Stanley symmetric functions for signed involutions

Eric Marberg ${ }^{1}$ and Brendan Pawlowski ${ }^{2}$
${ }^{1}$ Department of Mathematics, Hong Kong University of Science and Technology
${ }^{2}$ Department of Mathematics, University of Southern California

Abstract

Involution words are variations of reduced words associated to twisted involutions in Coxeter groups. These words are saturated chains in a partial order first considered by Richardson and Springer in their study of symmetric varieties. In the symmetric group, involution words can be enumerated in terms of tableaux using appropriate analogues of the symmetric functions introduced by Stanley to count reduced words. We adapt this approach to the group of signed permutations. We show that the involution words for the longest element in the Coxeter group C_{n} are in bijection with reduced words for the longest element in $A_{n}=S_{n+1}$, which are known to be in bijection with standard tableaux of shape ($n, n-1, \ldots, 2,1$).

Keywords: Signed permutations, Stanley symmetric functions, transition equations

1 Introduction

Let W be a Coxeter group with simple generating set S. A reduced word for $w \in W$ is a minimal-length sequence $\left(r_{1}, r_{2}, \ldots, r_{\ell}\right)$ of simple generators $r_{i} \in S$ with $w=r_{1} r_{2} \cdots r_{\ell}$. Let $\mathcal{R}(w)$ be the set of reduced words for w.

Of primary interest are the finite Coxeter groups of classical types A and B / C. Fix an integer $n \geq 1$ and let $[n]=\{1,2, \ldots, n\}$ and $[\pm n]=\{ \pm 1, \pm 2, \ldots, \pm n\}$. Let $A_{n}=S_{n+1}$ be the group of permutations of $[n+1]$. Let C_{n} be the group of permutations w of $[\pm n]$ with $w(-i)=-w(i)$ for all i. Define $s_{1}, s_{2}, \ldots, s_{n} \in A_{n}$ and $t_{0}, t_{1}, \ldots, t_{n-1} \in C_{n}$ by

$$
\begin{equation*}
s_{i}=(i, i+1), \quad t_{0}=(-1,1), \quad \text { and } \quad t_{i}=(-i-1,-i)(i, i+1) \text { for } i \neq 0 \tag{1.1}
\end{equation*}
$$

Then A_{n} is a Coxeter group relative to the generating set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ while C_{n} is a Coxeter group relative to the generating set $S=\left\{t_{0}, t_{1}, \ldots, t_{n-1}\right\}$. We refer to elements of C_{n} as signed permutations.

Each finite Coxeter group contains a unique element of maximal length, where the length of an element w refers to the common length of any word in $\mathcal{R}(w)$. Let w_{n}^{A} and w_{n}^{C} denote the longest elements of A_{n} and C_{n}. Then w_{n}^{A} is the permutation $i \mapsto n+2-i$ while w_{n}^{C} is the negation map $i \mapsto-i$. There are attractive product formulas for the number of reduced words for both of these permutations:

$$
\begin{equation*}
\left|\mathcal{R}\left(w_{n}^{A}\right)\right|=\frac{\binom{n+1}{2}!}{\prod_{i=1}^{n}(2 i-1)^{i}} \quad \text { and } \quad\left|\mathcal{R}\left(w_{n}^{C}\right)\right|=\frac{\left(n^{2}\right)!}{n^{n} \prod_{i=1}^{n-1}[i(2 n-i)]^{i}} \tag{1.2}
\end{equation*}
$$

Stanley proved the first of these identities [13, Corollary 4.3] and conjectured the second, which was later shown by Haiman [4, Theorem 5.12].

Let $\operatorname{SYT}(\lambda)$ be the set of standard Young tableaux of shape λ. Define $\delta_{n}=(n, n-$ $1, \ldots, 2,1$) and write $\left(n^{n}\right)$ for the partition with n parts of size n. The identities (1.2) are equivalent to $\left|\mathcal{R}\left(w_{n}^{A}\right)\right|=\left|\operatorname{SYT}\left(\delta_{n}\right)\right|$ and $\left|\mathcal{R}\left(w_{n}^{C}\right)\right|=\left|\operatorname{SYT}\left(\left(n^{n}\right)\right)\right|$ via the well-known hook-length formula [14, Corollary 7.21.6]. As one would expect from this formulation, there are natural bijective proofs of the identities (1.2), due to Edelman and Greene [3] in type A and to Haiman [4] and Kraśkiewicz [8] in type C.

The main result of this paper is a product formula similar to (1.2) for the cardinality of a set of reduced-word-like objects associated to w_{n}^{C}. Write $\ell: W \rightarrow \mathbb{N}$ for the length function of (W, S) and let $\mathcal{I}(W)=\left\{y \in W: y=y^{-1}\right\}$ be the set of involutions in W. There is a unique associative product $\circ: W \times W \rightarrow W$ satisfying $s \circ s=s$ for any $s \in S$ and $u \circ v=u v$ for any $u, v \in W$ with $\ell(u v)=\ell(u)+\ell(v)$, and it can be shown that every element $y \in \mathcal{I}(W)$ has the form

$$
\begin{equation*}
y=r_{\ell} \circ\left(\cdots \circ\left(r_{2} \circ\left(r_{1} \circ 1 \circ r_{1}\right) \circ r_{2}\right) \circ \cdots\right) \circ r_{\ell} \tag{1.3}
\end{equation*}
$$

for some sequence of simple generators $r_{i} \in S$. A sequence $\left(r_{1}, r_{2}, \ldots, r_{\ell}\right)$ of shortest possible length satisfying (1.3) is an involution word for y. Let $\hat{\mathcal{R}}(y)$ be the set of involution words for $y \in \mathcal{I}(W)$. This set is always nonempty, with $\hat{\mathcal{R}}(1)=\{\varnothing\}$.

Example 1.1. In C_{2}, we have $t_{0} \circ\left(t_{1} \circ\left(t_{0} \circ 1 \circ t_{0}\right) \circ t_{1}\right) \circ t_{0}=t_{0} \circ\left(t_{1} \circ t_{0} \circ t_{1}\right) \circ t_{0}=$ $t_{0} \circ t_{1} t_{0} t_{1} \circ t_{0}=t_{0} t_{1} t_{0} t_{1}=t_{1} t_{0} t_{1} t_{0}=w_{2}^{C}$ and $t_{1} \circ\left(t_{0} \circ\left(t_{1} \circ 1 \circ t_{1}\right) \circ t_{0}\right) \circ t_{1}=w_{2}^{C}$ and it holds that $\hat{\mathcal{R}}\left(w_{2}^{C}\right)=\left\{\left(t_{0}, t_{1}, t_{0}\right),\left(t_{1}, t_{0}, t_{1}\right)\right\}$.

Let $p=\left\lfloor\frac{n}{2}\right\rfloor$ and $q=\left\lceil\frac{n}{2}\right\rceil$. In [7], the authors and Hamaker showed that

$$
\begin{equation*}
\left|\hat{\mathcal{R}}\left(w_{n}^{A}\right)\right|=\binom{\binom{p+1}{2}+\binom{q+1}{2}}{\binom{p+1}{2}}\left|\operatorname{SYT}\left(\delta_{p}\right)\right|\left|\operatorname{SYT}\left(\delta_{q}\right)\right| \tag{1.4}
\end{equation*}
$$

and conjectured the following theorem, which is our main new result.
Theorem 1.2. It holds that $\left|\hat{\mathcal{R}}\left(w_{n}^{C}\right)\right|=\left|\operatorname{SYT}\left(\delta_{n}\right)\right|=\left|\mathcal{R}\left(w_{n}^{A}\right)\right|$.
There is an algebraic approach to enumerating $\mathcal{R}\left(w_{n}^{A}\right), \mathcal{R}\left(w_{n}^{C}\right), \hat{\mathcal{R}}\left(w_{n}^{A}\right)$, and $\hat{\mathcal{R}}\left(w_{n}^{C}\right)$ by means of certain generating functions called Stanley symmetric functions. We write $\left[x_{1} x_{2} \cdots\right] f$ for the coefficient of a square-free monomial in a homogeneous symmetric function f. The Stanley symmetric functions of interest have the following properties:

- Each (type A) Stanley symmetric function F_{w} has $\left[x_{1} x_{2} \ldots\right] F_{w}=|\mathcal{R}(w)|$.
- Each (type C) Stanley symmetric function G_{w} has $\left[x_{1} x_{2} \ldots\right] G_{w}=2^{\ell(w)}|\mathcal{R}(w)|$.
- Each (type A) involution Stanley symmetric function \hat{F}_{y} is a multiplicity-free sum of certain instances of F_{w}, and it holds that $\left[x_{1} x_{2} \cdots\right] \hat{F}_{y}=|\hat{\mathcal{R}}(y)|$.
- Each (type C) involution Stanley symmetric function \hat{G}_{y} is a multiplicity-free sum of certain instances of G_{w}, and it holds that $\left[x_{1} x_{2} \cdots\right] \hat{G}_{y}=2^{\hat{\ell}(y)}|\hat{\mathcal{R}}(y)|$.

There are expressions for $F_{w n}^{A}, G_{w w_{n}^{C}}$, and $\hat{F}_{w_{n}^{A}}$ as Schur functions s_{λ}, Schur Q-functions Q_{λ}, and Schur S-functions S_{λ}. For the definitions of these symmetric functions, see Section 2. The identities (1.2) and (1.4) are corollaries of the following formulas:

Theorem 1.3 (Stanley [13]). $F_{w_{n}^{A}}=s_{\delta_{n}}$.
Theorem 1.4 (Worley [15]; Billey and Haiman [2]). $G_{w_{n}^{\mathrm{C}}}=Q_{(2 n-1,2 n-3, \ldots, 3,1)}=S_{\left(n^{n}\right)}$.
Theorem 1.5 (Hamaker, Marberg, and Pawlowski [6]). $\hat{F}_{w_{n}^{A}}=2^{-q} Q_{(n, n-2, n-4, \ldots)}=s_{\delta_{p}} s_{\delta_{q}}$.
Theorem 1.2, in turn, is an immediate corollary of the following result, which adds an entry for $\hat{G}_{w_{n}^{c}}$ to the preceding sequence of identities.

Theorem 1.6. $\hat{G}_{w_{n}^{C}}=G_{w_{n}^{A}}=S_{\delta_{n}}$.
We relegate most technical arguments in this extended abstract to the full length article [12], but sketch the outline of some proofs. In particular, our strategy for proving Theorem 1.6 is as follows.

One can write $\hat{G}_{w_{n}^{\mathrm{c}}}$ as a sum $\sum_{v \in \mathcal{A}_{n}} G_{v}$ indexed by a certain set \mathcal{A}_{n} of signed permutations $v \in C_{n}$, the atoms of w_{n}^{c}. The transition equations of Lascoux-Schützenberger as adapted by Billey [1] generate various identities between sums of type C Stanley symmetric functions. Work of Lam [10] implies that $G_{w_{n}^{A}}=S_{\delta_{n}}$, and we show that one can apply a specific sequence of transition equations to rewrite $G_{w_{n}^{A}}$ as exactly the sum $\sum_{v \in \mathcal{A}_{n}} G_{v}$. The fact that this is possible is somewhat miraculous. It is an intriguing open problem to find bijective or geometric proofs of our results.

2 Preliminaries

Fix a partition $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0\right)$. The Young diagram of λ is the set of pairs $D_{\lambda}=\left\{(i, j): i \in[k]\right.$ and $\left.j \in\left[\lambda_{i}\right]\right\}$, which we envision as a collection of left-justified boxes oriented as in a matrix. A semistandard tableau of shape λ is a filling of the boxes of the Young diagram D_{λ} by positive integers, such that each row is weakly increasing from left to right and each column is (strictly) increasing from top to bottom. Such a tableau is standard if its boxes contain exactly the numbers $1,2, \ldots,|\lambda|$.

Similarly, a marked semistandard tableau of shape λ is a filling of the Young diagram of λ by numbers from the alphabet of primed and unprimed positive integers $\{1,2,3, \ldots\} \sqcup$
$\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, \ldots\right\}$ such that (i) the rows and columns are weakly increasing under the order $1^{\prime}<1<2^{\prime}<2<\cdots$, (ii) no unprimed letter i appears twice in the same column, and (iii) no primed letter i^{\prime} appears twice in the same row.

Assume λ is a strict partition, i.e., has all distinct parts. A marked semistandard shifted tableau of shape λ is a filling of the shifted Young diagram $\left\{(i, i+j-1):(i, j) \in D_{\lambda}\right\}$ with primed and unprimed positive integers satisfying properties (i)-(iii) from the previous paragraph. A semistandard marked (shifted) tableau T of shape λ is standard if exactly one of i or i^{\prime} appears in T for each $i=1,2, \ldots,|\lambda|$.

Given a tableau T, write x^{T} for the monomial formed by replacing the boxes in T containing i or i^{\prime} by x_{i} and then multiplying the resulting variables.

Example 2.1. If T, U, and V are the tableaux of shape $\lambda=(4,3,1)$ given by

$$
T=\begin{array}{|l|l|l|l}
2 & 2 & 2 & 3 \\
3 & 3 & 4 & \\
\hline 5 & &
\end{array} \quad \text { and } \quad U=\begin{array}{|l|l|l|l}
1^{\prime} & 1 & 1 & 3 \\
\hline 1^{\prime} & 3 & 4^{\prime} & \\
\hline 5 & &
\end{array} \quad \text { and } \quad V=\begin{array}{|l|l|l}
\hline 1 & 2^{\prime} & 3 \\
2^{\prime} & 3 & 6 \\
\hline & 4 & 6 \\
\hline
\end{array}
$$

then T is semistandard, U is marked and semistandard, and V is marked, semistandard, and shifted. We have $x^{T}=x_{2}^{3} x_{3}^{3} x_{4} x_{5}$ and $x^{U}=x_{1}^{4} x_{3}^{2} x_{4} x_{5}$ and $x^{V}=x_{1} x_{2}^{2} x_{3}^{2} x_{4} x_{5} x_{6}$.
Definition 2.2. Let λ be a partition and let μ be a strict partition. The Schur function of λ, the Schur S-function of λ, and the Schur Q-function of μ are then the respective sums

$$
s_{\lambda}=\sum_{T} x^{T}, \quad s_{\lambda}=\sum_{U} x^{U}, \quad \text { and } \quad Q_{\mu}=\sum_{V} x^{V}
$$

where T runs over semistandard tableaux of shape λ, U runs over semistandard marked tableaux of shape λ, and V runs over marked semistandard shifted tableaux of shape μ.

It is well-known that the Schur functions s_{λ}, with λ ranging over all partitions, form a basis for the algebra Λ of symmetric functions. Similarly, the Schur Q-functions Q_{μ}, with μ ranging over all strict partitions, form a basis for the subalgebra $\Gamma \subset \Lambda$ generated by the odd-indexed power sum symmetric functions. Each Schur Q-function is itself Schur-positive, i.e., an \mathbb{N}-linear combination of Schur functions.

The set of Schur S-functions, with λ ranging over all partitions, is not linearly independent, but also spans the subalgebra Γ. The set $\left\{S_{\lambda}: \lambda\right.$ is a strict partition $\}$ is a basis for Γ. For more properties of these functions, see [11, Chaper I, $\S 3$] (for s_{λ}), [11, Chapter III, §8] (for Q_{λ}), and [11, Chapter III, §8, Ex. 7] (for S_{λ}).

Next, we review the definitions of F_{w}, G_{w}, and \hat{F}_{y} from $[1,2,7,13]$.
Definition 2.3. The type A Stanley symmetric function associated to $w \in A_{n}=S_{n+1}$ is

$$
F_{w}=\sum_{\mathbf{a} \in \mathcal{R}(w)} \sum_{\left(i_{1} \leq i_{2} \leq \cdots \leq i_{l}\right) \in \mathcal{C}(\mathbf{a})} x_{i_{1}} x_{i_{2}} \cdots x_{i_{l}}
$$

where if $\mathbf{a}=\left(s_{a_{1}}, s_{a_{2}}, \cdots, s_{a_{l}}\right)$, then $\mathcal{C}(\mathbf{a})$ is the set of all weakly increasing sequences of positive integers $i_{1} \leq i_{2} \leq \cdots \leq i_{l}$ such that if $a_{j}>a_{j+1}$ for $1 \leq j<l$ then $i_{j}<i_{j+1}$.

Definition 2.4. The type C Stanley symmetric function associated to $w \in C_{n}$ is

$$
G_{w}=\sum_{\mathbf{a} \in \mathcal{R}(w)\left(i_{1} \leq i_{2} \leq \cdots \leq i_{l}\right) \in \mathcal{D}(\mathbf{a})} 2^{\left|\left\{i_{1}, i_{2}, \ldots, i_{l}\right\}\right|} x_{i_{1}} x_{i_{2}} \cdots x_{i_{l}}
$$

where if $\mathbf{a}=\left(t_{a_{1}}, t_{a_{2}}, \cdots, t_{a_{l}}\right)$, then $\mathcal{D}(\mathbf{a})$ is the set of all weakly increasing sequences of positive integers $i_{1} \leq i_{2} \leq \cdots \leq i_{l}$ such that if $a_{j-1}<a_{j}>a_{j+1}$ for $1<j<l$ then either $i_{j-1}<i_{j} \leq i_{j+1}$ or $i_{j-1} \leq i_{j}<i_{j+1}$.

Let (W, S) be any Coxeter system. Recall the definition of \circ from the introduction.
Definition 2.5. For each $y \in \mathcal{I}(W)=\left\{z \in W: z=z^{-1}\right\}$ let $\mathcal{A}(y)$ be the set of elements $w \in W$ of minimal length with $w^{-1} \circ w=y$. We refer to elements of this set as atoms.

Definition 2.6. The type A and type C involution Stanley symmetric functions associated to $y \in \mathcal{I}\left(A_{n}\right)$ and $z \in \mathcal{I}\left(C_{n}\right)$ are $\hat{F}_{y}=\sum_{w \in \mathcal{A}(y)} F_{w}$ and $\hat{G}_{z}=\sum_{w \in \mathcal{A}(z)} G_{w}$, respectively.

Each F_{w} is an \mathbb{N}-linear combination of Schur functions [3]. Each G_{w} is an \mathbb{N}-linear combination of Schur Q-functions [10, Theorem 3.12]. It follows that \hat{F}_{y} and \hat{G}_{z} are likewise Schur-positive and Schur- Q-positive. For \hat{F}_{y}, a stronger statement holds: if $\kappa(y)$ is the number of 2-cycles in $y \in \mathcal{I}\left(A_{n}\right)$, then $2^{\kappa(y)} \hat{F}_{y}$ is also Schur- Q-positive [6, Corollary 4.62]. We do not know if \hat{G}_{z} has any stronger positivity property along these lines.

Let $\iota: A_{n-1} \hookrightarrow C_{n}$ be the unique group homomorphism with $\iota\left(s_{i}\right)=t_{i}$ for $i \in[n-1]$, and define $G_{w}=G_{l(w)}$ for $w \in A_{n-1}$. To relate F_{w} and G_{w} for $w \in A_{n-1}$, recall that $\Lambda=\mathbb{Q}-\operatorname{span}\left\{s_{\lambda}\right\}$ and $\Gamma=\mathbb{Q}-\operatorname{span}\left\{S_{\lambda}\right\}$ where both spans are over all partitions λ. The second space is also given by $\Gamma=\left\{Q_{\mu}: \mu\right.$ is a strict partition $\}$. The superfication map is the linear map $\phi: \Lambda \rightarrow \Gamma$ with $\phi\left(s_{\lambda}\right)=S_{\lambda}$ for all partitions λ.

Theorem 2.7 (Lam [9]). If $w \in A_{n-1}$ then $G_{w}=\phi\left(F_{w}\right)$.
A reflection in a Coxeter group is an element conjugate to a simple generator. With our notation as in $[1, \S 3]$, the reflections in C_{n} are the elements $s_{i i}=(i, \bar{i})$ for $i \in[n]$ along with $s_{i j}=s_{j i}=(i, \bar{j})(\bar{i}, j)$ and $t_{i j}=t_{j i}=(i, j)(\bar{i}, \bar{j})$ for $i, j \in[n]$ with $i<j$. If $t \in C_{n}$ is a reflection and $u, v \in C_{n}$ are such that $v=u t$ and $\ell(v)=\ell(u)+1$, then we write $u \lessdot v$; then \lessdot is the covering relation of the Bruhat order of C_{n}. For $w \in C_{n}$ and $j \in[n]$, define

$$
\begin{aligned}
& \mathcal{S}_{j}(w)=\left\{w s_{i j}: i \in[n], w \lessdot w s_{i j}\right\} \subseteq C_{n} \\
& \mathcal{T}_{j}^{-}(w)=\left\{w t_{i j}: 1 \leq i<j, w \lessdot w t_{i j}\right\} \subseteq C_{n}, \\
& \mathcal{T}_{j}^{+}(w)=\left\{w t_{j k}: j<k \leq n+1, w \lessdot w t_{j k}\right\} \subseteq C_{n+1} .
\end{aligned}
$$

We refer to the following technical result as the transition formula for G_{w}.
Theorem 2.8 (Billey [1]). If $w \in C_{n}$ and $j \in[n]$ then $\sum_{v \in \mathcal{T}_{j}^{+}(w)} G_{v}=\sum_{v \in \mathcal{S}_{j}(w)} G_{v}+\sum_{v \in \mathcal{T}_{j}^{-}(w)} G_{v}$.

3 Atoms and quasi-atoms

Let $S \subset \mathbb{Z}$ be a set of integers. A perfect matching on a set S is a set of pairwise disjoint 2-element subsets $\{i, j\}$, referred to as blocks, whose union is S. A perfect matching M is symmetric if $\{i, j\} \in M$ implies $-\{i, j\} \stackrel{\text { def }}{=}\{-i,-j\} \in M$, and noncrossing if it does not occur that $i<a<j<b$ for any blocks $\{i, j\},\{a, b\} \in M$. Let $\operatorname{NCSP}(n)$ denote the set of noncrossing, symmetric, perfect matchings on the set $[\pm n]$. The three elements of $\operatorname{NCSP}(3)$ are $\{\{ \pm 1\},\{ \pm 2\},\{ \pm 3\}\},\{ \pm\{1,2\},\{ \pm 3\}\}$, and $\{\{ \pm 1\}, \pm\{2,3\}\}$.

For us, a word is a finite sequence of nonzero integers. The one-line representation of $w \in C_{n}$ is the word $w_{1} w_{2} \cdots w_{n}$ where $w_{i}=w(i)$. We usually write \bar{m} in place of $-m$ so that, for example, the elements of C_{2} are $12, \overline{1} 2,1 \overline{2}, \overline{1} \overline{2}, 21, \overline{2} 1,2 \overline{1}$, and $\overline{2} \overline{1}$. If $w=w_{1} w_{2} \cdots w_{n}$ is a word then we write $[[w]]$ for the subword formed by omitting each repeated letter after its first appearance. For example, $[[312311243]]=3124$. Suppose M is a symmetric, noncrossing, perfect matching on a subset of $[\pm n]$. Define

$$
\operatorname{Pair}(M)=\{(a,-b):\{a, b\} \in M, 0<a<b\} \sqcup\{(-a,-a):\{-a, a\} \in M, 0<a\} .
$$

Let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{l}, b_{l}\right)$ and $\left(c_{1}, d_{1}\right),\left(c_{2}, d_{2}\right), \ldots,\left(c_{l}, d_{l}\right)$ be the elements of Pair (M) listed in order such that $b_{1}<b_{2}<\cdots<b_{l}$ and $c_{1}<c_{2}<\cdots<c_{l}$, and define

$$
\alpha_{\min }(M)=\left[\left[a_{1} b_{1} a_{2} b_{2} \cdots a_{l} b_{l}\right]\right] \quad \text { and } \quad \alpha_{\max }(M)=\left[\left[c_{1} d_{1} c_{2} d_{2} \cdots c_{l} d_{l}\right]\right]
$$

If $M \in \operatorname{NCSP}(n)$, then $\alpha_{\min }(M)$ and $\alpha_{\max }(M)$ contain exactly one letter from $\{ \pm i\}$ for each $i \in[n]$, so are the one-line representations of elements of C_{n}. If u and v are words, both with $n \geq i+2$ letters, then we write $u \triangleleft_{i} v$ to mean that

$$
\begin{equation*}
u_{i} u_{i+1} u_{i+2}=c a b, \quad v_{i} v_{i+1} v_{i+2}=b c a, \quad \text { and } \quad u_{j}=v_{j} \text { for } j \notin\{i, i+1, i+2\} \tag{3.1}
\end{equation*}
$$

for some $a<b<c$. Let $<_{\mathcal{A}}$ be the transitive closure of the relations \triangleleft_{i} for all $i \geq 1$. We apply $<_{\mathcal{A}}$ to signed permutations in one-line notation. Finally, define $\mathcal{A}_{n}=\mathcal{A}\left(w_{n}^{C}\right) \subset C_{n}$ and $\mathcal{A}_{M}=\left\{w \in C_{n}: \alpha_{\min }(M) \leq_{\mathcal{A}} w \leq_{\mathcal{A}} \alpha_{\max }(M)\right\}$ for $M \in \operatorname{NCSP}(n)$.
Example 3.1. If $M=\{\{ \pm 1\}, \pm\{2,3\}, \pm\{4,5\}\} \in \operatorname{NCSP}(5)$ then the interval \mathcal{A}_{M} is

Theorem 3.2 (Hamaker and Marberg [5]). It holds that $\mathcal{A}_{n}=\bigsqcup_{M \in \operatorname{NCSP}(n)} \mathcal{A}_{M}$.
For example, we have $\mathcal{A}_{L}=\{\overline{1} 2 \overline{3}, 2 \overline{3} \overline{1}\}, \mathcal{A}_{M}=\{\overline{3} 1 \overline{2}\}$, and $\mathcal{A}_{N}=\{\overline{3} \overline{2} \overline{1}\}$ for the matchings $L=\{\{ \pm 1\}, \pm\{2,3\}\}, M=\{ \pm\{1,2\},\{ \pm 3\}\}$, and $N=\{\{ \pm 1\},\{ \pm 2\},\{ \pm 3\}\}$, and $\mathcal{A}_{3}=\mathcal{A}_{L} \sqcup \mathcal{A}_{M} \sqcup \mathcal{A}_{N}$. For an atom $w \in \mathcal{A}_{n}$, define $M(w)$ to be the unique noncrossing, symmetric, perfect matching in $\operatorname{NCSP}(n)$ with $w \in \mathcal{A}_{M(w)}$.

Given a word $w=w_{1} w_{2} \cdots w_{n}$ such that $\left|w_{1}\right|,\left|w_{2}\right|, \ldots,\left|w_{n}\right|$ are distinct and nonzero, define $\mathrm{fl}_{ \pm}(w) \in C_{n}$ to be the signed permutation whose one-line representation is formed by replacing each letter of w by its image under the order-preserving bijection $\left\{ \pm w_{1}, \pm w_{2}, \ldots, \pm w_{n}\right\} \rightarrow[\pm n]$. For example, $\mathrm{fl}_{ \pm}(3 \overline{2} \overline{7})=2 \overline{1} 3 \overline{4} \in C_{4}$. If M is a partition of a symmetric $2 n$-element subset $X=-X \subset[\pm m]$, then define $\mathrm{fl}_{ \pm}(M)$ to be the partition of $[\pm n]$ formed by replacing each element of each block of M by its image under the order-preserving bijection $X \rightarrow[\pm n]$.

Suppose $w \in C_{n}$ and $v=\mathrm{fl}_{ \pm}\left(w_{2} w_{3} \cdots w_{n}\right) \in \mathcal{A}_{n-1}$. Define $M^{\prime}(w)$ to be the unique perfect matching on $[n] \backslash\left\{ \pm w_{1}\right\}$ with $\mathrm{fl}_{ \pm}\left(M^{\prime}(w)\right)=M(v)$. Since $M(v)$ is symmetric and noncrossing, $M^{\prime}(w)$ is symmetric and noncrossing.

The matching $M^{\prime}(w)$ may be read off directly from the one-line representation of w by the following procedure. Let $w^{0}, w^{1}, w^{2}, \ldots, w^{l}$ be any sequence of words whose first term is $w^{0}=w_{2} w_{3} \cdots w_{n}$ (note the deliberate omission of w_{1}) and whose final term is strictly increasing, in which w^{i} for $i>0$ is formed from w^{i-1} by removing a consecutive subword $q_{i} p_{i}$ with $p_{i}<q_{i}$. Let $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ be the set of letters in w^{l}. Then $M^{\prime}(w)$ is the matching whose blocks consist of $\{p,-q\},\{-p, q\}$, and $\{ \pm c\}$ for each $(q, p) \in\left\{\left(q_{1}, p_{1}\right),\left(q_{2}, p_{2}\right), \ldots,\left(q_{l}, p_{l}\right)\right\}$ and each $c \in\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$. It is a nontrivial fact that this construction is independent of the choices of descents [5]. One can read off $M(v)$ from the one-line representation of $v \in \mathcal{A}_{n-1}$ by a similar procedure.

Example 3.3. Let $w=316 \overline{7} 4 \overline{5} \overline{2}$. One sequence of words $w^{0}, w^{1}, \ldots, w^{l}$ as above is

$$
w^{0}=16 \overline{7} 4 \overline{5} \overline{2}, \quad w^{1}=14 \overline{5} \overline{2}, \quad w^{2}=1 \overline{2}, \quad w^{3}=\varnothing,
$$

so $M^{\prime}(w)=\{ \pm\{1,2\}, \pm\{4,5\}, \pm\{6,7\}\}$. Setting $v=\mathrm{fl}_{ \pm}\left(w_{2} w_{3} \cdots w_{n}\right)$, we have

$$
\alpha_{\min }(M)=5 \overline{6} 3 \overline{4} 1 \overline{2} \triangleleft_{3} 5 \overline{6} 13 \overline{4} \overline{2} \triangleleft_{1} 15 \overline{6} 3 \overline{4} \overline{2}=v
$$

for $M=\{ \pm\{1,2\}, \pm\{3,4\}, \pm\{5,6\}\}=\mathrm{fl}_{ \pm}\left(M^{\prime}(w)\right)$, so $v \in \mathcal{A}_{M}$.
Definition 3.4. An element $w \in C_{n}$ is a quasi-atom if the following conditions hold:
(a) One has $w_{1}>0$ and $\mathrm{fl}_{ \pm}\left(w_{2} w_{3} \cdots w_{n}\right) \in \mathcal{A}_{n-1}$, where $\mathcal{A}_{0}=\{\varnothing\}$.
(b) At most one block $\{a, b\} \in M^{\prime}(w)$ has $0<a<w_{1}<b$.
(c) No symmetric block $\{ \pm c\} \in M^{\prime}(w)$ has $0<w_{1}<c$.

A quasi-atom w is odd if no block $\{a, b\} \in M^{\prime}(w)$ exists with $0<a<w_{1}<b$; otherwise, w is even. We write \mathcal{Q}_{n}^{+}and \mathcal{Q}_{n}^{-}for the sets of even and odd quasi-atoms in C_{n}, and define $\mathcal{Q}_{n}=\mathcal{Q}_{n}^{+} \sqcup \mathcal{Q}_{n}^{-}$. By convention $\mathcal{A}_{0}=\{\varnothing\}, \mathcal{Q}_{1}^{+}=\varnothing$, and $\mathcal{Q}_{1}^{-}=\{1\}$. In rank two we have $\mathcal{A}_{1}=\{\overline{1}\}, \mathcal{Q}_{2}^{+}=\varnothing$, and $\mathcal{Q}_{2}^{-}=\{2 \overline{1}\}$. In rank three we have $\mathcal{A}_{2}=\{\overline{2} \overline{1}, 1 \overline{2}\}, \mathcal{Q}_{3}^{+}=\{21 \overline{3}\}$, and $\mathcal{Q}_{3}^{-}=\{3 \overline{2} \overline{1}, 31 \overline{2}, 12 \overline{3}\}$. The following is not obvious:

Proposition 3.5. The sets \mathcal{A}_{n} and \mathcal{Q}_{n} are disjoint.

4 Transition graphs

In this section, we construct a directed bipartite graph $\overrightarrow{\mathcal{L}_{n}}$ with vertex set $\mathcal{A}_{n} \sqcup \mathcal{Q}_{n}$. We use the letter \mathcal{L} to denote this graph since it will later serve as one "layer" in a larger graph of interest.

Explicitly, define $\overrightarrow{\mathcal{L}_{n}}$ to be the smallest directed graph containing each element of $\mathcal{A}_{n} \sqcup \mathcal{Q}_{n}$ as a vertex and containing each of the following directed edges:

- If $v \in \mathcal{Q}_{n}^{+}$and $b=v_{1}>0$, and $\{a, c\} \in M^{\prime}(v)$ is the unique block with $0<a<b<$ c, then $\overrightarrow{\mathcal{L}_{n}}$ has an incoming edge $t_{b c} v \rightarrow v$ and an outgoing edge $v \rightarrow t_{a b} v$.
- If $v \in \mathcal{A}_{n}$ then v has a single incoming edge $u \rightarrow v$ in $\overrightarrow{\mathcal{L}_{n}}$, where if $v_{1}<0$ then $u=v t_{0}$, and if $v_{1}>0$ then $u=t_{b c} v$ where $b=v_{1}$ and c is such that $\{b,-c\} \in M(v)$.
See Figure 1 for an example. It is not obvious from this description of $\overrightarrow{\mathcal{L}_{n}}$ that each vertex incident to $v \in \mathcal{A}_{n} \sqcup \mathcal{Q}_{n}^{+}$is contained in $\mathcal{A}_{n} \sqcup \mathcal{Q}_{n}$, but this turns out to be the case.

Figure 1: The directed bipartite graph $\overrightarrow{\mathcal{L}_{4}}$. The vertices in the top row are all odd.

Theorem 4.1. The vertices in $\overrightarrow{\mathcal{L}_{n}}$ are precisely the signed permutations $\mathcal{A}_{n} \sqcup \mathcal{Q}_{n}$. Each edge in $\overrightarrow{\mathcal{L}_{n}}$ goes from an even quasi-atom to an odd quasi-atom, from an odd quasi-atom to an even quasi-atom, or from an odd quasi-atom to an atom.

Corollary 4.2. The directed graph $\overrightarrow{\mathcal{L}_{n}}$ is bipartite.
Recall the definitions of $\mathcal{S}_{j}(w) \subset C_{n}$ and $\mathcal{T}_{j}^{+}(w) \subset C_{n+1}$ for $w \in C_{n}$ from Theorem 2.8. Our next theorem relates the edges of $\overrightarrow{\mathcal{L}_{n}}$ to Billey's transition formula for G_{w}.

Theorem 4.3. Suppose $u, w \in \mathcal{Q}_{n}^{-}$and $w_{1}<n$. Then $v \in \mathcal{S}_{1}(u)$ if and only if $u \rightarrow v$ is an edge in $\overrightarrow{\mathcal{L}_{n}}$, and $v \in \mathcal{T}_{1}^{+}(w)$ if and only if $v \rightarrow w$ is an edge in $\overrightarrow{\mathcal{L}_{n}}$. Hence $\mathcal{T}_{1}^{+}(w) \subset C_{n}$.

A sink/source in a directed graph is a vertex with no outgoing/incoming edges.
Theorem 4.4. The set of sinks in $\overrightarrow{\mathcal{L}_{n}}$ is precisely \mathcal{A}_{n}. The set of sources in $\overrightarrow{\mathcal{L}_{n}}$ is precisely the set of odd quasi-atoms of the form $n v_{1} v_{2} \cdots v_{n-1} \in \mathcal{Q}_{n}^{-}$where $v_{1} v_{2} \cdots v_{n-1} \in \mathcal{A}_{n-1}$.

The preceding result indicates a natural way of packaging the graphs $\overrightarrow{\mathcal{L}_{n}}$ together for successive values of n. For $0<m<n$, write $\uparrow_{m}^{n}: C_{m} \rightarrow C_{n}$ for the transformation

$$
\uparrow_{m}^{n}\left(v_{1} v_{2} \cdots v_{m}\right)=n(n-1) \cdots(m+3)(m+2) v_{1} v_{2} \cdots v_{m}(m+1) \in C_{n} .
$$

Let C_{0} be the set consisting of just the empty word \varnothing and define $\uparrow_{0}^{n}: C_{0} \rightarrow C_{n}$ to be the $\operatorname{map} \varnothing \mapsto n \cdots 321$. View $\overrightarrow{\mathcal{L}_{0}}$ as the edgeless graph with vertex set C_{0}. Define $\overrightarrow{\mathcal{L}}_{m, n}$ for $0 \leq m<n$ to be the directed graph given by replacing each vertex in $\overrightarrow{\mathcal{L}_{m}}$ by its image under \uparrow_{m}^{n}. Interpret \uparrow_{n}^{n+1} as the identity map $C_{n} \rightarrow C_{n} \hookrightarrow C_{n+1}$ and identify $\overrightarrow{\mathcal{L}}_{n, n+1}$ with $\overrightarrow{\mathcal{L}_{n}}$. Finally, define $\overrightarrow{\mathcal{G}_{n}}$ to be the graph given by the disjoint union

$$
\overrightarrow{\mathcal{L}}_{0, n+1} \sqcup \overrightarrow{\mathcal{L}}_{1, n+1} \sqcup \overrightarrow{\mathcal{L}}_{2, n+1} \cdots \sqcup \overrightarrow{\mathcal{L}}_{n, n+1}
$$

with these additional edges: for $m \in[n]$ and $w \in \mathcal{A}_{m-1}$, include an edge from the sink

$$
\begin{equation*}
\uparrow_{m-1}^{n+1}\left(w_{1} w_{2} \cdots w_{m-1}\right)=(n+1) n \cdots(m+2)(m+1) w_{1} w_{2} \cdots w_{m-1} m \tag{4.1}
\end{equation*}
$$

in $\overrightarrow{\mathcal{L}}_{m-1, n+1}$ to the source

$$
\begin{equation*}
\uparrow_{m}^{n+1}\left(m w_{1} w_{2} \cdots w_{m-1}\right)=(n+1) n \cdots(m+3)(m+2) m w_{1} w_{2} \cdots w_{m}(m+1) \tag{4.2}
\end{equation*}
$$

in $\overrightarrow{\mathcal{L}}_{m, n+1}$. A vertex in $\overrightarrow{\mathcal{L}}_{m, n+1}$ is odd it is the image under \uparrow_{m}^{n+1} of an odd quasi-atom in $\overrightarrow{\mathcal{L}_{m}}$. All other vertices in $\overrightarrow{\mathcal{L}}_{m, n+1}$ or $\overrightarrow{\mathcal{G}_{n}}$ are even; in particular, the unique vertex $\uparrow_{0}^{n+1}(\varnothing)$ in $\overrightarrow{\mathcal{L}}_{0, n+1}$ is even. Figure 2 shows the graph $\overrightarrow{\mathcal{G}_{4}}$. The resulting division into even and odd vertices affords a bipartition of $\overrightarrow{\mathcal{G}_{n}}$. The following key properties of $\overrightarrow{\mathcal{G}_{n}}$ are straightforward corollaries of Theorems 2.8, 4.3 and 4.4.
Corollary 4.5. The unique source in $\overrightarrow{\mathcal{G}_{n}}$ is $\uparrow_{0}^{n+1}(\varnothing)=w_{n}^{A}$. The set of sinks is $\overrightarrow{\mathcal{G}_{n}}$ is $\uparrow_{n}^{n+1}\left(\mathcal{A}_{n}\right)=\mathcal{A}_{n}$. If v is any odd vertex in $\overrightarrow{\mathcal{G}_{n}}$, then $\sum_{\{u \rightarrow v\} \in \overrightarrow{\mathcal{G}_{n}}} G_{u}=\sum_{\{v \rightarrow w\} \in \overrightarrow{\mathcal{G}_{n}}} G_{w}$.

Finally, using these results we can prove Theorem 1.6.
Proof of Theorem 1.6. For each vertex $v \in \overrightarrow{\mathcal{G}_{n}}$, define $f(v)$ to be 0 if v is odd and G_{v} if v is even. The last property in Corollary 4.5 implies $\sum_{\{u \rightarrow v\} \in \overrightarrow{\mathcal{G}_{n}}}(f(v)-f(u))=0$. On the other hand, $\sum_{\{u \rightarrow v\} \in \overrightarrow{\mathcal{G}_{n}}}(f(v)-f(u))=\sum_{v \in \overrightarrow{\mathcal{G}_{n}}} \operatorname{sdeg}(v) f(v)$ where $\operatorname{sdeg}(v)$ is the outdegree of v minus its indegree. The unique source in $\overrightarrow{\mathcal{G}_{n}}$ has outdegree 1; every sink in $\overrightarrow{\mathcal{G}_{n}}$ has indegree 1; and every even vertex that is not a source or a sink has indegree 1 and outdegree 1. Hence $0=\sum_{u \in \operatorname{Source}\left(\overrightarrow{\mathcal{G}_{n}}\right)} G_{u}-\sum_{v \in \operatorname{Sink}\left(\overrightarrow{\mathcal{G}_{n}}\right)} G_{v}=G_{w_{n}^{A}}-\sum_{v \in \mathcal{A}_{n}} G_{v}$. The last term is $S_{(n, n-1, \ldots, 3,2,1)}-\hat{G}_{w_{n}^{\mathrm{C}}}$ by Theorems 1.3 and 2.7 and the definition of \hat{G}_{w}.

5 Conjectures in type D

Assume $n \geq 3$ and let D_{n} be the subgroup of signed permutations in C_{n} whose oneline representations have an even number of negative letters. This subgroup is the finite Coxeter group of classical type D relative to the generating set $S=\left\{t_{1}^{\prime}, t_{1}, t_{2}, \ldots, t_{n-1}\right\}$ where $t_{1}^{\prime}=t_{0} t_{1} t_{0}$. To conclude this article, we describe a conjecture that gives a type D analogue of Theorem 1.2.

For $w \in D_{n}$ and $a \in \mathcal{R}(w)$, let \underline{a} be the word obtained from a by replacing each t_{1}^{\prime} with t_{1}, and define $\underline{\mathcal{R}}(w)=\{\underline{a}: a \in \mathcal{R}(w)\}$. For instance, $\mathcal{R}(\overline{1} 3 \overline{2})=\left\{\left(t_{1}, t_{1}^{\prime}, t_{2}\right),\left(t_{1}^{\prime}, t_{1}, t_{2}\right)\right\}$ while $\underline{\mathcal{R}}(\overline{1} 3 \overline{2})=\left\{\left(t_{1}, t_{1}, t_{2}\right)\right\}$. In type D it is the sets $\underline{\mathcal{R}}(w)$ that have simple tableau enumerations. Let w_{n}^{D} be the longest element of D_{n}.

Theorem 5.1 (Billey and Haiman [2]). It holds that $\left|\underline{\mathcal{R}}\left(w_{n}^{D}\right)\right|=\left|\operatorname{SYT}\left((n-1)^{n}\right)\right|$, which is also the number of unmarked shifted standard tableaux of shape $(2 n-2,2 n-4, \ldots, 2)$.

Let (W, S) be a Coxeter system with a group automorphism $\theta: W \rightarrow W$ such that $\theta(S)=S$ and $\theta=\theta^{-1}$. Let $\mathcal{I}_{\theta}(W)=\left\{w \in W: \theta(w)=w^{-1}\right\}$. The set of (twisted) atoms $\mathcal{A}_{\theta}(y)$ of $y \in \mathcal{I}_{\theta}(W)$ consists of the minimal-length elements $w \in W$ with $\theta(w)^{-1} \circ w=y$. The set of (twisted) involution words for $y \in \mathcal{I}_{\theta}(W)$ is $\hat{\mathcal{R}}_{\theta}(y)=\bigsqcup_{w \in \mathcal{A}_{\theta}(y)} \mathcal{R}(w)$.

Assume W is finite with longest element w_{0}. If W is A_{n}, C_{n}, or $D_{2 n+1}$ for $n>1$, then the only possibilities for θ are the identity map and $w \mapsto w_{0} w w_{0}$, and it holds that $\left|\hat{\mathcal{R}}_{\theta}\left(w_{0}\right)\right|=\left|\hat{\mathcal{R}}\left(w_{0}\right)\right|$ and (in type D) $\left|\underline{\hat{\mathcal{R}}_{\theta}}\left(w_{0}\right)\right|=\left|\underline{\hat{\mathcal{R}}}\left(w_{0}\right)\right|$. Define $*$ to be the automorphism of D_{n} that interchanges t_{1} and t_{1}^{\prime} and fixes t_{i} for $1<i<n$. When n is odd, $*$ is the inner automorphism $w \mapsto w_{0} w w_{0}$. Computations support the following:

Conjecture 5.2. It holds that $\left|\underline{\hat{\mathcal{R}}}\left(w_{n}^{D}\right)\right|=|\operatorname{SYT}(\lambda)|$ and $\left|\underline{\hat{\mathcal{R}}}_{*}\left(w_{n}^{D}\right)\right|=|\operatorname{SYT}(\mu)|$ for $\lambda=$ $\left(n-1, n-2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor,\left\lfloor\frac{n}{2}\right\rfloor, \ldots, 2,1\right)$ and $\mu=\left(n-1, n-2, \ldots,\left\lceil\frac{n}{2}\right\rceil-1,\left\lceil\frac{n}{2}\right\rceil-1, \ldots, 2,1\right)$.

Acknowledgements

This work was partially supported by HKUST grant IGN16SC11. We are grateful to Zach Hamaker for helpful feedback and discussions.

References

[1] S. Billey. "Transition equations for isotropic flag manifolds". Discrete Math. 193.1-3 (1998), pp. 69-84. Link.
[2] S. Billey and M. Haiman. "Schubert polynomials for the classical groups". J. Amer. Math. Soc. 8.2 (1995), pp. 443-482. Link.
[3] P. Edelman and C. Greene. "Balanced tableaux". Adv. Math. 63.1 (1987), pp. 42-99. Link.
[4] M. D. Haiman. "Dual equivalence with applications, including a conjecture of Proctor". Discrete Math. 99.1-3 (1992), pp. 79-113. Link.
[5] Z. Hamaker and E. Marberg. "Atoms for signed permutations". 2018. arXiv:1806.11208.
[6] Z. Hamaker, E. Marberg, and B. Pawlowski. "Schur P-positivity and involution Stanley symmetric functions". Int. Math. Res. Not. (2017), rnx274. Link.
[7] Z. Hamaker, E. Marberg, and B. Pawlowski. "Involution words: counting problems and connections to Schubert calculus for symmetric orbit closures". J. Combin. Theory Ser. A 160 (2018), pp. 217-260. Link.
[8] W. Kraśkiewicz. "Reduced decompositions in hyperoctahedral groups". C. R. Acad. Sci. Paris, Serie I 309 (1989), pp. 903-907.
[9] T. K. Lam. " B and D analogues of stable Schubert polynomials and related insertion algorithms". PhD thesis. Massachusetts Institute of Technology, 1995.
[10] T. K. Lam. " B_{n} Stanley symmetric functions". Discrete Math. 157.1-3 (1996), pp. 241-270. Link.
[11] I. G. Macdonald. Symmetric Functions and Hall Polynomials. 2nd ed. Oxford University Press, New York, 1995.
[12] E. Marberg and B. Pawlowski. "Stanley symmetric functions for signed involutions". 2018. arXiv:1802.09805.
[13] R. P. Stanley. "On the number of reduced decompositions of elements of Coxeter groups". European J. Combin. 5.4 (1984), pp. 359-372. Link.
[14] R. P. Stanley. Enumerative Combinatorics, Vol. 2. Cambridge University Press, 1999.
[15] D. R. Worley. "A theory of shifted Young tableaux". PhD thesis. Massachusetts Institute of Technology, 1984.

Figure 2: The directed bipartite graph $\overrightarrow{\mathcal{G}_{4}}$. The dashed arrows correspond to edges between vertices of the form (4.1) and (4.2). We have omitted the terminal 5 from all vertices in the final layer $\overrightarrow{\mathcal{L}}_{4,5} \subset \overrightarrow{\mathcal{G}_{4}}$. In contrast to what we see in this example, the graph $\overrightarrow{\mathcal{G}_{n}}$ is not a directed tree for $n \geq 5$.

