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Abstract. Involution words are variations of reduced words associated to twisted in-
volutions in Coxeter groups. These words are saturated chains in a partial order first
considered by Richardson and Springer in their study of symmetric varieties. In the
symmetric group, involution words can be enumerated in terms of tableaux using
appropriate analogues of the symmetric functions introduced by Stanley to count re-
duced words. We adapt this approach to the group of signed permutations. We show
that the involution words for the longest element in the Coxeter group Cn are in bijec-
tion with reduced words for the longest element in An = Sn+1, which are known to be
in bijection with standard tableaux of shape (n, n− 1, . . . , 2, 1).
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1 Introduction

Let W be a Coxeter group with simple generating set S. A reduced word for w ∈ W is a
minimal-length sequence (r1, r2, . . . , r`) of simple generators ri ∈ S with w = r1r2 · · · r`.
Let R(w) be the set of reduced words for w.

Of primary interest are the finite Coxeter groups of classical types A and B/C. Fix an
integer n ≥ 1 and let [n] = {1, 2, . . . , n} and [±n] = {±1,±2, . . . ,±n}. Let An = Sn+1
be the group of permutations of [n + 1]. Let Cn be the group of permutations w of [±n]
with w(−i) = −w(i) for all i. Define s1, s2, . . . , sn ∈ An and t0, t1, . . . , tn−1 ∈ Cn by

si = (i, i+1), t0 = (−1, 1), and ti = (−i−1,−i)(i, i+1) for i 6= 0. (1.1)

Then An is a Coxeter group relative to the generating set S = {s1, s2, . . . , sn} while Cn is
a Coxeter group relative to the generating set S = {t0, t1, . . . , tn−1}. We refer to elements
of Cn as signed permutations.

Each finite Coxeter group contains a unique element of maximal length, where the
length of an element w refers to the common length of any word in R(w). Let wA

n and
wC

n denote the longest elements of An and Cn. Then wA
n is the permutation i 7→ n + 2− i

while wC
n is the negation map i 7→ −i. There are attractive product formulas for the

number of reduced words for both of these permutations:∣∣∣R(wA
n )
∣∣∣ = (n+1

2 )!
∏n

i=1(2i− 1)i and
∣∣∣R(wC

n )
∣∣∣ = (n2)!

nn ∏n−1
i=1 [i(2n− i)]i

. (1.2)
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Stanley proved the first of these identities [13, Corollary 4.3] and conjectured the second,
which was later shown by Haiman [4, Theorem 5.12].

Let SYT(λ) be the set of standard Young tableaux of shape λ. Define δn = (n, n −
1, . . . , 2, 1) and write (nn) for the partition with n parts of size n. The identities (1.2) are
equivalent to

∣∣R (wA
n
)∣∣ = | SYT(δn)| and

∣∣R (wC
n
)∣∣ = | SYT((nn))| via the well-known

hook-length formula [14, Corollary 7.21.6]. As one would expect from this formulation,
there are natural bijective proofs of the identities (1.2), due to Edelman and Greene [3]
in type A and to Haiman [4] and Kraśkiewicz [8] in type C.

The main result of this paper is a product formula similar to (1.2) for the cardinality
of a set of reduced-word-like objects associated to wC

n . Write ` : W → N for the length
function of (W, S) and let I(W) = {y ∈ W : y = y−1} be the set of involutions in W.
There is a unique associative product ◦ : W ×W → W satisfying s ◦ s = s for any s ∈ S
and u ◦ v = uv for any u, v ∈ W with `(uv) = `(u) + `(v), and it can be shown that
every element y ∈ I(W) has the form

y = r` ◦ (· · · ◦ (r2 ◦ (r1 ◦ 1 ◦ r1) ◦ r2) ◦ · · · ) ◦ r` (1.3)

for some sequence of simple generators ri ∈ S. A sequence (r1, r2, . . . , r`) of shortest pos-
sible length satisfying (1.3) is an involution word for y. Let R̂(y) be the set of involution
words for y ∈ I(W). This set is always nonempty, with R̂(1) = {∅}.

Example 1.1. In C2, we have t0 ◦ (t1 ◦ (t0 ◦ 1 ◦ t0) ◦ t1) ◦ t0 = t0 ◦ (t1 ◦ t0 ◦ t1) ◦ t0 =
t0 ◦ t1t0t1 ◦ t0 = t0t1t0t1 = t1t0t1t0 = wC

2 and t1 ◦ (t0 ◦ (t1 ◦ 1 ◦ t1) ◦ t0) ◦ t1 = wC
2 and it

holds that R̂(wC
2 ) = {(t0, t1, t0), (t1, t0, t1)}.

Let p = bn
2 c and q = dn

2 e. In [7], the authors and Hamaker showed that

|R̂(wA
n )| =

(
(p+1

2 ) + (q+1
2 )

(p+1
2 )

)
| SYT(δp)|| SYT(δq)| (1.4)

and conjectured the following theorem, which is our main new result.

Theorem 1.2. It holds that |R̂(wC
n )| = | SYT(δn)| = |R(wA

n )|.

There is an algebraic approach to enumerating R(wA
n ), R(wC

n ), R̂(wA
n ), and R̂(wC

n )
by means of certain generating functions called Stanley symmetric functions. We write
[x1x2 · · · ] f for the coefficient of a square-free monomial in a homogeneous symmetric
function f . The Stanley symmetric functions of interest have the following properties:

• Each (type A) Stanley symmetric function Fw has [x1x2 · · · ]Fw = |R(w)|.

• Each (type C) Stanley symmetric function Gw has [x1x2 · · · ]Gw = 2`(w)|R(w)|.
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• Each (type A) involution Stanley symmetric function F̂y is a multiplicity-free sum
of certain instances of Fw, and it holds that [x1x2 · · · ]F̂y = |R̂(y)|.

• Each (type C) involution Stanley symmetric function Ĝy is a multiplicity-free sum
of certain instances of Gw, and it holds that [x1x2 · · · ]Ĝy = 2 ˆ̀(y)|R̂(y)|.

There are expressions for FwA
n

, GwC
n
, and F̂wA

n
as Schur functions sλ, Schur Q-functions Qλ,

and Schur S-functions Sλ. For the definitions of these symmetric functions, see Section 2.
The identities (1.2) and (1.4) are corollaries of the following formulas:

Theorem 1.3 (Stanley [13]). FwA
n
= sδn .

Theorem 1.4 (Worley [15]; Billey and Haiman [2]). GwC
n
= Q(2n−1,2n−3,...,3,1) = S(nn).

Theorem 1.5 (Hamaker, Marberg, and Pawlowski [6]). F̂wA
n
= 2−qQ(n,n−2,n−4,... ) = sδp sδq .

Theorem 1.2, in turn, is an immediate corollary of the following result, which adds
an entry for ĜwC

n
to the preceding sequence of identities.

Theorem 1.6. ĜwC
n
= GwA

n
= Sδn .

We relegate most technical arguments in this extended abstract to the full length
article [12], but sketch the outline of some proofs. In particular, our strategy for proving
Theorem 1.6 is as follows.

One can write ĜwC
n

as a sum ∑v∈An Gv indexed by a certain set An of signed permu-
tations v ∈ Cn, the atoms of wC

n . The transition equations of Lascoux-Schützenberger as
adapted by Billey [1] generate various identities between sums of type C Stanley sym-
metric functions. Work of Lam [10] implies that GwA

n
= Sδn , and we show that one

can apply a specific sequence of transition equations to rewrite GwA
n

as exactly the sum
∑v∈An Gv. The fact that this is possible is somewhat miraculous. It is an intriguing open
problem to find bijective or geometric proofs of our results.

2 Preliminaries

Fix a partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0). The Young diagram of λ is the set of
pairs Dλ = {(i, j) : i ∈ [k] and j ∈ [λi]}, which we envision as a collection of left-justified
boxes oriented as in a matrix. A semistandard tableau of shape λ is a filling of the boxes
of the Young diagram Dλ by positive integers, such that each row is weakly increasing
from left to right and each column is (strictly) increasing from top to bottom. Such a
tableau is standard if its boxes contain exactly the numbers 1, 2, . . . , |λ|.

Similarly, a marked semistandard tableau of shape λ is a filling of the Young diagram of
λ by numbers from the alphabet of primed and unprimed positive integers {1, 2, 3, . . . }t
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{1′, 2′, 3′, . . . } such that (i) the rows and columns are weakly increasing under the order
1′ < 1 < 2′ < 2 < · · · , (ii) no unprimed letter i appears twice in the same column, and
(iii) no primed letter i′ appears twice in the same row.

Assume λ is a strict partition, i.e., has all distinct parts. A marked semistandard shifted
tableau of shape λ is a filling of the shifted Young diagram {(i, i + j− 1) : (i, j) ∈ Dλ} with
primed and unprimed positive integers satisfying properties (i)-(iii) from the previous
paragraph. A semistandard marked (shifted) tableau T of shape λ is standard if exactly
one of i or i′ appears in T for each i = 1, 2, . . . , |λ|.

Given a tableau T, write xT for the monomial formed by replacing the boxes in T
containing i or i′ by xi and then multiplying the resulting variables.

Example 2.1. If T, U, and V are the tableaux of shape λ = (4, 3, 1) given by

T =
2 2 2 3
3 3 4
5

and U =
1′ 1 1 3
1′ 3 4′
5

and V =
1 2′ 3 3

2′ 4 6
5

then T is semistandard, U is marked and semistandard, and V is marked, semistandard,
and shifted. We have xT = x3

2x3
3x4x5 and xU = x4

1x2
3x4x5 and xV = x1x2

2x2
3x4x5x6.

Definition 2.2. Let λ be a partition and let µ be a strict partition. The Schur function of
λ, the Schur S-function of λ, and the Schur Q-function of µ are then the respective sums

sλ = ∑
T

xT, Sλ = ∑
U

xU, and Qµ = ∑
V

xV

where T runs over semistandard tableaux of shape λ, U runs over semistandard marked
tableaux of shape λ, and V runs over marked semistandard shifted tableaux of shape µ.

It is well-known that the Schur functions sλ, with λ ranging over all partitions, form
a basis for the algebra Λ of symmetric functions. Similarly, the Schur Q-functions Qµ,
with µ ranging over all strict partitions, form a basis for the subalgebra Γ ⊂ Λ generated
by the odd-indexed power sum symmetric functions. Each Schur Q-function is itself
Schur-positive, i.e., an N-linear combination of Schur functions.

The set of Schur S-functions, with λ ranging over all partitions, is not linearly inde-
pendent, but also spans the subalgebra Γ. The set {Sλ : λ is a strict partition} is a basis
for Γ. For more properties of these functions, see [11, Chaper I, §3] (for sλ), [11, Chapter
III, §8] (for Qλ), and [11, Chapter III, §8, Ex. 7] (for Sλ).

Next, we review the definitions of Fw, Gw, and F̂y from [1, 2, 7, 13].

Definition 2.3. The type A Stanley symmetric function associated to w ∈ An = Sn+1 is

Fw = ∑
a∈R(w)

∑
(i1≤i2≤···≤il)∈C(a)

xi1 xi2 · · · xil

where if a = (sa1 , sa2 , · · · , sal), then C(a) is the set of all weakly increasing sequences of
positive integers i1 ≤ i2 ≤ · · · ≤ il such that if aj > aj+1 for 1 ≤ j < l then ij < ij+1.
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Definition 2.4. The type C Stanley symmetric function associated to w ∈ Cn is

Gw = ∑
a∈R(w)

∑
(i1≤i2≤···≤il)∈D(a)

2|{i1,i2,...,il}|xi1 xi2 · · · xil

where if a = (ta1 , ta2 , · · · , tal), then D(a) is the set of all weakly increasing sequences of
positive integers i1 ≤ i2 ≤ · · · ≤ il such that if aj−1 < aj > aj+1 for 1 < j < l then either
ij−1 < ij ≤ ij+1 or ij−1 ≤ ij < ij+1.

Let (W, S) be any Coxeter system. Recall the definition of ◦ from the introduction.

Definition 2.5. For each y ∈ I(W) = {z ∈ W : z = z−1} let A(y) be the set of elements
w ∈W of minimal length with w−1 ◦ w = y. We refer to elements of this set as atoms.

Definition 2.6. The type A and type C involution Stanley symmetric functions associated to
y ∈ I(An) and z ∈ I(Cn) are F̂y = ∑w∈A(y) Fw and Ĝz = ∑w∈A(z) Gw, respectively.

Each Fw is an N-linear combination of Schur functions [3]. Each Gw is an N-linear
combination of Schur Q-functions [10, Theorem 3.12]. It follows that F̂y and Ĝz are
likewise Schur-positive and Schur-Q-positive. For F̂y, a stronger statement holds: if κ(y)
is the number of 2-cycles in y ∈ I(An), then 2κ(y) F̂y is also Schur-Q-positive [6, Corollary
4.62]. We do not know if Ĝz has any stronger positivity property along these lines.

Let ι : An−1 ↪→ Cn be the unique group homomorphism with ι(si) = ti for i ∈ [n− 1],
and define Gw = Gι(w) for w ∈ An−1. To relate Fw and Gw for w ∈ An−1, recall that
Λ = Q-span{sλ} and Γ = Q-span{Sλ} where both spans are over all partitions λ. The
second space is also given by Γ = {Qµ : µ is a strict partition}. The superfication map is
the linear map φ : Λ→ Γ with φ(sλ) = Sλ for all partitions λ.

Theorem 2.7 (Lam [9]). If w ∈ An−1 then Gw = φ(Fw).

A reflection in a Coxeter group is an element conjugate to a simple generator. With
our notation as in [1, §3], the reflections in Cn are the elements sii = (i, i) for i ∈ [n] along
with sij = sji = (i, j)(i, j) and tij = tji = (i, j)(i, j) for i, j ∈ [n] with i < j. If t ∈ Cn is a
reflection and u, v ∈ Cn are such that v = ut and `(v) = `(u) + 1, then we write u l v;
then l is the covering relation of the Bruhat order of Cn. For w ∈ Cn and j ∈ [n], define

Sj(w) = {wsij : i ∈ [n], w l wsij} ⊆ Cn,

T −j (w) = {wtij : 1 ≤ i < j, w l wtij} ⊆ Cn,

T +
j (w) = {wtjk : j < k ≤ n + 1, w l wtjk} ⊆ Cn+1.

We refer to the following technical result as the transition formula for Gw.

Theorem 2.8 (Billey [1]). If w ∈ Cn and j ∈ [n] then ∑
v∈T +

j (w)

Gv = ∑
v∈Sj(w)

Gv + ∑
v∈T −j (w)

Gv.
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3 Atoms and quasi-atoms

Let S ⊂ Z be a set of integers. A perfect matching on a set S is a set of pairwise disjoint
2-element subsets {i, j}, referred to as blocks, whose union is S. A perfect matching M

is symmetric if {i, j} ∈ M implies −{i, j} def
= {−i,−j} ∈ M, and noncrossing if it does

not occur that i < a < j < b for any blocks {i, j}, {a, b} ∈ M. Let NCSP(n) denote the
set of noncrossing, symmetric, perfect matchings on the set [±n]. The three elements of
NCSP(3) are {{±1}, {±2}, {±3}}, {±{1, 2}, {±3}}, and {{±1},±{2, 3}}.

For us, a word is a finite sequence of nonzero integers. The one-line representation
of w ∈ Cn is the word w1w2 · · ·wn where wi = w(i). We usually write m in place of
−m so that, for example, the elements of C2 are 12, 12, 12, 12, 21, 21, 21, and 21. If
w = w1w2 · · ·wn is a word then we write [[w]] for the subword formed by omitting each
repeated letter after its first appearance. For example, [[312311243]] = 3124. Suppose M
is a symmetric, noncrossing, perfect matching on a subset of [±n]. Define

Pair(M) = {(a,−b) : {a, b} ∈ M, 0 < a < b} t {(−a,−a) : {−a, a} ∈ M, 0 < a}.

Let (a1, b1), (a2, b2), . . . , (al, bl) and (c1, d1), (c2, d2), . . . , (cl, dl) be the elements of Pair(M)
listed in order such that b1 < b2 < · · · < bl and c1 < c2 < · · · < cl, and define

αmin(M) = [[a1b1a2b2 · · · albl]] and αmax(M) = [[c1d1c2d2 · · · cldl]].

If M ∈ NCSP(n), then αmin(M) and αmax(M) contain exactly one letter from {±i} for
each i ∈ [n], so are the one-line representations of elements of Cn. If u and v are words,
both with n ≥ i + 2 letters, then we write u Ci v to mean that

uiui+1ui+2 = cab, vivi+1vi+2 = bca, and uj = vj for j /∈ {i, i + 1, i + 2} (3.1)

for some a < b < c. Let <A be the transitive closure of the relations Ci for all i ≥ 1. We
apply <A to signed permutations in one-line notation. Finally, define An = A(wC

n ) ⊂ Cn
and AM = {w ∈ Cn : αmin(M) ≤A w ≤A αmax(M)} for M ∈ NCSP(n).

Example 3.1. If M = {{±1},±{2, 3},±{4, 5}} ∈ NCSP(5) then the interval AM is

12345

12453 23145

14523 23451

45123 24531

45231
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Theorem 3.2 (Hamaker and Marberg [5]). It holds that An =
⊔

M∈NCSP(n)AM.

For example, we have AL = {123, 231}, AM = {312}, and AN = {321} for the
matchings L = {{±1},±{2, 3}}, M = {±{1, 2}, {±3}}, and N = {{±1}, {±2}, {±3}},
and A3 = AL tAM tAN. For an atom w ∈ An, define M(w) to be the unique noncross-
ing, symmetric, perfect matching in NCSP(n) with w ∈ AM(w).

Given a word w = w1w2 · · ·wn such that |w1|, |w2|, . . . , |wn| are distinct and nonzero,
define fl±(w) ∈ Cn to be the signed permutation whose one-line representation is
formed by replacing each letter of w by its image under the order-preserving bijection
{±w1,±w2, . . . ,±wn} → [±n]. For example, fl±(3257) = 2134 ∈ C4. If M is a partition
of a symmetric 2n-element subset X = −X ⊂ [±m], then define fl±(M) to be the par-
tition of [±n] formed by replacing each element of each block of M by its image under
the order-preserving bijection X → [±n].

Suppose w ∈ Cn and v = fl±(w2w3 · · ·wn) ∈ An−1. Define M′(w) to be the unique
perfect matching on [n] \ {±w1} with fl±(M′(w)) = M(v). Since M(v) is symmetric and
noncrossing, M′(w) is symmetric and noncrossing.

The matching M′(w) may be read off directly from the one-line representation of
w by the following procedure. Let w0, w1, w2, . . . , wl be any sequence of words whose
first term is w0 = w2w3 · · ·wn (note the deliberate omission of w1) and whose final
term is strictly increasing, in which wi for i > 0 is formed from wi−1 by removing a
consecutive subword qi pi with pi < qi. Let {c1, c2, . . . , ck} be the set of letters in wl.
Then M′(w) is the matching whose blocks consist of {p,−q}, {−p, q}, and {±c} for
each (q, p) ∈ {(q1, p1), (q2, p2), . . . , (ql, pl)} and each c ∈ {c1, c2, . . . , ck}. It is a nontrivial
fact that this construction is independent of the choices of descents [5]. One can read off
M(v) from the one-line representation of v ∈ An−1 by a similar procedure.

Example 3.3. Let w = 3167452. One sequence of words w0, w1, . . . , wl as above is

w0 = 167452, w1 = 1452, w2 = 12, w3 = ∅,

so M′(w) = {±{1, 2},±{4, 5},±{6, 7}}. Setting v = fl±(w2w3 · · ·wn), we have

αmin(M) = 563412 C3 561342 C1 156342 = v

for M = {±{1, 2},±{3, 4},±{5, 6}} = fl±(M′(w)), so v ∈ AM.

Definition 3.4. An element w ∈ Cn is a quasi-atom if the following conditions hold:

(a) One has w1 > 0 and fl±(w2w3 · · ·wn) ∈ An−1, where A0 = {∅}.

(b) At most one block {a, b} ∈ M′(w) has 0 < a < w1 < b.

(c) No symmetric block {±c} ∈ M′(w) has 0 < w1 < c.
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A quasi-atom w is odd if no block {a, b} ∈ M′(w) exists with 0 < a < w1 < b;
otherwise, w is even. We write Q+

n and Q−n for the sets of even and odd quasi-atoms in
Cn, and define Qn = Q+

n t Q−n . By convention A0 = {∅}, Q+
1 = ∅, and Q−1 = {1}.

In rank two we have A1 =
{

1
}

, Q+
2 = ∅, and Q−2 =

{
21
}

. In rank three we have
A2 =

{
21, 12

}
, Q+

3 =
{

213
}

, and Q−3 =
{

321, 312, 123
}

. The following is not obvious:

Proposition 3.5. The sets An and Qn are disjoint.

4 Transition graphs

In this section, we construct a directed bipartite graph
−→Ln with vertex set An tQn. We

use the letter L to denote this graph since it will later serve as one “layer” in a larger
graph of interest.

Explicitly, define
−→Ln to be the smallest directed graph containing each element of

An tQn as a vertex and containing each of the following directed edges:

• If v ∈ Q+
n and b = v1 > 0, and {a, c} ∈ M′(v) is the unique block with 0 < a < b <

c, then
−→Ln has an incoming edge tbcv→ v and an outgoing edge v→ tabv.

• If v ∈ An then v has a single incoming edge u → v in
−→Ln, where if v1 < 0 then

u = vt0, and if v1 > 0 then u = tbcv where b = v1 and c is such that {b,−c} ∈ M(v).

See Figure 1 for an example. It is not obvious from this description of
−→Ln that each vertex

incident to v ∈ An tQ+
n is contained in An tQn, but this turns out to be the case.

4312

4312 3412

4123

4123 14233124

2134

2134 1234

4321

4321 3421

4231

42313241

2341

2341 1342

Figure 1: The directed bipartite graph
−→L4. The vertices in the top row are all odd.

Theorem 4.1. The vertices in
−→Ln are precisely the signed permutations An t Qn. Each

edge in
−→Ln goes from an even quasi-atom to an odd quasi-atom, from an odd quasi-atom

to an even quasi-atom, or from an odd quasi-atom to an atom.
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Corollary 4.2. The directed graph
−→Ln is bipartite.

Recall the definitions of Sj(w) ⊂ Cn and T +
j (w) ⊂ Cn+1 for w ∈ Cn from Theorem 2.8.

Our next theorem relates the edges of
−→Ln to Billey’s transition formula for Gw.

Theorem 4.3. Suppose u, w ∈ Q−n and w1 < n. Then v ∈ S1(u) if and only if u→ v is an
edge in

−→Ln, and v ∈ T +
1 (w) if and only if v→ w is an edge in

−→Ln. Hence T +
1 (w) ⊂ Cn.

A sink/source in a directed graph is a vertex with no outgoing/incoming edges.

Theorem 4.4. The set of sinks in
−→Ln is precisely An. The set of sources in

−→Ln is precisely
the set of odd quasi-atoms of the form nv1v2 · · · vn−1 ∈ Q−n where v1v2 · · · vn−1 ∈ An−1.

The preceding result indicates a natural way of packaging the graphs
−→Ln together for

successive values of n. For 0 < m < n, write ↑n
m : Cm → Cn for the transformation

↑n
m(v1v2 · · · vm) = n(n− 1) · · · (m + 3)(m + 2)v1v2 · · · vm(m + 1) ∈ Cn.

Let C0 be the set consisting of just the empty word ∅ and define ↑n
0 : C0 → Cn to be the

map ∅ 7→ n · · · 321. View
−→L0 as the edgeless graph with vertex set C0. Define

−→L m,n for
0 ≤ m < n to be the directed graph given by replacing each vertex in

−→Lm by its image
under ↑n

m. Interpret ↑n+1
n as the identity map Cn → Cn ↪→ Cn+1 and identify

−→L n,n+1

with
−→Ln. Finally, define

−→Gn to be the graph given by the disjoint union

−→L 0,n+1 t
−→L 1,n+1 t

−→L 2,n+1 · · · t
−→L n,n+1

with these additional edges: for m ∈ [n] and w ∈ Am−1, include an edge from the sink

↑n+1
m−1(w1w2 · · ·wm−1) = (n + 1)n · · · (m + 2)(m + 1)w1w2 · · ·wm−1m (4.1)

in
−→L m−1,n+1 to the source

↑n+1
m (mw1w2 · · ·wm−1) = (n + 1)n · · · (m + 3)(m + 2)mw1w2 · · ·wm(m + 1) (4.2)

in
−→L m,n+1. A vertex in

−→L m,n+1 is odd it is the image under ↑n+1
m of an odd quasi-atom

in
−→Lm. All other vertices in

−→L m,n+1 or
−→Gn are even; in particular, the unique vertex

↑n+1
0 (∅) in

−→L 0,n+1 is even. Figure 2 shows the graph
−→G4. The resulting division into

even and odd vertices affords a bipartition of
−→Gn. The following key properties of

−→Gn are
straightforward corollaries of Theorems 2.8, 4.3 and 4.4.

Corollary 4.5. The unique source in
−→Gn is ↑n+1

0 (∅) = wA
n . The set of sinks is

−→Gn is
↑n+1

n (An) = An. If v is any odd vertex in
−→Gn, then ∑{u→v}∈−→Gn

Gu = ∑{v→w}∈−→Gn
Gw.
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Finally, using these results we can prove Theorem 1.6.

Proof of Theorem 1.6. For each vertex v ∈ −→Gn, define f (v) to be 0 if v is odd and Gv
if v is even. The last property in Corollary 4.5 implies ∑{u→v}∈−→Gn

( f (v) − f (u)) = 0.
On the other hand, ∑{u→v}∈−→Gn

( f (v)− f (u)) = ∑v∈−→Gn
sdeg(v) f (v) where sdeg(v) is the

outdegree of v minus its indegree. The unique source in
−→Gn has outdegree 1; every sink

in
−→Gn has indegree 1; and every even vertex that is not a source or a sink has indegree

1 and outdegree 1. Hence 0 = ∑u∈Source(
−→Gn)

Gu −∑v∈Sink(
−→Gn)

Gv = GwA
n
−∑v∈An Gv. The

last term is S(n,n−1,...,3,2,1) − ĜwC
n

by Theorems 1.3 and 2.7 and the definition of Ĝw.

5 Conjectures in type D

Assume n ≥ 3 and let Dn be the subgroup of signed permutations in Cn whose one-
line representations have an even number of negative letters. This subgroup is the finite
Coxeter group of classical type D relative to the generating set S = {t′1, t1, t2, . . . , tn−1}
where t′1 = t0t1t0. To conclude this article, we describe a conjecture that gives a type D
analogue of Theorem 1.2.

For w ∈ Dn and a ∈ R(w), let a be the word obtained from a by replacing each t′1 with
t1, and define R(w) = {a : a ∈ R(w)}. For instance, R(132) = {(t1, t′1, t2), (t′1, t1, t2)}
while R(132) = {(t1, t1, t2)}. In type D it is the sets R(w) that have simple tableau
enumerations. Let wD

n be the longest element of Dn.

Theorem 5.1 (Billey and Haiman [2]). It holds that |R(wD
n )| = | SYT((n− 1)n)|, which is

also the number of unmarked shifted standard tableaux of shape (2n− 2, 2n− 4, . . . , 2).

Let (W, S) be a Coxeter system with a group automorphism θ : W → W such that
θ(S) = S and θ = θ−1. Let Iθ(W) = {w ∈ W : θ(w) = w−1}. The set of (twisted) atoms
Aθ(y) of y ∈ Iθ(W) consists of the minimal-length elements w ∈W with θ(w)−1 ◦w = y.
The set of (twisted) involution words for y ∈ Iθ(W) is R̂θ(y) =

⊔
w∈Aθ(y)R(w).

Assume W is finite with longest element w0. If W is An, Cn, or D2n+1 for n > 1,
then the only possibilities for θ are the identity map and w 7→ w0ww0, and it holds
that |R̂θ(w0)| = |R̂(w0)| and (in type D) | R̂θ(w0)| = | R̂(w0)|. Define ∗ to be the
automorphism of Dn that interchanges t1 and t′1 and fixes ti for 1 < i < n. When n is
odd, ∗ is the inner automorphism w 7→ w0ww0. Computations support the following:

Conjecture 5.2. It holds that
∣∣ R̂(wD

n )
∣∣ = | SYT(λ)| and

∣∣ R̂∗(wD
n )
∣∣ = | SYT(µ)| for λ =

(n− 1, n− 2, . . . , bn
2 c, b

n
2 c, . . . , 2, 1) and µ = (n− 1, n− 2, . . . , dn

2 e − 1, dn
2 e − 1, . . . , 2, 1).
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Figure 2: The directed bipartite graph
−→G4 . The dashed arrows correspond to edges

between vertices of the form (4.1) and (4.2). We have omitted the terminal 5 from all
vertices in the final layer

−→L 4,5 ⊂
−→G4 . In contrast to what we see in this example, the

graph
−→Gn is not a directed tree for n ≥ 5.
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