[n]_{q} & \text { for } b \text { odd } \\ {[k+1]_{-q}[k+2]_{-q}[k+3]_{q} \cdots[n]_{q}} & \text { for b even } .\end{cases}
$$

For any element $r \in\{1,2, \ldots, n\}$ and any permutation $W$ of the set $\{1,2, \ldots, n\}-\{r\}$, Haglund-Loehr-Remmel [5] derived an insertion lemma which describes the increment of major index resulting from the insertion of the element $r$ in $W$, and proved that no matter what the element $r$ is with respect to other elements

$$
\begin{equation*}
\sum_{\sigma \in \mathfrak{S}_{n}(W)} q^{\operatorname{maj}(\sigma)}=q^{\operatorname{maj}(W)}[n]_{q} \tag{1.5}
\end{equation*}
$$

We derive an extension of the insertion lemma which allows us to obtain the following signed analogue.

Theorem 1.5. For $1 \leq r \leq n-1$ and any permutation $W$ of the set $\{1,2, \ldots, n\}-\{r, r+1\}$, we have

$$
\sum_{\sigma \in \mathfrak{S}_{n}(W)}(-1)^{\operatorname{inv}(\sigma)} q^{\operatorname{maj}(\sigma)}=(-1)^{\operatorname{inv}(W)} q^{\operatorname{maj}(W)}[n-1]_{(-1)^{n} q}[n]_{(-1)^{n-1} q}
$$

We derive some extended results from our main results, over the permutations with subsequence restrictions defined by an injective labeling of a poset, and by an patternavoiding condition within a given underlying set.

## 2 A proof of Theorem 1.2

In this section, we shall establish a sign-preserving and descent set-preserving map $\phi$ : $\mathfrak{S}_{n}(W) \rightarrow \mathfrak{S}_{n}(W+2)$ for any word $W$ on the set $\{1,2, \ldots, n-2\}$.

### 2.1 The construction of the $\operatorname{map} \phi: \mathfrak{S}_{n}(W) \rightarrow \mathfrak{S}_{n}(W+2)$.

Given a permutation $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n} \in \mathfrak{S}_{n}(W)$, we shall construct the corresponding permutation $\phi(\sigma)$ by removing the elements $n-1, n$ from $\sigma$, increment each of the remaining elements by 2 , and then insert the elements 1,2 at appropriate positions so that $\phi(\sigma)$ satisfies the requested conditions. Let $y_{1}, y_{2}$ denote the entries for the elements 1,2 in $\phi(\sigma)$, i.e., $\left\{y_{1}, y_{2}\right\}=\{1,2\}$, where $y_{2}$ appears to the right of $y_{1}$. Described in algorithm A, the construction of $\phi(\sigma)$ is given by case analysis, where the cases I, II, III, and IV describe the construction when the elements $n-1, n$ of $\sigma$ are not adjacent, and the cases V and VI describe the construction when $n-1, n$ of $\sigma$ are adjacent.

In the following algorithm, we assume $\sigma_{0}=\sigma_{n+1}=0$, and let $\sigma_{j}^{+}$denote the entry $\sigma_{j}$ incremented by 2 .
Algorithm A.
Find the elements $n-1, n$ of $\sigma$. Let $\left\{\sigma_{a}, \sigma_{b}\right\}=\{n-1, n\}$ for some integers $a, b$ with $1 \leq a<b \leq n$. We construct the permutation $\phi(\sigma)$ according to the following cases. I. $\sigma_{a-1}>\sigma_{a+1}$ and $\sigma_{b-1}>\sigma_{b+1}$ for $a>1$ and $a+1<b \leq n$.

Starting with $\sigma_{a}$ ( $\sigma_{b}$, respectively), search to the left and find the maximal increasing sequence of consecutive entries $\sigma_{t}<\sigma_{t+1}<\cdots<\sigma_{a}\left(\sigma_{s}<\sigma_{s+1}<\cdots<\sigma_{b}\right.$, respectively). Then remove the elements $\sigma_{a}, \sigma_{b}$ from $\sigma$, increment each of the remaining elements by 2 , and insert $y_{1}$ ( $y_{2}$, respectively) on the immediate left of $\sigma_{t}^{+}$( $\sigma_{s}^{+}$, respectively). Note that if $s=a+1$ then $y_{2}$ is between $\sigma_{a-1}^{+}$and $\sigma_{a+1}^{+}$is on the right of $y_{2}$.
II. $\sigma_{a-1}<\sigma_{a+1}$ and $\sigma_{b-1}<\sigma_{b+1}$ for $a \geq 1$ and $a+1<b<n$.

Starting with $\sigma_{a}$ ( $\sigma_{b}$, respectively), search to the right and find the maximal decreasing sequence of consecutive entries $\sigma_{a}>\sigma_{a+1}>\cdots>\sigma_{t}\left(\sigma_{b}>\sigma_{b+1}>\cdots>\sigma_{s}\right.$, respectively). Then remove the elements $\sigma_{a}, \sigma_{b}$ from $\sigma$, increment each of the remaining elements by 2 , and insert $y_{1}\left(y_{2}\right.$, respectively) on the immediate right of $\sigma_{t}^{+}$(after $\sigma_{s}^{+}$, respectively). Note that if $t=b-1$ then $y_{1}$ is between $\sigma_{b-1}^{+}$and $\sigma_{b+1}^{+}$.
III. $\sigma_{a-1}>\sigma_{a+1}$ and $\sigma_{b-1}<\sigma_{b+1}$ for $a>1$ and $a+1<b<n$.

Starting with $\sigma_{a}$ ( $\sigma_{b}$, respectively), search to the left (right, respectively) and find the maximal increasing (decreasing, respectively) sequence of consecutive entries $\sigma_{t}<$ $\sigma_{t+1}<\cdots<\sigma_{a}\left(\sigma_{b}>\sigma_{b+1}>\cdots>\sigma_{s}\right.$, respectively). Then remove the elements $\sigma_{a}, \sigma_{b}$ from $\sigma$, increment each of the remaining elements by 2 , and insert $y_{1}$ ( $y_{2}$, respectively) immediately before $\sigma_{t}^{+}$(after $\sigma_{s}^{+}$, respectively).

Notice that in the above three cases the elements $y_{1}, y_{2}$ are not adjacent. Choose either $\left(y_{1}, y_{2}\right)=(1,2)$ or $\left(y_{1}, y_{2}\right)=(2,1)$ such that $\operatorname{inv}(\phi(\sigma)) \equiv \operatorname{inv}(\sigma)(\bmod 2)$. IV. $\sigma_{a-1}<\sigma_{a+1}$ and $\sigma_{b-1}>\sigma_{b+1}$ for $1 \leq a<b \leq n$.

Starting with $\sigma_{a}$ ( $\sigma_{b}$, respectively), search to the right (left, respectively) and find the maximal decreasing (increasing, respectively) sequence of consecutive entries $\sigma_{a}>$ $\sigma_{a+1}>\cdots>\sigma_{t}\left(\sigma_{s}<\sigma_{s+1}<\cdots<\sigma_{b}\right.$, respectively). Then remove the elements $\sigma_{a}, \sigma_{b}$ from $\sigma$, increment each of the remaining elements by 2 . To preserve the descent set and
the parity of the inversion number, the insertion of $y_{1}, y_{2}$ is determined as follows.
If $t \neq s$ then there exists at least one element between $\sigma_{t}$ and $\sigma_{s}$. We insert $y_{1}\left(y_{2}\right.$, respectively) immediately after $\sigma_{t}^{+}$(before $\sigma_{s}^{+}$, respectively). Since $y_{1}, y_{2}$ are not adjacent, choose either $\left(y_{1}, y_{2}\right)=(1,2)$ or $\left(y_{1}, y_{2}\right)=(2,1)$ such that $\operatorname{inv}(\phi(\sigma)) \equiv \operatorname{inv}(\sigma)(\bmod 2)$.

Otherwise, $t=s$. The insertion and assignment of $y_{1}, y_{2}$ are determined according the following possibilities.
(i) $a+1<t<b-1$. If $\left(\sigma_{a}, \sigma_{b}\right)=(n-1, n)$ and $a+b$ is odd, or $\left(\sigma_{a}, \sigma_{b}\right)=(n, n-1)$ and $a+b$ is even then insert $\left(y_{1}, y_{2}\right)=(1,2)$ adjacently on the immediate right of $\sigma_{t}^{+}$; otherwise, insert $\left(y_{1}, y_{2}\right)=(2,1)$ adjacently on the immediate left of $\sigma_{t}^{+}$.
(ii) $a+1=t<b-1$. If $\left(\sigma_{a}, \sigma_{b}\right)=(n-1, n)$ and $a+b$ is odd, or $\left(\sigma_{a}, \sigma_{b}\right)=(n, n-1)$ and $a+b$ is even then insert $\left(y_{1}, y_{2}\right)=(1,2)$ adjacently on the immediate right of $\sigma_{t}^{+}$. Otherwise, find the maximal increasing sequence of consecutive entries $\sigma_{r}<\sigma_{r+1}<\cdots<\sigma_{a}$ (set $r=1$ if $a=1$ ). We insert $y_{1}$ ( $y_{2}$, respectively) immediately before $\sigma_{r}^{+}\left(\sigma_{t}^{+}\right.$, respectively), where $\left(y_{1}, y_{2}\right)=(2,1)$ if $a+r$ is even, and $\left(y_{1}, y_{2}\right)=$ $(1,2)$ if $a+r$ is odd.
(iii) $a+1<t=b-1$. If $\left(\sigma_{a}, \sigma_{b}\right)=(n-1, n)$ and $a+b$ is even, or $\left(\sigma_{a}, \sigma_{b}\right)=(n, n-1)$ and $a+b$ is odd then insert $\left(y_{1}, y_{2}\right)=(2,1)$ adjacently on the immediate left of $\sigma_{t}^{+}$. Otherwise, find the maximal decreasing sequence of consecutive entries $\sigma_{b}>$ $\sigma_{b+1}>\cdots>\sigma_{r}($ set $r=n$ if $b=n)$. We insert $y_{1}\left(y_{2}\right.$, respectively) immediately after $\sigma_{t}^{+}\left(\sigma_{r}^{+}\right.$, respectively), where $\left(y_{1}, y_{2}\right)=(1,2)$ if $b+r$ is even, and $\left(y_{1}, y_{2}\right)=(2,1)$ if $b+r$ is odd.
(iv) $a+1=t=b-1$. If $\left(\sigma_{a}, \sigma_{b}\right)=(n, n-1)$ then to the right of $\sigma_{b}$ find the maximal decreasing sequence of consecutive entries $\sigma_{b}>\sigma_{b+1}>\cdots>\sigma_{r}$ (set $r=n$ if $b=n)$. We insert $y_{1}\left(y_{2}\right.$, respectively) immediately after $\sigma_{t}^{+}$( $\sigma_{r}^{+}$, respectively), where $\left(y_{1}, y_{2}\right)=(1,2)$ if $b+r$ is even, and $\left(y_{1}, y_{2}\right)=(2,1)$ if $b+r$ is odd.
Otherwise, $\left(\sigma_{a}, \sigma_{b}\right)=(n-1, n)$. Then to the left of $\sigma_{a}$ find the maximal increasing sequence of consecutive entries $\sigma_{r}<\sigma_{r+1}<\cdots<\sigma_{a}$ (set $t=1$ if $a=1$ ). We insert $y_{1}\left(y_{2}\right.$, respectively) immediately before $\sigma_{r}^{+}\left(\sigma_{t}^{+}\right.$, respectively), where $\left(y_{1}, y_{2}\right)=$ $(2,1)$ if $a+r$ is even, and $\left(y_{1}, y_{2}\right)=(1,2)$ if $a+r$ is odd.
V. $b=a+1$ and $\left(\sigma_{a}, \sigma_{b}\right)=(n-1, n)$ for $1 \leq a<n$.

Starting with $\sigma_{b}$, find the maximal increasing sequence of consecutive entries $\sigma_{t}<$ $\sigma_{t+1}<\cdots<\sigma_{a}<\sigma_{b}$ to the left (set $t=1$ if $a=1$ ), and find the maximal decreasing sequence of consecutive entries $\sigma_{b}>\sigma_{b+1}>\cdots>\sigma_{s}$ to the right (set $s=n$ if $b=n$ ). Then remove the elements $\sigma_{a}, \sigma_{b}$ from $\sigma$, increment each of the remaining elements by 2.
(i) If $\sigma_{a-1}>\sigma_{b+1}$ then $a \neq 1$ and we insert $\left(y_{1}, y_{2}\right)=(1,2)$ adjacently on the immediate left of $\sigma_{t}^{+}$.
(ii) Otherwise, $\sigma_{a-1}<\sigma_{b+1}$. We insert $y_{1}$ ( $y_{2}$, respectively) immediately before $\sigma_{t}^{+}$ (after $\sigma_{s}^{+}$, respectively), where $\left(y_{1}, y_{2}\right)=(1,2)$ if $t+s$ is odd, and $\left(y_{1}, y_{2}\right)=(2,1)$ otherwise.
VI. $b=a+1$ and $\left(\sigma_{a}, \sigma_{b}\right)=(n, n-1)$ for $1 \leq a<n$.

Starting with $\sigma_{a}$, find the maximal increasing sequence of consecutive entries $\sigma_{t}<$ $\sigma_{t+1}<\cdots<\sigma_{a}$ to the left (set $t=1$ if $a=1$ ), and find the maximal decreasing sequence of consecutive entries $\sigma_{a}>\sigma_{b}>\sigma_{b+1}>\cdots>\sigma_{s}$ to the right (set $s=n$ if $b=n$ ). Then remove the elements $\sigma_{a}, \sigma_{b}$ from $\sigma$, increment each of the remaining elements by 2 .
(i) If $\sigma_{a-1}<\sigma_{b+1}$ then $b \neq n$ and we insert $\left(y_{1}, y_{2}\right)=(2,1)$ adjacently on the immediate right of $\sigma_{s}^{+}$.
(ii) Otherwise, $\sigma_{a-1}>\sigma_{b+1}$. We insert $y_{1}\left(y_{2}\right.$, respectively) immediately before $\sigma_{t}^{+}$ (after $\sigma_{s}^{+}$, respectively), where $\left(y_{1}, y_{2}\right)=(1,2)$ if $t+s$ is even, and $\left(y_{1}, y_{2}\right)=(2,1)$ otherwise.

Proposition 2.1. The map $\phi: \mathfrak{S}_{n}(W) \rightarrow \mathfrak{S}_{n}(W+2)$ constructed by algorithm A preserves the descent set and the parity of the inversion number of a permutation.

Example 2.2. In the following, we demonstrate the construction of the map $\phi$ in case VI, using some permutations in $\mathfrak{S}_{9}$ containing the word $W=3175$.

Let $\sigma=319864275 \in \mathfrak{S}_{9}(W)$. We have $\operatorname{inv}(\sigma)=18$ and $\left(\sigma_{3}, \sigma_{4}\right)=(9,8)$. By case VI, to the left of $\sigma_{3}$ find the maximal increasing sequence of consecutive entries $(1,9)$, and to the right of $\sigma_{3}$ find the maximal decreasing sequence of consecutive entries $(9,8,6,4,2)$. Remove the elements 8,9 from $\sigma$ and increment the other elements by 2 . Since $\sigma_{2}<\sigma_{5}$, by $\mathrm{V}(\mathrm{i})$ with $\left(y_{1}, y_{2}\right)=(2,1)$ inserted, we obtain $\phi(\sigma)=538642197 \in \mathfrak{S}_{9}(W+2)$ with $\operatorname{inv}(\phi(\sigma))=18$.

Moreover, if $\sigma^{\prime}=369842175 \in \mathfrak{S}_{9}(W)$, we have $\operatorname{inv}\left(\sigma^{\prime}\right)=21$ and $\left(\sigma_{3}^{\prime}, \sigma_{4}^{\prime}\right)=(9,8)$. Since $\sigma_{2}>\sigma_{5}$, by $\mathrm{VI}(\mathrm{ii})$ with $\left(y_{1}, y_{2}\right)=(1,2)$ inserted, we obtain $\phi\left(\sigma^{\prime}\right)=158643297 \in$ $\mathfrak{S}_{9}(W+2)$ with $\operatorname{inv}\left(\phi\left(\sigma^{\prime}\right)\right)=15$.

### 2.2 The construction of the $\operatorname{map} \phi^{-1}: \mathfrak{S}_{n}(W+2) \rightarrow \mathfrak{S}_{n}(W)$.

For a word $V=v_{1} v_{2} \cdots v_{d}$ on the set $\{1,2, \ldots, n\}$, let $\tau_{n}(V)$ denote the $n$-complement of $V$ defined by $\tau_{n}(V)=\left(n+1-v_{1}\right)\left(n+1-v_{2}\right) \cdots\left(n+1-v_{d}\right)$. For any word $W$ on the set $\{1,2, \ldots, n-2\}$, we observe that the $n$-complement of the word $W+2$, say $W^{\prime}=$ $\tau_{n}(W+2)$, is also a word on the set $\{1,2, \ldots, n-2\}$ and, moreover, $W=\tau_{n}\left(W^{\prime}+2\right)$.

To find $\phi^{-1}$, given a permutation $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n} \in \mathfrak{S}_{n}(W+2)$, we shall construct the corresponding permutation $\phi^{-1}(\sigma)$ by removing the elements 1,2 from $\sigma$, decrement each of the remaining elements by 2 , and then insert the elements $n-1, n$ at appropriate positions so that $\phi^{-1}(\sigma)$ satisfies the requested conditions. The construction of the map
$\phi^{-1}$ is exactly the reverse operation of $\phi$, which is essentially established from $\phi$ by $\phi^{-1}=\tau_{n} \circ \phi \circ \tau_{n}$. We omit a detailed construction.


## 3 A proof of Theorem 1.3

In the following, we shall establish a bijection between the two parts of the symmetric difference of $\mathfrak{S}_{n}(U)$ and $\mathfrak{S}_{n}(V)$, where $U=b(b+1) \cdots(b+k-1)$ and $V=(b+1)(b+$ 2) $\cdots(b+k)$ for $2 \leq k \leq n-1$ and $1 \leq b \leq n-k$.

Notice that the set $\mathfrak{S}_{n}(U) \cap \mathfrak{S}_{n}(V)$ consists of all permutations containing the word $b(b+1) \cdots(b+k)$ as a subsequence.

Given a $\sigma \in \mathfrak{S}_{n}(U)-\mathfrak{S}_{n}(V)$, notice that the element $b+k$ appears to the left of the element $b+k-1$ in $\sigma$, i.e., $\sigma^{-1}(b+k)<\sigma^{-1}(b+k-1)$. We shall rearrange the elements $b, b+1, \ldots, b+k$ of $\sigma$ to construct a permutation $\sigma^{\prime} \in \mathfrak{S}_{n}(V)-\mathfrak{S}_{n}(U)$ satisfying the requested conditions. The construction is given in algorithm C below. In the following algorithm, we compose permutations right to left.
Algorithm C.
(C1) If $b+k$ appears to the left of $b$ in $\sigma$, then set

$$
\sigma^{\prime}=\left(\begin{array}{ccccc}
b+k & b & b+1 & \cdots & b+k-1 \\
b+1 & b & b+2 & \cdots & b+k
\end{array}\right) \sigma
$$

Notice that $\operatorname{inv}\left(\sigma^{\prime}\right)-\operatorname{inv}(\sigma)=1-k$.
(C2) Otherwise, $b+k$ appears between $b+j-1$ and $b+j$ for some $j(1 \leq j \leq k-1)$. Then if in particular $j=k-1$ then set

$$
\sigma^{\prime}=\left(\begin{array}{ccccc}
b & \cdots & b+k-2 & b+k & b+k-1 \\
b+1 & \cdots & b+k-1 & b+k & b
\end{array}\right) \sigma
$$

otherwise, $1 \leq j \leq k-2$ and set

$$
\sigma^{\prime}=\left(\begin{array}{cccccccc}
b & \cdots & b+j-1 & b+k & b+j & b+j+1 & \cdots & b+k-1 \\
b+1 & \cdots & b+j & b+j+1 & b & b+j+2 & \cdots & b+k
\end{array}\right) \sigma .
$$

Notice that in the former case $\operatorname{inv}\left(\sigma^{\prime}\right)-\operatorname{inv}(\sigma)=k-1$, while in the latter case $\operatorname{inv}\left(\sigma^{\prime}\right)-\operatorname{inv}(\sigma)=2 j-k+1$.
We observe that $\operatorname{Des}\left(\sigma^{\prime}\right)=\operatorname{Des}(\sigma)$ and $\operatorname{inv}\left(\sigma^{\prime}\right)-\operatorname{inv}(\sigma) \equiv k-1(\bmod 2)$. On the other hand, it is straightforward to construct the inverse map by the reverse operation.

## 4 A proof of Theorem 1.5

For a fixed $r \in\{1,2, \ldots, n-1\}$, let $W=w_{1} w_{2} \cdots w_{n-2}$ be a permutation of the set $\{1,2, \ldots, r-1, r+2, \ldots, n\}$. Let $\mathfrak{S}_{n}^{*}(W) \subset \mathfrak{S}_{n}(W)$ denote the subset consisting of the permutations in which the elements $r, r+1$ are adjacent. Note that interchanging the elements $r, r+1$ is a sign-reversing involution on the difference set $\mathfrak{S}_{n}(W)-\mathfrak{S}_{n}^{*}(W)$ which preserves descent sets. Hence

$$
\begin{equation*}
\sum_{\sigma \in \mathfrak{S}_{n}(W)}(-1)^{\operatorname{inv}(\sigma)} q^{\operatorname{maj}(\sigma)}=\sum_{\sigma \in \mathfrak{S}_{n}^{*}(W)}(-1)^{\operatorname{inv}(\sigma)} q^{\operatorname{maj}(\sigma)} \tag{4.1}
\end{equation*}
$$

Any permutation $\sigma \in \mathfrak{S}_{n}^{*}(W)$ can be obtained from $W$ by inserting the elements $r, r+1$ adjacently to the left of $W$, between two elements of $W$, or to the right of $W$, i.e., one of the $n-1$ spaces of $W$. These spaces are indexed by $0,1, \ldots, n-2$ from left to right. We shall study the major-index increment of such an insertion by extending the insertion lemma of Haglund-Loehr-Remmel [5, Lemma 4.1].

Assume $w_{0}=0$ and $w_{n-1}=n+1$. For $0 \leq j \leq n-2$, the $j$ th space, which is between $w_{j}$ and $w_{j+1}$, is called an RL-space of $W$ relative to $r$ if it satisfies one of the following conditions:

- $w_{j}>w_{j+1}>r$,
- $r>w_{j}>w_{j+1}$, or
- $w_{j}<r<w_{j+1}$.

Notice that the space to the left (right, respectively) of $W$ is an RL-space if $r<w_{1}$ ( $w_{n-2}<r$, respectively). Any space which is not an $R L$-space is called an $L R$-space (relative to $r$ ). In fact, an $R L$-space is a space where the insertion of $r$ in $W$ creates no 'new descent', while an $L R$-space is one where a new descent is created. Suppose there are $d R L$-spaces of $W$ relative to $r$, we label the $R L$-spaces from right to left with $0,1, \ldots, d-1$ and label the $L R$-spaces from left to right with $d, d+1, \ldots, n-2$, called the canonical labeling of $W$. Let $\alpha(W)=\left(a_{0}, a_{1}, \ldots, a_{n-2}\right)$ denote the vector of the labeling, where $a_{j}$ is the label the $j$ th space receives.

Example 4.1. Suppose $r=4$ and $W$ is the permutation $W=8361297$ of the set $\{1,2, \ldots, 9\}-\{4,5\}$. As shown below, the $R L$-spaces of $W$ relative to 4 are the spaces with labels $a_{0}, a_{2}, a_{5}, a_{6}$ and the $L R$-spaces are the ones with labels $a_{1}, a_{3}, a_{4}, a_{7}$. The vector of the canonical labeling of $W$ is $\alpha(W)=(3,4,2,5,6,1,0,7)$.

$$
a_{0} 8_{a_{1}} 3_{a_{2}} 6_{a_{3}} 1_{a_{4}} 2_{a_{5}} 9_{a_{6}} 7_{a_{7}} \quad \longrightarrow \quad \alpha(W)=(3,4,2,5,6,1,0,7)
$$

The result of Haglund-Loehr-Remmel [5, Lemma 4.1] can be expressed as follows.

Lemma 4.2. (Insertion Lemma [5]) If $\pi$ is the word obtained from $W$ by inserting the element $r$ at the $j$ th space of $W$ then we have

$$
\operatorname{maj}(\pi)=\operatorname{maj}(W)+a_{j}
$$

We associate $W$ with another vector $\beta(W)=\left(b_{0}, b_{1}, \ldots, b_{n-2}\right)$, where $b_{j}$ is the number of $R L$-spaces of $W$ relative to $r$ appearing to the right of the $j$ th space for $0 \leq j \leq n-2$. For example, given $r=4$ and the word $W=8361297$ in Example 4.1, the associated vector is $\beta(W)=(3,3,2,2,2,1,0,0)$.

$$
b_{0} 8_{b_{1}} 3_{b_{2}} 6_{b_{3}} 1_{b_{4}} 2_{b_{5}} 9_{b_{6}} 7_{b_{7}} \quad \longrightarrow \quad \beta(W)=(3,3,2,2,2,1,0,0)
$$

We derive the following extension of the Lemma 4.2.
Lemma 4.3. If $\sigma$ is the word obtained from $W$ by inserting the word $z_{1} z_{2}$ at the jth space of $W$, where $z_{1} z_{2}$ is either $r(r+1)$ or $(r+1) r$, then we have

$$
\operatorname{maj}(\sigma)= \begin{cases}\operatorname{maj}(W)+a_{j}+b_{j} & \text { if } z_{1} z_{2}=r(r+1) \\ \operatorname{maj}(W)+a_{j}+b_{j}+j+1 & \text { if } z_{1} z_{2}=(r+1) r\end{cases}
$$

Notice that $\sigma$ has the same (opposite, respectively) sign of $W$ if $z_{1} z_{2}=r(r+1)\left(z_{1} z_{2}=\right.$ $(r+1) r$, respectively). By Lemma 4.3 and (4.1), we have the following result.

Corollary 4.4. For any element $r \in\{1,2, \ldots, n-1\}$ and any permutation $W$ of the set $\{1,2, \ldots, n\}-\{r, r+1\}$ with the associated vectors $\alpha(W)=\left(a_{0}, \ldots, a_{n-2}\right)$ and $\beta(W)=$ $\left(b_{0}, \ldots, b_{n-2}\right)$, we have

$$
\sum_{\sigma \in \mathfrak{S}_{n}(W)}(-1)^{i n v(\sigma)} q^{\operatorname{maj}(\sigma)}=(-1)^{i n v(W)} q^{m a j(W)}\left(\sum_{j=0}^{n-2} q^{a_{j}+b_{j}}\left(1-q^{j+1}\right)\right) .
$$

To prove Theorem 1.5, we prove the following result:

$$
\begin{equation*}
f(W ; q):=\sum_{j=0}^{n-2} q^{a_{j}+b_{j}}\left(1-q^{j+1}\right)=[n-1]_{(-1)^{n} q}[n]_{(-1)^{n-1} q} \tag{4.2}
\end{equation*}
$$

## 5 Applications

### 5.1 An extended result of Theorem 1.5

We derive a product formula of the signed enumerator of the major index over the permutations in $\mathfrak{S}_{n}$ containing a permutation $W$ of the set $\{2 k+1,2 k+2, \ldots, n\}$ as a subsequence, in the spirit of Theorem 1.5.

Theorem 5.1. For $k \geq 1$ and any permutation $W$ of the set $\{2 k+1,2 k+2, \ldots, n\}$, we have

$$
\begin{aligned}
& \sum_{\sigma \in \mathfrak{S}_{n}(W)}(-1)^{i n v(\sigma)} q^{\operatorname{maj}(\sigma)}=(-1)^{i n v(W)} q^{\operatorname{maj}(W)} \sum_{\sigma \in \mathfrak{S}_{n}(2 k+1: n)}(-1)^{i n v(\sigma)} q^{\operatorname{maj}(\sigma)} \\
& =(-1)^{i n v(W)} q^{m a j(W)}[n-2 k+1]_{(-1)^{n-2 k} q} \cdots[n]_{(-1)^{n-1} q} .
\end{aligned}
$$

### 5.2 Labelings of a poset

Given a poset $(P,<)$ on a set $P=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ with $k \leq n-2$, by an injective labeling of $(P,<)$ we mean an injection $f: P \rightarrow\{1,2, \ldots, n-2\}$. Let $f+2$ be the labeling of $(P,<)$ obtained from $f$ by incrementing the label of each element by 2 , which is an injection $P \rightarrow\{3,4, \ldots, n\}$. Define

$$
\mathfrak{S}_{n}(f):=\left\{\sigma \in \mathfrak{S}_{n}: \sigma^{-1}\left(f\left(x_{i}\right)\right)<\sigma^{-1}\left(f\left(x_{j}\right)\right), \text { for } x_{i}<x_{j} \text { in }(P,<)\right\} .
$$

We prove the following result.
Theorem 5.2. For any poset $(P,<)$ with at most $n-2$ elements and any injective labeling $f: P \rightarrow\{1,2, \ldots, n-2\}$, we have

$$
\sum_{\sigma \in \mathfrak{S}_{n}(f)}(-1)^{\operatorname{inv}(\sigma)} q^{\operatorname{maj}(\sigma)}=\sum_{\sigma \in \mathfrak{S}_{n}(f+2)}(-1)^{\operatorname{inv}(\sigma)} q^{\operatorname{maj}(\sigma)} .
$$

### 5.3 Pattern avoidance

Putting Theorem 1.2 in the realm of pattern-avoidance, one can consider the $\pi$-avoiding words of a given underlying set $S \subseteq\{1,2, \ldots, n-2\}$ for a certain pattern $\pi$. Let $\mathfrak{S}_{n}(\pi ; S)$ be the set consisting of the permutations $\sigma \in \mathfrak{S}_{n}$ containing no $\pi$-pattern restricted to the elements of $S$. Let $S+2:=\{z+2 \mid z \in S\} \subset\{3,4, \ldots, n\}$. For example, for $n=4$, consider a pattern $\pi=21$ and a set $S=\{1,2\}$. Then $S+2=\{3,4\}$ and we have

$$
\begin{aligned}
\mathfrak{S}_{4}(\pi ; S) & =\{1234,1243,1324,1342,1423,1432,3124,3142,3412,4123,4132,4312\} \\
\mathfrak{S}_{4}(\pi ; S+2) & =\{1234,1324,1342,2134,2314,2341,3124,3142,3214,3241,3412,3421\}
\end{aligned}
$$

$$
\sum_{\sigma \in \mathfrak{S}_{4}(\pi ; S)}(-1)^{\operatorname{inv}(\sigma)} q^{\operatorname{maj}(\sigma)}=\sum_{\sigma \in \mathfrak{S}_{4}(\pi ; S+2)}(-1)^{\operatorname{inv}(\sigma)} q^{\operatorname{maj}(\sigma)}=1+q^{2}-q^{3}-q^{5}
$$

Making use of the map $\phi$ in Theorem 1.2, we have the following result.
Theorem 5.3. For a pattern $\pi$ and an underlying set $S \subseteq\{1,2, \ldots, n-2\}$, we have

$$
\sum_{\sigma \in \mathfrak{S}_{n}(\pi ; S)}(-1)^{i n v(\sigma)} q^{\operatorname{maj}(\sigma)}=\sum_{\sigma \in \mathfrak{S}_{n}(\pi ; S+2)}(-1)^{i n v(\sigma)} q^{\operatorname{maj}(\sigma)} .
$$

## 6 Concluding remarks

In this paper, we study the signed distributions of the major index on permutations with subsequence restrictions. Recall that a signed permutation in the group $B_{n}$ is a bijection $\sigma$ of the set $\{-n,-n+1, \ldots,-1,1,2, \ldots, n\}$ onto itself such that $\sigma(-i)=-\sigma(i)$ for all $1 \leq i \leq n$. The flag major index of $\sigma$, denoted by fmaj, is defined as fmaj $(\sigma):=2 \operatorname{maj}(\sigma)+$ $\operatorname{neg}(\sigma)$, where $\operatorname{maj}(\sigma)$ is the major index of the sequence $(\sigma(1), \ldots, \sigma(n))$ with respect to the order $-1<\cdots<-n<1<\cdots<n$, and neg $(\sigma)$ is the number negative elements in the sequence. Adin-Gessel-Roichman obtained the following type-B analogue of (1.2)

$$
\begin{equation*}
\sum_{\sigma \in B_{n}} \operatorname{sign}(\sigma) q^{\mathrm{fmaj}(\sigma)}=[2]_{-q}[4]_{q} \cdots[2 n]_{(-1)^{n} q} \tag{6.1}
\end{equation*}
$$

In the realm of parabolic quotients of Coxeter groups, we are interested in whether our main results can be extended to the signed permutations in $B_{n}$ with subsequence restrictions, on the basis of (6.1).

## References

[1] R. M. Adin, I. M. Gessel, and Y. Roichman. "Signed Mahonians". J. Combin. Theory Ser. A 109.1 (2005), pp. 25-43. Link.
[2] R. M. Adin and Y. Roichman. "The flag major index and group actions on polynomial rings". European J. Combin. 22.4 (2001), pp. 431-446. Link.
[3] F. Caselli. "Signed Mahonians on some trees and parabolic quotients". J. Combin. Theory Ser. A 119.7 (2012), pp. 1447-1460. Link.
[4] D. Foata and M.-P. Schützenberger. "Major index and inversion number of permutations". Math. Nachr. 83 (1978), pp. 143-159. Link.
[5] J. Haglund, N. Loehr, and J. B. Remmel. "Statistics on wreath products, perfect matchings, and signed words". European J. Combin. 26.6 (2005), pp. 835-868. Link.
[6] P. MacMahon. Combinatory Analysis. Chelsea, New York, 1960. (Originally published in 2 volumes by Cambridge Univ. Press, 1915-1916.)
[7] R. Stanley. "Ordered structures and partitions". Mem. Amer. Math. Soc. 119 (1972). Link.
[8] M. L. Wachs. "An involution for signed Eulerian numbers". Discrete Math. 99.1-3 (1992), pp. 59-62. Link.


[^0]:    *speu@math.ntnu.edu.tw.

