Signed Mahonian Identities on Permutations with Subsequence Restrictions

Sen-Peng Eu^{*1}, Tung-Shan Fu², Hsiang-Chun Hsu³, Hsin-Chieh Liao⁴, and Wei-Liang Sun¹

¹Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan, ROC ²Department of Applied Mathematics, National Pingtung University, Pingtung 90003, Taiwan, ROC ³Department of Mathematics, Tambana University, Nam Taipei City 25127, Taiwan, BOC

³Department of Mathematics, Tamkang University, New Taipei City 25137, Taiwan, ROC ⁴Department of Mathematics, University of Miami, Coral Gables, FL 33124, USA

Abstract. In this paper, we present a number of results surrounding Caselli's conjecture on the equidistribution of the major index with sign over the two subsets of permutations of $\{1, 2, ..., n\}$ containing respectively the word $12 \cdots k$ and the word $(n - k + 1) \cdots n$ as a subsequence, under a parity condition of n and k. We derive broader bijective results on permutations containing varied subsequences. As a consequence, we obtain the signed mahonian identities on families of restricted permutations, in the spirit of a well-known formula of Gessel and Simion, covering a combinatorial proof of Caselli's conjecture. We also derive an extension of the insertion lemma of Haglund, Loehr, and Remmel which allows us to obtain a signed enumerator of the major-index increments resulting from the insertion of a pair of consecutive numbers in any place of a given permutation.

Keywords: Signed mahonian statistics, major index with sign, subsequence restrictions

1 Introduction

1.1 Signed mahonians

Let \mathfrak{S}_n be the set of permutations of $\{1, 2, ..., n\}$. The inversion number and the major index are two well-known mahonian statistics of permutations. Let $\sigma = \sigma_1 \sigma_2 \cdots \sigma_n$ be a permutation in \mathfrak{S}_n , where $\sigma_i = \sigma(i)$ for $1 \le i \le n$. An *inversion* of σ is a pair (σ_i, σ_j) , $1 \le i < j \le n$ such that $\sigma_i > \sigma_j$. The *inversion number* $\operatorname{inv}(\sigma)$ of σ is defined to be the number of inversions of σ . A *descent* of σ is an integer $i, 1 \le i \le n - 1$ such that $\sigma_i > \sigma_{i+1}$. Let $\operatorname{Des}(\sigma)$ denote the set of descents of σ . The *descent number* (des) and *major index* (maj) of σ are defined by $\operatorname{des}(\sigma) = |\operatorname{Des}(\sigma)|$ and $\operatorname{maj}(\sigma) = \sum_{i \in \operatorname{Des}(\sigma)} i$.

^{*}speu@math.ntnu.edu.tw.

Percy MacMahon [6] proved that the major index statistic is equidistributed with the inversion number statistic over \mathfrak{S}_n , i.e.,

$$\sum_{\sigma \in \mathfrak{S}_n} q^{\mathsf{maj}(\sigma)} = \sum_{\sigma \in \mathfrak{S}_n} q^{\mathsf{inv}(\sigma)} = [2]_q [3]_q \cdots [n]_q, \tag{1.1}$$

where $[j]_q = 1 + q + \cdots + q^{j-1}$ for any positive integer *j*. This result was extended to the group B_n of signed permutations with respect to the *flag major index* statistic by Adin–Roichman [2].

Gessel and Simion obtained the following formula of the distribution of the major index with sign over \mathfrak{S}_n (see [8, Corollary 2] for an interesting bijective proof)

$$\sum_{\sigma \in \mathfrak{S}_n} (-1)^{\mathsf{inv}(\sigma)} q^{\mathsf{maj}(\sigma)} = [2]_{-q} [3]_q \cdots [n]_{(-1)^{n-1}q}.$$
 (1.2)

A type-B analogue of (1.2) was obtained by Adin–Gessel–Roichman [1, Theorem 1.5].

A *word W* on a set *X* is a finite sequence of elements in *X*. Unless specified otherwise, we consider only the words without repeated elements. The word *W* is a permutation of *X* if *W* consists of all elements of *X*. Given a word $W = w_1w_2\cdots w_k$ on the set $\{1, 2, \ldots, n\}$, we say that a permutation $\sigma \in \mathfrak{S}_n$ contains the word *W* as a *subsequence* if there exists a sequence of indices $1 \le i_1 < i_2 < \cdots < i_k \le n$ such that $\sigma_{i_j} = w_j$ for all *j*, $1 \le j \le k$. Let $\mathfrak{S}_n(W)$ denote the subset of \mathfrak{S}_n consisting of the permutations containing the word *W* as a subsequence, i.e.,

$$\mathfrak{S}_n(W) := \{ \sigma \in \mathfrak{S}_n : \sigma^{-1}(w_1) < \sigma^{-1}(w_2) < \cdots \sigma^{-1}(w_k) \}.$$

In particular, for two integers $a, b \in \{1, 2, ..., n\}$, a < b, let $\mathfrak{S}_n(a:b)$ denote the subset of permutations containing the word $a(a + 1) \cdots b$ as a subsequence. For example, $\mathfrak{S}_4(2:4) = \{1234, 2134, 2314, 2341\}$.

By a classical result of Stanley [7] and Foata–Schützenberger [4], the statistics maj and inv remain equidistributed on all permutations in \mathfrak{S}_n containing the word $(n - k + 1) \cdots n$ as a subsequence, for $1 \le k \le n - 1$, i.e.,

$$\sum_{\sigma \in \mathfrak{S}_n(n-k+1:n)} q^{\mathsf{maj}(\sigma)} = \sum_{\sigma \in \mathfrak{S}_n(n-k+1:n)} q^{\mathsf{inv}(\sigma)} = [k+1]_q [k+2]_q \cdots [n]_q.$$
(1.3)

Arising from the study of signed mahonians in parabolic quotients of Coxeter groups, Caselli [3, Corollary 3.4] obtained the following product formula for the distribution of the major index with sign over $\mathfrak{S}_n(n-k+1:n)$, which includes the formula in (1.2) as a special case.

$$\sum_{\sigma \in \mathfrak{S}_n(n-k+1:n)} (-1)^{\mathsf{inv}(\sigma)} q^{\mathsf{maj}(\sigma)} = [k+1]_{(-1)^{nk+n+k}q} [k+2]_{(-1)^{k+1}q} \cdots [n]_{(-1)^{n-1}q}.$$
(1.4)

Caselli remarked that the proof of (1.4) is quite involved, without algebraic or combinatorial insight. He also raised a question [3, Problem 5.8] about giving a bijective proof of the following observation.

Conjecture 1.1. If *n* is even or *k* is odd then

$$\sum_{\sigma \in \mathfrak{S}_n(1:k)} (-1)^{\mathit{inv}(\sigma)} q^{\mathit{maj}(\sigma)} = \sum_{\sigma \in \mathfrak{S}_n(n-k+1:n)} (-1)^{\mathit{inv}(\sigma)} q^{\mathit{maj}(\sigma)}$$

It is curious that the above equidistribution of signed major index depends on the parities of *n* and *k*. The motivation of this paper is to solve Caselli's problem. We prove much broader results on permutations with varied subsequence restrictions.

1.2 Main results

Given a word $W = w_1 w_2 \cdots w_k$ on the set $\{1, 2, \dots, n\}$ and an integer t, let W + t denote the word $w'_1 w'_2 \cdots w'_k$ on the set $\{t + 1, t + 2, \dots, t + n\}$ obtained from W by incrementing each element by t, i.e., $w'_j = w_j + t$. Our first main result gives a sign-preserving and descent set-preserving bijection between the two subsets of permutations containing respectively the word W and the word W + 2 as a subsequence.

Theorem 1.2. For any word W on the set $\{1, 2, ..., n-2\}$, there is a bijection $\phi : \sigma \to \sigma'$ of $\mathfrak{S}_n(W)$ onto $\mathfrak{S}_n(W+2)$ such that

$$Des(\sigma') = Des(\sigma)$$
 and $inv(\sigma') \equiv inv(\sigma) \pmod{2}$.

Hence we have the following identity

$$\sum_{\sigma \in \mathfrak{S}_n(W)} (-1)^{inv(\sigma)} t^{des(\sigma)} q^{maj(\sigma)} = \sum_{\sigma \in \mathfrak{S}_n(W+2)} (-1)^{inv(\sigma)} t^{des(\sigma)} q^{maj(\sigma)}.$$

An immediate consequence of this result is that it proves the case of Conjecture 1.1 when n and k have the same parity.

Our next result establishes a connection between the two parts of the symmetric difference of $\mathfrak{S}_n(W)$ and $\mathfrak{S}_n(W+1)$ when the word W is an increasing sequence of consecutive numbers.

Theorem 1.3. For $2 \le k \le n - 1$ and $1 \le b \le n - k$, let U and V be the words of k consecutive numbers respectively given by

$$U = b(b+1)\cdots(b+k-1)$$
 and $V = (b+1)(b+2)\cdots(b+k)$.

Then there is a bijection $\gamma: \sigma \to \sigma'$ of $\mathfrak{S}_n(U) - \mathfrak{S}_n(V)$ onto $\mathfrak{S}_n(V) - \mathfrak{S}_n(U)$ such that

$$Des(\sigma') = Des(\sigma)$$
 and $inv(\sigma') - inv(\sigma) \equiv k - 1 \pmod{2}$

This result explains the case of Conjecture 1.1 when n and k have the opposite parities. Notice that Theorem 1.2 and Theorem 1.3 lead to the following analogous results of (1.4) for families of the permutations. This gives a complete picture of the Conjecture 1.1 for all parity cases of n and k. **Corollary 1.4.** For $2 \le k \le n-1$ and $1 \le b \le n-k+1$, the following results hold.

1. If k is odd then we have

$$\sum_{\sigma \in \mathfrak{S}_n(b:b+k-1)} (-1)^{inv(\sigma)} q^{maj(\sigma)} = [k+1]_{-q} [k+2]_q \cdots [n]_{(-1)^{n-1}q}$$

2. If k is even and n is even then we have

$$\sum_{\sigma \in \mathfrak{S}_n(b:b+k-1)} (-1)^{inv(\sigma)} q^{maj(\sigma)} = \begin{cases} [k+1]_q [k+2]_{-q} [k+3]_q \cdots [n]_{-q} & \text{for b odd} \\ (2-[k+1]_q) [k+2]_{-q} [k+3]_q \cdots [n]_{-q} & \text{for b even.} \end{cases}$$

3. If k is even and n is odd then we have

$$\sum_{\sigma \in \mathfrak{S}_n(b:b+k-1)} (-1)^{inv(\sigma)} q^{maj(\sigma)} = \begin{cases} \left(2 - [k+1]_{-q}\right) [k+2]_{-q} [k+3]_q \cdots [n]_q & \text{for b odd} \\ [k+1]_{-q} [k+2]_{-q} [k+3]_q \cdots [n]_q & \text{for b even.} \end{cases}$$

For any element $r \in \{1, 2, ..., n\}$ and any permutation W of the set $\{1, 2, ..., n\} - \{r\}$, Haglund–Loehr–Remmel [5] derived an insertion lemma which describes the increment of major index resulting from the insertion of the element r in W, and proved that no matter what the element r is with respect to other elements

$$\sum_{\sigma \in \mathfrak{S}_n(W)} q^{\mathsf{maj}(\sigma)} = q^{\mathsf{maj}(W)}[n]_q.$$
(1.5)

We derive an extension of the insertion lemma which allows us to obtain the following signed analogue.

Theorem 1.5. *For* $1 \le r \le n - 1$ *and any permutation W of the set* $\{1, 2, ..., n\} - \{r, r + 1\}$ *, we have*

$$\sum_{\sigma \in \mathfrak{S}_n(W)} (-1)^{inv(\sigma)} q^{maj(\sigma)} = (-1)^{inv(W)} q^{maj(W)} [n-1]_{(-1)^n q} [n]_{(-1)^{n-1} q}.$$

We derive some extended results from our main results, over the permutations with subsequence restrictions defined by an injective labeling of a poset, and by an patternavoiding condition within a given underlying set.

2 A proof of Theorem 1.2

In this section, we shall establish a sign-preserving and descent set-preserving map ϕ : $\mathfrak{S}_n(W) \to \mathfrak{S}_n(W+2)$ for any word W on the set $\{1, 2, \dots, n-2\}$.

2.1 The construction of the map $\phi : \mathfrak{S}_n(W) \to \mathfrak{S}_n(W+2)$.

Given a permutation $\sigma = \sigma_1 \sigma_2 \cdots \sigma_n \in \mathfrak{S}_n(W)$, we shall construct the corresponding permutation $\phi(\sigma)$ by removing the elements n - 1, n from σ , increment each of the remaining elements by 2, and then insert the elements 1, 2 at appropriate positions so that $\phi(\sigma)$ satisfies the requested conditions. Let y_1, y_2 denote the entries for the elements 1, 2 in $\phi(\sigma)$, i.e., $\{y_1, y_2\} = \{1, 2\}$, where y_2 appears to the right of y_1 . Described in algorithm A, the construction of $\phi(\sigma)$ is given by case analysis, where the cases I, II, III, and IV describe the construction when the elements n - 1, n of σ are not adjacent, and the cases V and VI describe the construction when n - 1, n of σ are adjacent.

In the following algorithm, we assume $\sigma_0 = \sigma_{n+1} = 0$, and let σ_j^+ denote the entry σ_j incremented by 2.

Algorithm A.

Find the elements n - 1, n of σ . Let $\{\sigma_a, \sigma_b\} = \{n - 1, n\}$ for some integers a, b with $1 \le a < b \le n$. We construct the permutation $\phi(\sigma)$ according to the following cases. **I.** $\sigma_{a-1} > \sigma_{a+1}$ and $\sigma_{b-1} > \sigma_{b+1}$ for a > 1 and $a + 1 < b \le n$.

Starting with σ_a (σ_b , respectively), search to the left and find the maximal increasing sequence of consecutive entries $\sigma_t < \sigma_{t+1} < \cdots < \sigma_a$ ($\sigma_s < \sigma_{s+1} < \cdots < \sigma_b$, respectively). Then remove the elements σ_a , σ_b from σ , increment each of the remaining elements by 2, and insert y_1 (y_2 , respectively) on the immediate left of σ_t^+ (σ_s^+ , respectively). Note that if s = a + 1 then y_2 is between σ_{a-1}^+ and σ_{a+1}^+ is on the right of y_2 .

II. $\sigma_{a-1} < \sigma_{a+1}$ and $\sigma_{b-1} < \sigma_{b+1}$ for $a \ge 1$ and a+1 < b < n.

Starting with σ_a (σ_b , respectively), search to the right and find the maximal decreasing sequence of consecutive entries $\sigma_a > \sigma_{a+1} > \cdots > \sigma_t$ ($\sigma_b > \sigma_{b+1} > \cdots > \sigma_s$, respectively). Then remove the elements σ_a, σ_b from σ , increment each of the remaining elements by 2, and insert y_1 (y_2 , respectively) on the immediate right of σ_t^+ (after σ_s^+ , respectively). Note that if t = b - 1 then y_1 is between σ_{b-1}^+ and σ_{b+1}^+ .

III. $\sigma_{a-1} > \sigma_{a+1}$ and $\sigma_{b-1} < \sigma_{b+1}$ for a > 1 and a + 1 < b < n.

Starting with σ_a (σ_b , respectively), search to the left (right, respectively) and find the maximal increasing (decreasing, respectively) sequence of consecutive entries $\sigma_t < \sigma_{t+1} < \cdots < \sigma_a$ ($\sigma_b > \sigma_{b+1} > \cdots > \sigma_s$, respectively). Then remove the elements σ_a, σ_b from σ , increment each of the remaining elements by 2, and insert y_1 (y_2 , respectively) immediately before σ_t^+ (after σ_s^+ , respectively).

Notice that in the above three cases the elements y_1, y_2 are not adjacent. Choose either $(y_1, y_2) = (1, 2)$ or $(y_1, y_2) = (2, 1)$ such that $inv(\phi(\sigma)) \equiv inv(\sigma) \pmod{2}$. **IV.** $\sigma_{a-1} < \sigma_{a+1}$ and $\sigma_{b-1} > \sigma_{b+1}$ for $1 \le a < b \le n$.

Starting with σ_a (σ_b , respectively), search to the right (left, respectively) and find the maximal decreasing (increasing, respectively) sequence of consecutive entries $\sigma_a > \sigma_{a+1} > \cdots > \sigma_t$ ($\sigma_s < \sigma_{s+1} < \cdots < \sigma_b$, respectively). Then remove the elements σ_a, σ_b from σ , increment each of the remaining elements by 2. To preserve the descent set and the parity of the inversion number, the insertion of y_1, y_2 is determined as follows.

If $t \neq s$ then there exists at least one element between σ_t and σ_s . We insert y_1 (y_2 , respectively) immediately after σ_t^+ (before σ_s^+ , respectively). Since y_1, y_2 are not adjacent, choose either (y_1, y_2) = (1,2) or (y_1, y_2) = (2,1) such that $inv(\phi(\sigma)) \equiv inv(\sigma) \pmod{2}$.

Otherwise, t = s. The insertion and assignment of y_1, y_2 are determined according the following possibilities.

- (i) a + 1 < t < b 1. If $(\sigma_a, \sigma_b) = (n 1, n)$ and a + b is odd, or $(\sigma_a, \sigma_b) = (n, n 1)$ and a + b is even then insert $(y_1, y_2) = (1, 2)$ adjacently on the immediate right of σ_t^+ ; otherwise, insert $(y_1, y_2) = (2, 1)$ adjacently on the immediate left of σ_t^+ .
- (ii) a + 1 = t < b 1. If $(\sigma_a, \sigma_b) = (n 1, n)$ and a + b is odd, or $(\sigma_a, \sigma_b) = (n, n 1)$ and a + b is even then insert $(y_1, y_2) = (1, 2)$ adjacently on the immediate right of σ_t^+ . Otherwise, find the maximal increasing sequence of consecutive entries $\sigma_r < \sigma_{r+1} < \cdots < \sigma_a$ (set r = 1 if a = 1). We insert y_1 (y_2 , respectively) immediately before σ_r^+ (σ_t^+ , respectively), where $(y_1, y_2) = (2, 1)$ if a + r is even, and $(y_1, y_2) =$ (1, 2) if a + r is odd.
- (iii) a + 1 < t = b 1. If $(\sigma_a, \sigma_b) = (n 1, n)$ and a + b is even, or $(\sigma_a, \sigma_b) = (n, n 1)$ and a + b is odd then insert $(y_1, y_2) = (2, 1)$ adjacently on the immediate left of σ_t^+ . Otherwise, find the maximal decreasing sequence of consecutive entries $\sigma_b > \sigma_{b+1} > \cdots > \sigma_r$ (set r = n if b = n). We insert $y_1 (y_2$, respectively) immediately after $\sigma_t^+ (\sigma_r^+, \text{ respectively})$, where $(y_1, y_2) = (1, 2)$ if b + r is even, and $(y_1, y_2) = (2, 1)$ if b + r is odd.
- (iv) a + 1 = t = b 1. If $(\sigma_a, \sigma_b) = (n, n 1)$ then to the right of σ_b find the maximal decreasing sequence of consecutive entries $\sigma_b > \sigma_{b+1} > \cdots > \sigma_r$ (set r = n if b = n). We insert y_1 (y_2 , respectively) immediately after σ_t^+ (σ_r^+ , respectively), where $(y_1, y_2) = (1, 2)$ if b + r is even, and $(y_1, y_2) = (2, 1)$ if b + r is odd. Otherwise, $(\sigma_a, \sigma_b) = (n 1, n)$. Then to the left of σ_a find the maximal increasing

sequence of consecutive entries $\sigma_r < \sigma_{r+1} < \cdots < \sigma_a$ (set t = 1 if a = 1). We insert y_1 (y_2 , respectively) immediately before σ_r^+ (σ_t^+ , respectively), where (y_1, y_2) = (2, 1) if a + r is even, and (y_1, y_2) = (1, 2) if a + r is odd.

V. b = a + 1 and $(\sigma_a, \sigma_b) = (n - 1, n)$ for $1 \le a < n$.

Starting with σ_b , find the maximal increasing sequence of consecutive entries $\sigma_t < \sigma_{t+1} < \cdots < \sigma_a < \sigma_b$ to the left (set t = 1 if a = 1), and find the maximal decreasing sequence of consecutive entries $\sigma_b > \sigma_{b+1} > \cdots > \sigma_s$ to the right (set s = n if b = n). Then remove the elements σ_a, σ_b from σ , increment each of the remaining elements by 2.

(i) If $\sigma_{a-1} > \sigma_{b+1}$ then $a \neq 1$ and we insert $(y_1, y_2) = (1, 2)$ adjacently on the immediate left of σ_t^+ .

(ii) Otherwise, $\sigma_{a-1} < \sigma_{b+1}$. We insert y_1 (y_2 , respectively) immediately before σ_t^+ (after σ_s^+ , respectively), where (y_1, y_2) = (1, 2) if t + s is odd, and (y_1, y_2) = (2, 1) otherwise.

VI. b = a + 1 and $(\sigma_a, \sigma_b) = (n, n - 1)$ for $1 \le a < n$.

Starting with σ_a , find the maximal increasing sequence of consecutive entries $\sigma_t < \sigma_{t+1} < \cdots < \sigma_a$ to the left (set t = 1 if a = 1), and find the maximal decreasing sequence of consecutive entries $\sigma_a > \sigma_b > \sigma_{b+1} > \cdots > \sigma_s$ to the right (set s = n if b = n). Then remove the elements σ_a, σ_b from σ , increment each of the remaining elements by 2.

- (i) If $\sigma_{a-1} < \sigma_{b+1}$ then $b \neq n$ and we insert $(y_1, y_2) = (2, 1)$ adjacently on the immediate right of σ_s^+ .
- (ii) Otherwise, $\sigma_{a-1} > \sigma_{b+1}$. We insert y_1 (y_2 , respectively) immediately before σ_t^+ (after σ_s^+ , respectively), where (y_1, y_2) = (1,2) if t + s is even, and (y_1, y_2) = (2,1) otherwise.

Proposition 2.1. The map $\phi : \mathfrak{S}_n(W) \to \mathfrak{S}_n(W+2)$ constructed by algorithm A preserves the descent set and the parity of the inversion number of a permutation.

Example 2.2. In the following, we demonstrate the construction of the map ϕ in case VI, using some permutations in \mathfrak{S}_9 containing the word W = 3175.

Let $\sigma = 319864275 \in \mathfrak{S}_9(W)$. We have $\operatorname{inv}(\sigma) = 18$ and $(\sigma_3, \sigma_4) = (9, 8)$. By case VI, to the left of σ_3 find the maximal increasing sequence of consecutive entries (1, 9), and to the right of σ_3 find the maximal decreasing sequence of consecutive entries (9, 8, 6, 4, 2). Remove the elements 8,9 from σ and increment the other elements by 2. Since $\sigma_2 < \sigma_5$, by V(i) with $(y_1, y_2) = (2, 1)$ inserted, we obtain $\phi(\sigma) = 538642197 \in \mathfrak{S}_9(W+2)$ with $\operatorname{inv}(\phi(\sigma)) = 18$.

Moreover, if $\sigma' = 369842175 \in \mathfrak{S}_9(W)$, we have $\operatorname{inv}(\sigma') = 21$ and $(\sigma'_3, \sigma'_4) = (9, 8)$. Since $\sigma_2 > \sigma_5$, by VI(ii) with $(y_1, y_2) = (1, 2)$ inserted, we obtain $\phi(\sigma') = 158643297 \in \mathfrak{S}_9(W+2)$ with $\operatorname{inv}(\phi(\sigma')) = 15$.

2.2 The construction of the map ϕ^{-1} : $\mathfrak{S}_n(W+2) \rightarrow \mathfrak{S}_n(W)$.

For a word $V = v_1v_2 \cdots v_d$ on the set $\{1, 2, \ldots, n\}$, let $\tau_n(V)$ denote the *n*-complement of V defined by $\tau_n(V) = (n + 1 - v_1)(n + 1 - v_2) \cdots (n + 1 - v_d)$. For any word W on the set $\{1, 2, \ldots, n - 2\}$, we observe that the *n*-complement of the word W + 2, say $W' = \tau_n(W + 2)$, is also a word on the set $\{1, 2, \ldots, n - 2\}$ and, moreover, $W = \tau_n(W' + 2)$.

To find ϕ^{-1} , given a permutation $\sigma = \sigma_1 \sigma_2 \cdots \sigma_n \in \mathfrak{S}_n(W+2)$, we shall construct the corresponding permutation $\phi^{-1}(\sigma)$ by removing the elements 1, 2 from σ , decrement each of the remaining elements by 2, and then insert the elements n - 1, n at appropriate positions so that $\phi^{-1}(\sigma)$ satisfies the requested conditions. The construction of the map ϕ^{-1} is exactly the reverse operation of ϕ , which is essentially established from ϕ by $\phi^{-1} = \tau_n \circ \phi \circ \tau_n$. We omit a detailed construction.

$$\begin{array}{ccc} \mathfrak{S}_n(W) & \stackrel{\phi}{\longrightarrow} \mathfrak{S}_n(W+2) \\ & & & & \downarrow^{\tau_n} \\ \mathfrak{S}_n(W'+2) & \stackrel{\phi}{\longleftarrow} & \mathfrak{S}_n(W') \end{array}$$

3 A proof of Theorem 1.3

In the following, we shall establish a bijection between the two parts of the symmetric difference of $\mathfrak{S}_n(U)$ and $\mathfrak{S}_n(V)$, where $U = b(b+1)\cdots(b+k-1)$ and $V = (b+1)(b+2)\cdots(b+k)$ for $2 \le k \le n-1$ and $1 \le b \le n-k$.

Notice that the set $\mathfrak{S}_n(U) \cap \mathfrak{S}_n(V)$ consists of all permutations containing the word $b(b+1)\cdots(b+k)$ as a subsequence.

Given a $\sigma \in \mathfrak{S}_n(U) - \mathfrak{S}_n(V)$, notice that the element b + k appears to the left of the element b + k - 1 in σ , i.e., $\sigma^{-1}(b + k) < \sigma^{-1}(b + k - 1)$. We shall rearrange the elements $b, b + 1, \ldots, b + k$ of σ to construct a permutation $\sigma' \in \mathfrak{S}_n(V) - \mathfrak{S}_n(U)$ satisfying the requested conditions. The construction is given in algorithm C below. In the following algorithm, we compose permutations right to left.

Algorithm C.

(C1) If b + k appears to the left of b in σ , then set

$$\sigma' = \left(egin{array}{cccc} b+k & b & b+1 & \cdots & b+k-1 \ b+1 & b & b+2 & \cdots & b+k \end{array}
ight)\sigma.$$

Notice that $inv(\sigma') - inv(\sigma) = 1 - k$.

(C2) Otherwise, b + k appears between b + j - 1 and b + j for some j ($1 \le j \le k - 1$). Then if in particular j = k - 1 then set

$$\sigma' = \left(\begin{array}{cccc} b & \cdots & b+k-2 & b+k & b+k-1 \\ b+1 & \cdots & b+k-1 & b+k & b \end{array}\right)\sigma,$$

otherwise, $1 \le j \le k - 2$ and set

$$\sigma' = \begin{pmatrix} b & \cdots & b+j-1 & b+k & b+j & b+j+1 & \cdots & b+k-1 \\ b+1 & \cdots & b+j & b+j+1 & b & b+j+2 & \cdots & b+k \end{pmatrix} \sigma.$$

Notice that in the former case $inv(\sigma') - inv(\sigma) = k - 1$, while in the latter case $inv(\sigma') - inv(\sigma) = 2j - k + 1$.

We observe that $Des(\sigma') = Des(\sigma)$ and $inv(\sigma') - inv(\sigma) \equiv k - 1 \pmod{2}$. On the other hand, it is straightforward to construct the inverse map by the reverse operation.

4 A proof of Theorem 1.5

For a fixed $r \in \{1, 2, ..., n-1\}$, let $W = w_1 w_2 \cdots w_{n-2}$ be a permutation of the set $\{1, 2, ..., r-1, r+2, ..., n\}$. Let $\mathfrak{S}_n^*(W) \subset \mathfrak{S}_n(W)$ denote the subset consisting of the permutations in which the elements r, r+1 are adjacent. Note that interchanging the elements r, r+1 is a sign-reversing involution on the difference set $\mathfrak{S}_n(W) - \mathfrak{S}_n^*(W)$ which preserves descent sets. Hence

$$\sum_{\sigma \in \mathfrak{S}_n(W)} (-1)^{\mathsf{inv}(\sigma)} q^{\mathsf{maj}(\sigma)} = \sum_{\sigma \in \mathfrak{S}_n^*(W)} (-1)^{\mathsf{inv}(\sigma)} q^{\mathsf{maj}(\sigma)}.$$
 (4.1)

Any permutation $\sigma \in \mathfrak{S}_n^*(W)$ can be obtained from W by inserting the elements r, r + 1 adjacently to the left of W, between two elements of W, or to the right of W, i.e., one of the n - 1 spaces of W. These spaces are indexed by $0, 1, \ldots, n - 2$ from left to right. We shall study the major-index increment of such an insertion by extending the insertion lemma of Haglund–Loehr–Remmel [5, Lemma 4.1].

Assume $w_0 = 0$ and $w_{n-1} = n + 1$. For $0 \le j \le n - 2$, the *j*th space, which is between w_j and w_{j+1} , is called an *RL-space of W relative to r* if it satisfies one of the following conditions:

- $w_i > w_{i+1} > r$,
- $r > w_j > w_{j+1}$, or
- $w_i < r < w_{i+1}$.

Notice that the space to the left (right, respectively) of *W* is an *RL*-space if $r < w_1$ ($w_{n-2} < r$, respectively). Any space which is not an *RL*-space is called an *LR*-space (relative to *r*). In fact, an *RL*-space is a space where the insertion of *r* in *W* creates no 'new descent', while an *LR*-space is one where a new descent is created. Suppose there are *d RL*-spaces of *W* relative to *r*, we label the *RL*-spaces from right to left with $0, 1, \ldots, d-1$ and label the *LR*-spaces from left to right with $d, d+1, \ldots, n-2$, called the *canonical labeling* of *W*. Let $\alpha(W) = (a_0, a_1, \ldots, a_{n-2})$ denote the vector of the labeling, where a_i is the label the *j*th space receives.

Example 4.1. Suppose r = 4 and W is the permutation W = 8361297 of the set $\{1, 2, ..., 9\} - \{4, 5\}$. As shown below, the *RL*-spaces of W relative to 4 are the spaces with labels a_0, a_2, a_5, a_6 and the *LR*-spaces are the ones with labels a_1, a_3, a_4, a_7 . The vector of the canonical labeling of W is $\alpha(W) = (3, 4, 2, 5, 6, 1, 0, 7)$.

$$a_0 8_{a_1} 3_{a_2} 6_{a_3} 1_{a_4} 2_{a_5} 9_{a_6} 7_{a_7} \longrightarrow \alpha(W) = (3, 4, 2, 5, 6, 1, 0, 7)$$

The result of Haglund–Loehr–Remmel [5, Lemma 4.1] can be expressed as follows.

Lemma 4.2. (Insertion Lemma [5]) If π is the word obtained from W by inserting the element r at the *j*th space of W then we have

$$maj(\pi) = maj(W) + a_i.$$

We associate *W* with another vector $\beta(W) = (b_0, b_1, \dots, b_{n-2})$, where b_j is the number of *RL*-spaces of *W* relative to *r* appearing to the right of the *j*th space for $0 \le j \le n-2$. For example, given r = 4 and the word W = 8361297 in Example 4.1, the associated vector is $\beta(W) = (3, 3, 2, 2, 2, 1, 0, 0)$.

$$b_0 \, 8 \, b_1 \, 3 \, b_2 \, 6 \, b_3 \, 1 \, b_4 \, 2 \, b_5 \, 9 \, b_6 \, 7 \, b_7 \qquad \longrightarrow \qquad \beta(W) = (3, 3, 2, 2, 2, 1, 0, 0)$$

We derive the following extension of the Lemma 4.2.

Lemma 4.3. If σ is the word obtained from W by inserting the word z_1z_2 at the *j*th space of W, where z_1z_2 is either r(r+1) or (r+1)r, then we have

$$\textit{maj}(\sigma) = \begin{cases} \textit{maj}(W) + a_j + b_j & \textit{if } z_1 z_2 = r \, (r+1) \\ \textit{maj}(W) + a_j + b_j + j + 1 & \textit{if } z_1 z_2 = (r+1) \, r. \end{cases}$$

Notice that σ has the same (opposite, respectively) sign of *W* if $z_1z_2 = r(r+1)$ ($z_1z_2 = (r+1)r$, respectively). By Lemma 4.3 and (4.1), we have the following result.

Corollary 4.4. For any element $r \in \{1, 2, ..., n-1\}$ and any permutation W of the set $\{1, 2, ..., n\} - \{r, r+1\}$ with the associated vectors $\alpha(W) = (a_0, ..., a_{n-2})$ and $\beta(W) = (b_0, ..., b_{n-2})$, we have

$$\sum_{\sigma \in \mathfrak{S}_{n}(W)} (-1)^{inv(\sigma)} q^{maj(\sigma)} = (-1)^{inv(W)} q^{maj(W)} \left(\sum_{j=0}^{n-2} q^{a_{j}+b_{j}} (1-q^{j+1}) \right).$$

To prove Theorem 1.5, we prove the following result:

$$f(W;q) := \sum_{j=0}^{n-2} q^{a_j+b_j} (1-q^{j+1}) = [n-1]_{(-1)^n q} [n]_{(-1)^{n-1} q}.$$
(4.2)

5 Applications

5.1 An extended result of Theorem 1.5

We derive a product formula of the signed enumerator of the major index over the permutations in \mathfrak{S}_n containing a permutation W of the set $\{2k + 1, 2k + 2, ..., n\}$ as a subsequence, in the spirit of Theorem 1.5.

Theorem 5.1. For $k \ge 1$ and any permutation W of the set $\{2k + 1, 2k + 2, ..., n\}$, we have

$$\sum_{\sigma \in \mathfrak{S}_{n}(W)} (-1)^{inv(\sigma)} q^{maj(\sigma)} = (-1)^{inv(W)} q^{maj(W)} \sum_{\sigma \in \mathfrak{S}_{n}(2k+1:n)} (-1)^{inv(\sigma)} q^{maj(\sigma)}$$
$$= (-1)^{inv(W)} q^{maj(W)} [n-2k+1]_{(-1)^{n-2k}q} \cdots [n]_{(-1)^{n-1}q}.$$

5.2 Labelings of a poset

Given a poset (P, <) on a set $P = \{x_1, x_2, ..., x_k\}$ with $k \le n - 2$, by an *injective labeling* of (P, <) we mean an injection $f : P \to \{1, 2, ..., n - 2\}$. Let f + 2 be the labeling of (P, <) obtained from f by incrementing the label of each element by 2, which is an injection $P \to \{3, 4, ..., n\}$. Define

$$\mathfrak{S}_n(f) := \{ \sigma \in \mathfrak{S}_n : \sigma^{-1}(f(x_i)) < \sigma^{-1}(f(x_j)), \text{ for } x_i < x_j \text{ in } (P, <) \}.$$

We prove the following result.

Theorem 5.2. For any poset (P, <) with at most n - 2 elements and any injective labeling $f: P \rightarrow \{1, 2, ..., n - 2\}$, we have

$$\sum_{\sigma \in \mathfrak{S}_n(f)} (-1)^{inv(\sigma)} q^{maj(\sigma)} = \sum_{\sigma \in \mathfrak{S}_n(f+2)} (-1)^{inv(\sigma)} q^{maj(\sigma)}.$$

5.3 Pattern avoidance

Putting Theorem 1.2 in the realm of pattern-avoidance, one can consider the π -avoiding words of a given underlying set $S \subseteq \{1, 2, ..., n-2\}$ for a certain pattern π . Let $\mathfrak{S}_n(\pi; S)$ be the set consisting of the permutations $\sigma \in \mathfrak{S}_n$ containing no π -pattern restricted to the elements of S. Let $S + 2 := \{z + 2 | z \in S\} \subset \{3, 4, ..., n\}$. For example, for n = 4, consider a pattern $\pi = 21$ and a set $S = \{1, 2\}$. Then $S + 2 = \{3, 4\}$ and we have

$$\mathfrak{S}_4(\pi; S) = \{1234, 1243, 1324, 1342, 1423, 1432, 3124, 3142, 3412, 4123, 4132, 4312\},\\ \mathfrak{S}_4(\pi; S+2) = \{1234, 1324, 1342, 2134, 2314, 2341, 3124, 3142, 3214, 3241, 3412, 3421\}.$$

$$\sum_{\sigma \in \mathfrak{S}_4(\pi; S)} (-1)^{\mathsf{inv}(\sigma)} q^{\mathsf{maj}(\sigma)} = \sum_{\sigma \in \mathfrak{S}_4(\pi; S+2)} (-1)^{\mathsf{inv}(\sigma)} q^{\mathsf{maj}(\sigma)} = 1 + q^2 - q^3 - q^5.$$

Making use of the map ϕ in Theorem 1.2, we have the following result.

Theorem 5.3. For a pattern π and an underlying set $S \subseteq \{1, 2, ..., n-2\}$, we have

$$\sum_{\sigma \in \mathfrak{S}_n(\pi; S)} (-1)^{inv(\sigma)} q^{maj(\sigma)} = \sum_{\sigma \in \mathfrak{S}_n(\pi; S+2)} (-1)^{inv(\sigma)} q^{maj(\sigma)}.$$

6 Concluding remarks

In this paper, we study the signed distributions of the major index on permutations with subsequence restrictions. Recall that a signed permutation in the group B_n is a bijection σ of the set $\{-n, -n + 1, ..., -1, 1, 2, ..., n\}$ onto itself such that $\sigma(-i) = -\sigma(i)$ for all $1 \le i \le n$. The flag major index of σ , denoted by fmaj, is defined as fmaj $(\sigma) := 2$ maj $(\sigma) +$ neg (σ) , where maj (σ) is the major index of the sequence $(\sigma(1), ..., \sigma(n))$ with respect to the order $-1 < \cdots < -n < 1 < \cdots < n$, and neg (σ) is the number negative elements in the sequence. Adin–Gessel–Roichman obtained the following type-B analogue of (1.2)

$$\sum_{\sigma \in B_n} \operatorname{sign}(\sigma) q^{\operatorname{fmaj}(\sigma)} = [2]_{-q} [4]_q \cdots [2n]_{(-1)^n q}.$$
(6.1)

In the realm of parabolic quotients of Coxeter groups, we are interested in whether our main results can be extended to the signed permutations in B_n with subsequence restrictions, on the basis of (6.1).

References

- R. M. Adin, I. M. Gessel, and Y. Roichman. "Signed Mahonians". J. Combin. Theory Ser. A 109.1 (2005), pp. 25–43. Link.
- [2] R. M. Adin and Y. Roichman. "The flag major index and group actions on polynomial rings". *European J. Combin.* 22.4 (2001), pp. 431–446. Link.
- [3] F. Caselli. "Signed Mahonians on some trees and parabolic quotients". *J. Combin. Theory Ser. A* **119**.7 (2012), pp. 1447–1460. Link.
- [4] D. Foata and M.-P. Schützenberger. "Major index and inversion number of permutations". *Math. Nachr.* 83 (1978), pp. 143–159. Link.
- [5] J. Haglund, N. Loehr, and J. B. Remmel. "Statistics on wreath products, perfect matchings, and signed words". *European J. Combin.* 26.6 (2005), pp. 835–868. Link.
- [6] P. MacMahon. *Combinatory Analysis*. Chelsea, New York, 1960. (Originally published in 2 volumes by Cambridge Univ. Press, 1915–1916.)
- [7] R. Stanley. "Ordered structures and partitions". *Mem. Amer. Math. Soc.* **119** (1972). Link.
- [8] M. L. Wachs. "An involution for signed Eulerian numbers". Discrete Math. 99.1-3 (1992), pp. 59–62. Link.