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Abstract. We study edge asymptotics of poissonized Plancherel-type measures on
skew Young diagrams (integer partitions). These measures can be seen as generaliza-
tions of those studied by Baik–Deift–Johansson and Baik–Rains in resolving Ulam’s
problem on longest increasing subsequences of random permutations and the last pas-
sage percolation (corner growth) discrete versions thereof. Moreover they interpolate
between said measures and the uniform measure on partitions. In the new KPZ-like
1/3 exponent edge scaling limit with logarithmic corrections, we find new probability
distributions generalizing the classical Tracy–Widom GUE, GOE and GSE distributions
from the theory of random matrices.

1 Introduction and main results

Background. The poissonized Plancherel [1] and the discrete corner growth [12] mea-
sures are two probability measures on integer partitions coming from the study of
longest increasing subsequences of random permutations, respectively directed last pas-
sage percolation in an N × N square—LPP—models with iid geometric weights. Both
(cf. op. cit.) are known to exhibit KPZ N1/3 fluctuation behavior at the edge, with the
Tracy–Widom GUE distribution [15] from random matrix theory as the limiting distribu-
tion. Baik and Rains [2, 3] have considered symmetrized versions of both, with similar
results except now the limiting distributions are the Tracy–Widom GOE and GSE dis-
tributions [16] from random matrix theory—and some interpolating ones. In all cases
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the weight of a partition is proportional to the (possibly square of) number of (semi-
) standard Young tableaux of said shape. Such measures are part of a large class of
determinantal/pfaffian measures called Schur measures [14]—see [10] for the pfaffian
case.

In this note we generalize the above poissonized Plancherel and discrete Schur mea-
sures to skew Young diagrams—i.e. counting (semi-) standard Young tableaux of skew
shape—coming from pairs (or triples) of partitions with free ends. In the N1/3 scaling
limit we find that the behavior of the first part of one (any) of the partitions is governed
by new generalizations of the classical Tracy–Widom distributions. We finally give a
directed LPP interpretation of our models in terms of directed polymers in a reflecting
strip. We call these models LPP on a tie.

Outline. Below we describe the main result; its relation to LPP in Section 2; the new
distribution functions we obtain as limits in Section 3; and a sketch of proof in Section 4.
Full details will appear elsewhere [7].

Main results. For two integer partitions µ ⊂ λ (i.e. µi ≤ λi ∀i), let us denote by
f λ/µ, respectively f̃ n, λ/µ, the number of standard Young tableaux of skew shape λ/µ

filled with numbers 1, 2, . . . , |λ/µ| := |λ| − |µ|, respectively the number of semi-standard
Young tableaux of shape λ/µ filled with 1, . . . , n. Let or(λ) (respectively oc(λ)) denote
the number of odd rows (respectively odd columns) of a partition λ. Fix positive real
parameters u, q < 1, a1, a2, b1, b2, v ≤ 11, ε2, and consider the following measures on
pairs/triples of partitions:

M↗, x(µ, λ) ∝ ∆x(µ, λ) · u|µ| · ε|λ/µ| f λ/µ

|λ/µ|! ,

M↗↘, x(µ, λ, ν) ∝ ∆x(µ, ν) · u|µ|v|ν| · ε|λ/µ|+|λ/ν| f λ/µ f λ/ν

|λ/µ|! · |λ/ν|! ,

M̃↗, x(µ, λ) ∝ ∆x(µ, λ) · u|µ| · q|λ/µ| f̃ n, λ/µ,

M̃↗↘, x(µ, λ, ν) ∝ ∆x(µ, ν) · u|µ|v|ν| · q|λ/µ|+|λ/ν| f̃ n, λ/µ f̃ n, λ/ν

(1.1)

where x ∈ {aa, ab, bb,−} is a boundary label for the boundary partitions (− stands for
absence of boundary parameters); where

∆x(µ, λ) =


aoc(µ)

1 aoc(λ)
2 , x = aa,

aoc(µ)
1 bor(λ)

2 , x = ab,

bor(µ)
1 bor(λ)

2 , x = bb,
1, x = −;

(1.2)

1The restrictions on the ai, bi can be somewhat relaxed.
2Here u, v, ai, bj are boundary parameters, ε is a poissonization parameter keeping track of the size of

the skew Young diagrams, and q a geometrization parameter for the same purpose.
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and where the partition functions making each into a probability measure can be explic-
itly computed using the methods of [6].

They will be referred to as the upwards (for ↗) and up-down (for ↗↘) free-boundary
poissonized Plancherel (for M) and free-boundary geometric corner growth (for M̃) measures.

The upwards measures M become the “symmetrized” poissonized Plancherel mea-
sures studied in [2, 3] when u = 0. The up-down measures M become the classical
poissonized Plancherel measure from [1] when u = v = 0. Moreover they all become
the uniform measure on partitions when ε → 0. Thus they interpolate poissonized
Plancherel ↔ uniform3. A similar remark holds for the M̃ measures, replacing “pois-
sonized Plancherel” with Johansson’s corner growth [12] (for M̃↗↘, ··· when u = v = 0)
and the respective symmetrized versions [2] (for M̃↗, ··· when u = 0).

Our main result is a generalization of those in [1, 3], and can be seen as a pfaffian
analogue of [5, Theorem 1.1]. We concentrate on the large scale behavior of λ1

4 as
ε, n→ ∞ while all other parameters go to 1 in a suitable critical regime.

Theorem 1.1. Fix η, αi, βi, i = 1, 2 positive reals. Let M := ε
1−u2 → ∞ and set u = v =

exp(−ηM−1/3) and (ai, bi) =
(
uαi/η, uβi/η

)
i = 1, 2 all going to 1 as M→ ∞. (In particular,

ε ∼ M2/3 → ∞.) We have:

lim
M→∞

M↗, x

(
λ1 − 2M

M1/3 ≤ s +
1
η

log
M1/3

η

)
= F1;dx(s),

lim
M→∞

M↗↘, x

(
λ1 − 2M

M1/3 ≤ s +
1

2η
log

M1/3

2η

)
= F2;dx(s)

(1.3)

where x ∈ {aa, ab, bb,−}, the distributions F ··· are defined in Section 3, and

dx =


α1, α2; η, x = aa,
α1,−; η, x = ab,
η, x = bb or − .

(1.4)

Theorem 1.2. Fix η, αi, βi, i = 1, 2 positive reals. As n→ ∞ (n a positive integer), let u = v =
exp(−ηn−1/3), (ai, bi) =

(
uαi/η, uβi/η

)
i = 1, 2 all going to 1 and set q = 1− u2 → 0. We

have:

lim
n→∞

M̃↗, x

(
λ1 − χn

n1/3 ≤ s +
1
η

log
n1/3

η

)
= F1;dx(s),

lim
n→∞

M̃↗↘, x

(
λ1 − χn

n1/3 ≤ s +
1

2η
log

n1/3

2η

)
= F2;dx(s)

(1.5)

3Another such interpolating measure has been studied in [8, Example 3.4] (for the bulk) and in [5, The-
orem 1.1] (for the edge). It is an instance of the periodic Schur process, while the measures M considered
in this paper are instances of the free boundary Schur process.

4We obtain essentially the same result if we consider µ or ν instead of λ.
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where χ = 2q ∑`≥0
u2`

1−u2`q
n→∞−−−→ 2, x ∈ {aa, ab, bb,−}, and dx is as in (1.4).

Notice the logarithmic corrections in all cases. Also notice the unusual scaling q =
O(n−1/3) in Theorem 1.2, different from the usual q = O(n−1) [13].

We can also show convergence of the first k parts of λ to the first k parts of the
ensembles given by the corresponding kernels of Section 3, a result in the spirit and
generalizing those of [9, 13]. We omit the statement for brevity.

We further emphasize we concentrate here on the new interesting “crossover” regime
u, v → 1. I.e. the case u → u0 ∈ [0, 1) leads, up to deterministic shift, to the same
asymptotics as u = 0—e.g. for the x = − label, the limiting distributions are the Tracy–
Widom FGOE distribution in the case of the upwards measure and the Tracy–Widom
FGUE distribution for the up-down measure. We also omit this for brevity.

Finally, the new limiting distributions—defined in Section 3—contain all the classical
Tracy–Widom distributions as limits.

Theorem 1.3. We have: limη→∞ F1;α1,α2;η(s) = F�(s; α2), limη→∞ F2;α1,α2;η(s) = FGUE(s)
where FGUE is the Tracy–Widom GUE distribution [15] and F�(s; α2) is the Baik–Rains [3]
Tracy–Widom GOE/GSE [16] crossover—F�(s; 0) = FGOE(s) while F�(s; ∞) = FGSE(s).

2 A corner growth interpretation

In this section we describe directed last passage percolation on a tie. More precisely,
we show how the measures M̃↗↘,− and M̃↗,−, and in particular the observables λ1,
come from certain LPP models on an infinite reflecting strip—the above mentioned tie
models. In the case of u = v = 0 (for the up-down measure) and u = 0 (for the upwards
measure), the models become the usual LPP models of Johansson [12] and the Baik–
Rains symmetrized versions [2] respectively. For brevity, we will restrict the discussion
to the measure M̃↗↘,− and make remarks about the other one.

First we fix parameters x1, . . . , xn, y1, . . . , yn. Note in the end we take xi = yi = q ∀i.
Suppose we have an infinite strip—or tie—on the discrete square lattice constructed from
big n× n adjacent squares and triangles like in Figure 1 (left). The strip has reflecting
boundaries (red lines in fig. cit.). Each big square, sitting centrally in the strip, contains
n2 unit squares, and each big triangle n(n− 1)/2 unit squares and n unit triangles. In
each unit square/triangle there is a geometric random variable Geom(z)5—independent
from the others—of a certain parameter z chosen as follows. Associate our xi, yj param-
eters with the north-east (NE) and north-west (NW) boundaries of the strip (ends of the
tie) as depicted in Figure 1 (left). Pick a unit square from a big n× n square. The num-
ber inside has distribution Geom((uv)2sxiyj) where s = 0, 1, 2, . . . is the vertical position
of the big square in the strip (starting from the top s = 0) and to figure out i, j send

5We say X ∼ Geom(z) if Prob(X = k) = (1− z)zk, ∀k ≥ 0.
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two rays of light from said square to the top, one in the NE and the other in the NW
directions. The rays reflect off each boundary. They will intersect the top NE and NW
borders in an xi and yj parameter respectively, which are our sought variables. For a
unit square inside a big n× n triangle, the number inside is either Geom(u2(uv)2sxixj) or
Geom(v2(uv)2syiyj) with s and determining i, j as above. Note in this case, the two rays
will hit the same top boundary, either labeled x or y. Finally, in the unit boundary trian-
gles, the numbers inside are Geom(u(uv)sxi) or Geom(v(uv)syi)) with s and determining
i as above. See Figure 1 (left) for precise examples.

By Borel–Cantelli, almost surely only finitely many numbers in this strip will be non-
zero—say those outside the green area in Figure 1 (left). Look at the longest polymer
(path) with south-east (SE) or south-west (SW) steps starting from the top unit square in
the strip and going down, reflected by the two boundaries if need be. Here by length we
mean the sum of the integers encountered by the path. Call this length L. It equals 199
in Figure 1 (left).

Pick now a uniformly distributed partition κ with parameter uv—i.e. Prob(κ) =
(uv; uv)∞(uv)|κ|—and place it at the nodes of the south-eastern and south-western-most
bottom boundaries separating the infinite region of 0’s inside the strip—without loss of
generality it can be positioned on the SE and SW sides of a big square. Using the Fomin
growth rule description of the Robinson–Schensted–Knuth (RSK) correspondence—like
described in e.g. [4]—inductively “flip”, starting from the bottom, every unit square and
triangle to produce, from three (or two for the triangles) partitions on its boundary and
the integer inside, a fourth partition—placed at the top vertex. Call the final partition sit-
ting at the top of the tie λ, and µ, ν the ones sitting at the top ends of the reflecting bound-
aries. The properties of the RSK correspondence imply Prob(µ, λ, ν) ∝ M̃↗↘,−(λ, µ, ν)
(upon taking xi = yi = q ∀i). Greene’s theorem [11] yields L + κ1 = λ1. We thus obtain:

Theorem 2.1. It holds that Prob(L + κ1 ≤ k) = M̃↗↘,−(λ1 ≤ k).

The corner growth construction corresponding to the measure M̃↗,− is depicted in
Figure 1 (right; L = 130; there are no big squares and hence no x parameters; v = 1). The-
orem 2.1 holds mutatis-mutandis. A similar construction holds for the M↗,−, M↗↘,−

measures if one replaces the geometric random variables with appropriate Poisson point
processes. For the measures with boundary a and/or b parameters, a more involved
construction generalizing that of [2] exists. E.g. for the M̃↗↘, aa measure, one just
puts another distribution in the unit triangles of Figure 1 (left): Geom(a1u(uv)sxi) re-
spectively Geom(a2v(uv)syi) for the two boundaries. For a b parameter—say on the
right boundary—one replaces Geom(a2v(uv)syi) with Geom(b2)(v(uv)syi) where X ∼
Geom(b)(z) if Prob(X = k) = (1− z2)(1 + bz)−1bk mod 2zk ∀k ≥ 1. Because of the mod 2,
one heuristically sees that the b parameters do not matter in the limits of Theorem 1.2,
whereas the a’s do and can be taken as “strengths” of the respective boundaries.
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Figure 1: The construction described in Section 2, with longest polymer in orange.
n = 4, L = 199 (left) and L = 130 (right).

3 Definition of distribution functions

Fix parameters α1, α2, η > 0. Our new limit distributions are defined as Fredholm pfaffi-
ans. For k = 1, 2 let

Fk;α1,α2;η(s) := pf
(

J − Ak;α1,α2;η
)

L2
(

s+ log 2
k·η ,∞

) ,

Fk;α1,−;η := lim
α2→0

Fk;α1,α2;η, Fk;η := lim
α1→0

Fk;α1,−;η
(3.1)

where J is the anti-symmetric kernel J(x, y) = δx,y

(
0 1
−1 0

)
and where the A kernels

(operators) are defined as follows. Let τ, τ′ satisfy 0 < τ, τ′ < 1
6 min(η, α1, α2). In

case α1 (or α2 or both) is zero, the corresponding factor is absent from the minimum
conditions. Define the following pairs of contours, oriented bottom-to-top: (C1,1

ζ , C1,1
ω ) =

(τ + iR, τ′ + iR), (C1,2
ζ , C1,2

ω ) = (τ + iR,−τ′ + iR), (C2,2
ζ , C2,2

ω ) = (−τ + iR,−τ′ + iR).
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Define these auxiliary products of Euler Gamma functions6:

γ(1)(ζ) :=
Γ
(

1
2 +

α1−ζ
2η , 1 + α2−ζ

2η

)
Γ
(

1
2 +

α1+ζ
2η , α2+ζ

2η

) , γ(2)(ζ) :=
Γ
(

1
4 +

α1−ζ
4η , 3

4 +
α2−ζ

4η

)
Γ
(

3
4 +

α1+ζ
4η , 1

4 +
α2+ζ

4η

) . (3.2)

The desired 2× 2 hypergeometric Airy matrix kernels are below. The ζ integral is always
over Ci,j

ζ , the ω always over Ci,j
ω for corresponding i, j, dζω := dζdω(2πi)−2, and dζ :=

dζ(2πi)−1.

A1;α1,α2;η
1,1 (x, y) =

∫ ∫
Γ
(

ζ

η
,

ω

η

)
γ(1)(ζ)γ(1)(ω)

sin π(ζ−ω)
2η

sin π(ζ+ω)
2η

e
ζ3
3 −xζ+ω3

3 −yωdζω,

A1;α1,α2;η
1,2 (x, y) =

∫ ∫
Γ
(

ζ

η
, 1− ω

η

)
γ(1)(ζ)

γ(1)(ω)

sin π(ζ+ω)
2η

sin π(ζ−ω)
2η

e
ζ3
3 −xζ−ω3

3 +yω dζω

2η
, (3.3)

A1;α1,α2;η
2,2 (x, y) =

∫ ∫
Γ
(

1− ζ

η
, 1− ω

η

)
1

γ(1)(ζ)γ(1)(ω)

sin π(ζ−ω)
2η

sin π(ζ+ω)
2η

e−
ζ3
3 +xζ−ω3

3 +yω dζω

4η2

− sgn(x− y)

and

A2;α1,α2;η
1,1 (x, y) =

∫ ∫
Γ
(

1
2
+

ζ

2η
,

1
2
+

ω

2η

)
γ(2)(ζ)γ(2)(ω)

sin π(ζ−ω)
4η

cos π(ζ+ω)
4η

e
ζ3
3 −xζ+ω3

3 −yω dζω

4η
,

A2;α1,α2;η
1,2 (x, y) =

∫ ∫
Γ
(

1
2
+

ζ

2η
,

1
2
− ω

2η

)
γ(2)(ζ)

γ(2)(ω)

cos π(ζ+ω)
4η

sin π(ζ−ω)
4η

e
ζ3
3 −xζ−ω3

3 +yω dζω

4η
, (3.4)

A2;α1,α2;η
2,2 (x, y) =

∫ ∫
Γ
(

1
2
− ζ

2η
,

1
2
− ω

2η

)
1

γ(2)(ζ)γ(2)(ω)

sin π(ζ−ω)
4η

cos π(ζ+ω)
4η

e−
ζ3
3 +xζ−ω3

3 +yω dζω

4η

with the remark that everywhere A ···2,1(x, y) := −A ···1,2(y, x).
We note that, upon using the Gamma duplication formula, we can write, for k = 1, 2,

Fk;η
(

s− log 2
k · η

)
= pf

(
J − Ak;η

)
L2(s,∞)

(3.5)

where the kernels Ak;η have a much simpler form:

A1;η
1,1(x, y) =

∫ ∫
Γ
(

1− ζ

η
, 1− ω

η

) sin π(ζ−ω)
2η

sin π(ζ+ω)
2η

e
ζ3
3 −xζ+ω3

3 −yω dζω

4
,

6We use the notation Γ(a, b, c, . . . ) = Γ(a)Γ(b)Γ(c) · · · .
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A1;η
1,2(x, y) =

∫ ∫
Γ
(

1− ζ

η
,

ω

η

) sin π(ζ+ω)
2η

sin π(ζ−ω)
2η

e
ζ3
3 −xζ−ω3

3 +yω dζω

2η
, (3.6)

A1;η
2,2(x, y) =

∫ ∫
Γ
(

ζ

η
,

ω

η

) sin π(ζ−ω)
2η

sin π(ζ+ω)
2η

e−
ζ3
3 +xζ−ω3

3 +yω dζω

η2

+
∫

Γ
(

ζ

η

)
e−

ζ3
3 +xζ dζ

η
−
∫

Γ
(

ω

η

)
e−

ω3
3 +yω dω

η
− sgn(x− y)

and

A2;η
1,1(x, y) =

∫ ∫
Γ
(

1
2
− ζ

2η
,

1
2
− ω

2η

) sin π(ζ−ω)
4η

cos π(ζ+ω)
4η

e
ζ3
3 −xζ+ω3

3 −yω dζω

4η
,

A2;η
1,2(x, y) =

∫ ∫
Γ
(

1
2
− ζ

2η
,

1
2
+

ω

2η

) cos π(ζ+ω)
4η

sin π(ζ−ω)
4η

e
ζ3
3 −xζ−ω3

3 +yω dζω

4η
,

A2;η
2,2(x, y) =

∫ ∫
Γ
(

1
2
+

ζ

2η
,

1
2
+

ω

2η

) sin π(ζ−ω)
4η

cos π(ζ+ω)
4η

e−
ζ3
3 +xζ−ω3

3 +yω dζω

4η

(3.7)

where again A ···2,1(x, y) := −A ···1,2(y, x) and the contours are as before with one important

exception: in the case of A1; η
1,2 , the ω contour C1,2

ω passes locally to the right of 0, but is
otherwise as stated (to account for the pole at ω = 0 whose residue was not taken). This
happens because—up to inessential conjugation and taking the appropriate residues in
A1; ···

2,2 as α1, α2 → 0—we have Ak;0,0;η
(

x +
2 log 2

k·η , y +
2 log 2

k·η

)
= Ak;η(x, y), k = 1, 2.

4 Sketch of proof

The first tool we use to prove our results is the Schur measure with two free boundaries
from [6]. Recall the definition of skew Schur functions evaluated at a specialization ρ via
the Jacobi–Trudi formula: sλ/µ(ρ) = det1≤i,j≤n hλi−i−(µj−j)(ρ) for n large enough. Here
a specialization ρ is just a sequence of numbers (hn(ρ))n≥0—its values on the complete
symmetric functions—assembled into the generating series H(ρ; z) := ∑n≥0 hn(ρ)zn.

On sequences of partitions µ ⊂ λ ⊃ ν, consider the weights

W x(λ, µ, ν) := ∆x(µ, ν) · u|µ|v|ν| · sλ/µ(ρ
+)sλ/ν(ρ

−) (4.1)

with x ∈ {aa, ab, bb,−}, ρ± two specializations and ∆x as in (1.2)—note after proper
normalization [6], these become probability measures. We observe our original mea-
sures (1.1) are of the form given in equation (4.1) as follows. For the up-down ↗↘
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measures, ρ+ = ρ− and both are the poissonized Plancherel plε specialization for M and
ρq (a specialization in n variables all = q) for M̃ respectively; for the upwards measures
↗, set v = 1 and ρ+ = plε for M, = ρq for M̃ while in both cases ρ− = 0, the empty
specialization; recall ρε, ρq are defined by H(plε; z) = exp(εz), H(ρq; z) = (1− qz)−n; and
finally note parameters a1, a2, b1, b2, u, v, q satisfy the inequalities from the Introduction.
The reason for the above is as follows: Schur functions, specialized in variables, are gen-
erating series for semi-standard Young tableaux. As such, sλ/µ(ρq) = sλ/µ(q, . . . , q) =

q|λ/µ| f̃ n, λ/µ (there are n q’s inside the parentheses) and a limiting argument shows

sλ/µ(plε) = ε|λ/ u| f λ/µ

|λ/µ|! .
Define the point configuration associated with λ coming from the above measures as

Sx(λ) := {λj − j + 1/2} ⊂ Z + 1/2. It is a simple point process. Consider the shifted
version Sx

t (λ) := Sx(λ) + 2Dt where for t a parameter, Dt is an integer independent

of everything else having theta distribution Prob(Dt = d) = t2d(uv)2d2

θ3(t2;(uv)4)
. A slightly more

general version of [6, Theorem 2.5] shows that, for x ∈ {aa, ab, bb,−}, the shifted point
process Sx

t (λ) is pfaffian with 2× 2 matrix correlation kernel Kx of the form:

Kx
1,1(k; k′) =

1
(2iπ)2

∮
|z|=r

dz
zk+1

∮
|w|=r′

dw
wk′+1 F(z)F(w)κx

1,1(z, w),

Kx
1,2(k; k′) = −Kx

2,1(k
′; k) =

1
(2iπ)2

∮
|z|=r

dz
zk+1

∮
|w|=r′

dw
w−k′+1

F(z)
F(w)

κx
1,2(z, w),

Kx
2,2(k; k′) =

1
(2iπ)2

∮
|z|=r

dz
z−k+1

∮
|w|=r′

dw
w−k′+1

1
F(z)F(w)

κx
2,2(z, w)

(4.2)

with F(z) = H(ρ+;z)
H(ρ−;z−1) ∏n≥1

H(u2nv2n−2ρ−;z)H(u2nv2nρ+;z)
H(u2n−2v2nρ+;z−1)H(u2nv2nρ−;z−1)

; with κx
1,1(z, w), κx

1,2(z, w) and

κx
2,2(z, w) given7 respectively by

v2

tz1/2w3/2 ·
((uv)2; (uv)2)2

∞
(uz, uw,− v

z ,− v
w ; uv)∞

·
θ(uv)2(w

z )

θ(uv)2(u2zw)
·

θ3

(
( tzw

v2 )
2; (uv)4

)
θ3(t2; (uv)4)

· gx(z)gx(w),

w1/2

z1/2 ·
((uv)2; (uv)2)2

∞
(uz,−uw,− v

z , v
w ; uv)∞

·
θ(uv)2(u2zw)

θ(uv)2(w
z )
·

θ3
(
( tz

w )
2; (uv)4)

θ3(t2; (uv)4)
· gx(z)

gx(w)
, (4.3)

tv2

z1/2w3/2 ·
((uv)2; (uv)2)2

∞
(−uz,−uw, v

z , v
w ; uv)∞

·
θ(uv)2(w

z )

θ(uv)2(u2zw)
·

θ3

(
( tv2

zw )2; (uv)4
)

θ3(t2; (uv)4)
· 1

gx(z)gx(w)

7We use the notation (x; q)∞ := ∏`≥0(1− xq`), θq(x) := (x; q)∞(q/x; q)∞, θ3(z; q) := (q; q)∞θq(−z
√

q)
and (a, b, . . . ; q)∞ := (a; q)∞ · (b; q)∞ · · · .
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where gx(z) =

(uz;uv)∞

( v
z ;uv)∞

·

(
a1uv2

z , a2v
z ;(uv)2

)
∞

(a1uz,a2u2vz;(uv)2)∞
· 1
(a1a2uv;(uv)2)∞(−uv;uv)∞

, x = aa,

(− v
z ;uv)∞

(−uz;uv)∞
· (−b1uz,−b2u2vz;(uv)2)∞(
− b1uv2

z ,− b2v
z ;(uv)2

)
∞

· 1
(b1b2uv;(uv)2)∞(−uv;uv)∞

, x = bb,

(
uz,− v

z , a1uv2

z ,−b2u2vz,−uv,−a1b2uv,a1(uv)2,b2(uv)2;(uv)2
)

∞(
−u2vz, uv2

z ,a1uz,− b2v
z ,−a1uv,−b2uv;(uv)2

)
∞

· 1
(−uv,−uv,a1uv,b2uv;uv)∞

, x = ab,

1, x = −;

(4.4)

where r, r′ satisfy max(v, q) < r, r′ < min(q−1, u−1) (q does not appear for measures M)
and r′ < r for Kx

1,2; and where the choice of ρ± was described in the previous paragraph.

To that point, we have F(z) = exp
(

ε
1−u2 (z− z−1)

)
(for all M) and F(z) = (q/z;u2)n

∞
(qz;u2)n

∞
(for

all M̃). In this shifted process, the distribution of λ1, in each case, is a Fredholm pfaffian
for its respective kernel.

Using steepest descent asymptotic analysis, we can show that the the latter kernels
converge to the ones defining our distributions in the limits prescribed in Theorems 1.1
and 1.2. We write F(z)z−k as exp(MS(z)) (for M) and exp(nS(z)) (for M̃) in the scaling
prescribed with S having a double critical point at z = 1; we thus scale the integration
variables (z, w) = (exp(ζM−1/3), exp(ωM−1/3)) (replace M by n for M̃) so that only an
M1/3 (or n1/3) neighborhood of 1 makes a non-zero contribution—see [5, Section 5] for
a related computation. For κ, one uses the estimate

log(qc; q)∞ = −π2

6
r−1 +

(
1
2
− c
)

log r +
1
2

log(2π)− log Γ(c) + O(r) (4.5)

for q = e−r, r → 0+ (c ∈ C−Z≤0), along with (−x; q)∞ = (x2;q2)∞
(x;q)∞

. The logarithmic shifts
in our results come from the log r terms above.

This together yields the result modulo the shift we have made. It (2Dt) can be re-
moved in the end8 as 2Dt/M1/3 (or 2Dt/n1/3) converges to 0 in probability. Moreover,
a slightly improved version of the above argument can be used to show convergence of
multi-point correlation functions to the desired ensembles—one again has to remove the
shift at the end. This finishes the proof.
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