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Abstract. Using Reiner’s definition of Stirling numbers of the second kind in types
B and D, we generalize two well known identities concerning the classical Stirling
numbers of the second kind. The first relates them with Eulerian numbers and the
second uses them as entries in a transition matrix between the elements of two standard
bases of the polynomial ring in one variable.

Résumé. Les nombres de Stirling de la deuxième espèce en type B et D ont été in-
troduits par Reiner. En utilisant ces nombres, nous généralisons deux identités bien
connues sur les nombres classiques de Stirling de la deuxième espèce aux groupes
de Coxeter de type B et D. La première identité relie ces nombres avec les nombres
Euleriens, et la deuxième interprète les nombres de Stirling de la deuxième espèce
comme les entrées de la matrice de passage entre deux bases classiques de l’anneau
des polynômes en une variable.

Keywords: Coxeter groups, Stirling numbers of the second kind, Eulerian numbers,
falling factorial, hyperplane arrangements, descent number, permutation statistics

1 Introduction

The Stirling number of the second kind, denoted S(n, k), is defined as the number of par-
titions of the set [n] := {1, . . . , n} into k blocks (see [19, page 81]). Stirling numbers of
the second kind arise in a variety of problems in enumerative combinatorics; they have
many combinatorial interpretations, and have been generalized in various contexts and
in different ways.
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In the geometric theory of Coxeter groups they appear as follows. For any finite
Coxeter group W, there is a corresponding hyperplane arrangementW , whose elements
are the reflecting hyperplanes of W. Associated with W , there is the set of all the
intersections of these hyperplanes, ordered by reverse inclusion, called the intersection
lattice, and denoted L(W) (see e.g. [7, 18]). It is well known that in type A, L(An) is
isomorphic to the lattice of the set partitions of [n]. By this identification, the subspaces
of dimension n− k are counted by S(n, k). In this geometric context, Stirling numbers of
the second kind are usually called Whitney numbers (see [20, 21] for more details).

In types B and D, Zaslavsky [21] gave a description of L(Bn) and L(Dn) by using
the general theory of signed graphs. Then, Reiner [15] gave a different combinatorial
representation of L(Bn) and L(Dn) in terms of new types of set partitions, called Bn-
and Dn-partitions. We call the number of Bn- (resp. Dn-) partitions with k pairs of
nonzero blocks the Stirling numbers of the second kind of type B (resp. type D) and denote
them by SB(n, k) (resp. SD(n, k)).

The posets of Bn- and Dn-partitions, as well as their corresponding intersection lat-
tices, have been studied in several papers [5, 6, 7, 10, 11, 20], from algebraic, topological
and combinatorial points of view. However, to our knowledge, two famous identities
concerning the classical Stirling numbers of the second kind (see e.g. Bona [8, Theorems
1.8 and 1.17]) have not been generalized to types B and D in a combinatorial way: the
first identity involves the Eulerian numbers, and the second one formulates a change of
bases in R[x], both are described below.

The original definition of the Eulerian numbers was first given by Euler in an analytic
context [12, §13]. Later, they began to appear in combinatorial problems, as the Eulerian
number A(n, k) counts the number of permutations in the symmetric group Sn having
k− 1 descents, where a descent of σ ∈ Sn is an element of the descent set of σ, defined by:

Des(σ) := {i ∈ [n− 1] | σ(i) > σ(i + 1)}. (1.1)

We denote by des(σ) := |Des(σ)| the descent number.

The first mentioned famous identity relating Stirling numbers of the second kind and
Eulerian numbers is the following one, see e.g. [8, Theorem 1.17]:

Theorem 1. For all positive integers n, r where n ≥ r, we have

S(n, r) =
1
r!

r

∑
k=0

A(n, k)
(

n− k
r− k

)
. (1.2)

The second identity arises when one expresses the standard basis of the polynomial
ring R[x] as a linear combination of the basis consisting of the falling factorials (see e.g.
[1, Prop. 3.24(i)] and Boyadzhiev [9]):
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Theorem 2. Let x ∈ R and let n ∈N. Then we have

xn =
n

∑
k=0

S(n, k)[x]k, (1.3)

where [x]k := x(x− 1) · · · (x− k + 1) is the falling factorial of degree k and [x]0 := 1.

There are some known proofs for the last identity. A combinatorial one, realizing xn

as the number of functions from the set {1, . . . , n} to the set {1, . . . , x} (for an integer x),
is presented in [19, Eqn. (1.94d)]. A first geometric proof is due to Knop [13]. A similar
geometric way to interpret this equality was suggested to us by Reiner [16], and will be
used later on.

In this paper, we use Stirling numbers of the second kind of types B and D, in order
to generalize the identities stated above in Equations (1.2) and (1.3). Theorems 3 and 4
below are generalizations of the first identity for types B and D. The way to prove them
is by providing explicit procedures to construct ordered set partitions starting from the
elements of the corresponding Coxeter groups.

Theorems 5 and 6 generalize the second identity. We present here a geometric ap-
proach, suggested to us by Reiner [16], which is based on some geometric characteriza-
tions of the intersection lattice of types B and D.

The rest of the paper is organized as follows. Sections 2 and 3 present the known gen-
eralizations of Eulerian numbers and set partitions, respectively, to the Coxeter groups
of types B and D. In Sections 4 and 5, we state our generalizations and prove some of
them.

2 Eulerian numbers of types B and D

We start with some notation. For n ∈N, we set
[n] := {1, . . . , n} and [±n] := {±1, . . . ,±n}.

For a subset B ⊆ [±n], we denote by −B the set obtained by negating all the elements of
B, and by ±B we denote the unordered pair of sets B,−B.

Let (W, S) be a Coxeter system. As usual, denote by `(w) the length of w ∈ W,
which is the minimum k satisfying w = s1 · · · sk with si ∈ S. The (right) descent set of
w ∈ W is defined to be Des(w) := {s ∈ S | `(ws) < `(w)}. A combinatorial characteri-
zation of Des(w) in type A, is given by Equation (1.1) above. Now we recall analogous
descriptions for types B and D.

We denote by Bn the group of all bijections β of the set [±n] onto itself such that
β(−i) = −β(i) for all i ∈ [±n], with composition as the group operation. This group is
usually known as the group of signed permutations on [n], or as the hyperoctahedral group
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of rank n. If β ∈ Bn, we write β = [β(1), . . . , β(n)] and we call this the window notation
of β.

As a set of generators for Bn we take SB :=
{

sB
0 , sB

1 , . . . , sB
n−1
}

where for i ∈ [n− 1]

sB
i := [1, . . . , i− 1, i + 1, i, i + 2, . . . , n] and sB

0 := [−1, 2, . . . , n].

It is well known that (Bn, SB) is a Coxeter system of type B (see e.g. [4, §8.1]). The
following characterization of the (right) descent set of β ∈ Bn is well known [4]:

Proposition 1. Let β ∈ Bn. Then
DesB(β) = {i ∈ [0, n− 1] | β(i) > β(i + 1)},

where β(0) := 0 (we use the usual order on the integers). In particular, 0 ∈ DesB(β) is a descent
if and only if β(1) < 0. We set desB(β) := |DesB(β)|.

For all positive integers n ≥ k, we set

AB(n, k) := |{β ∈ Bn | desB(β) = k}|,

and we call them the Eulerian numbers of type B.
We denote by Dn the subgroup of Bn consisting of all the signed permutations having

an even number of negative entries in their window notation. This subgroup is usually
called the even-signed permutation group. As a set of generators for Dn we take SD :=
{sD

0 , sD
1 , . . . , sD

n−1} where for i ∈ [n− 1]

sD
i := sB

i and sD
0 := [−2,−1, 3, . . . , n].

It is well known that (Dn, SD) is a Coxeter system of type D, and there is a direct
combinatorial way to compute the (right) descent set of δ ∈ Dn (see e.g. [4, §8.2]):

Proposition 2. Let δ ∈ Dn. Then

DesD(δ) = {i ∈ [0, n− 1] | δ(i) > δ(i + 1)},

where δ(0) := −δ(2). In particular, 0 ∈ DesD(δ) if and only if δ(1) + δ(2) < 0. We set
desD(δ) := |DesD(δ)|.

For all positive integers n ≥ k, we set:

AD(n, k) := |{δ ∈ Dn | desD(δ) = k}|,

and we call them the Eulerian numbers of type D.
For example, if δ = [1,−3, 4,−5,−2,−6], then:

DesD(δ) = {0, 1, 3, 5}, but DesB(δ) = {1, 3, 5}.
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3 Set partitions of types B and D

In this section, we introduce the set partitions of types B and D as defined by Reiner
[15].

As mentioned above, we denote by L(W) the intersection lattice corresponding to the
Coxeter hyperplane arrangementW of a finite Coxeter group W. We will focus only on
the hyperplane arrangements of types A, B and D. In terms of the coordinate functions
x1, . . . , xn in Rn, they can be defined as follows:

An := {{xi = xj} | 1 ≤ i < j ≤ n},
Bn := {{xi = ±xj} | 1 ≤ i < j ≤ n} ∪ {{xi = 0} | 1 ≤ i ≤ n},
Dn := {{xi = ±xj} | 1 ≤ i < j ≤ n}.

It is well known that in type A, the intersection lattice L(An) is isomorphic to the
lattice of set partitions of [n]. In type B, let us consider the following element of L(B9) :

{x1 = −x3 = x6 = x8 = x9, x2 = x4 = 0, x5 = −x7}.

It can be easily presented as the following set partition of [±9]:

{{1,−3, 6, 8,−9}, {−1, 3,−6,−8, 9}, {2,−2, 4,−4}, {5,−7}, {−5, 7}}.

This probably was Reiner’s motivation to define the set partitions of type B as follows.

Definition 1. A Bn-partition is a set partition of [±n] into blocks such that the following
conditions are satisfied.

• There exists at most one block satisfying −C = C. This block is called the zero-block (if it
exists). It is a subset of [±n] of the form {±i | i ∈ S} for some S ⊆ [n].

• Now let C be an arbitrary block. If C appears as a block in the partition, then −C also
appears in that partition.

A similar definition holds for set partitions of type D.

Definition 2. A Dn-partition is a Bn-partition such that the zero-block, if exists, contains at
least two positive elements.

We denote by SB(n, r) (resp. SD(n, r)) the number of Bn- (resp. Dn- ) partitions having
exactly r pairs of nonzero blocks. These numbers are called Stirling numbers (of the second
kind) of type B (resp. D).

We now define the concept of an ordered set partition.

Definition 3. A Bn-partition (or Dn-partition) is ordered if the set of blocks is totally ordered
and the following conditions are satisfied.
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• If the zero-block exists, then it appears as the first block.

• For each block C which is not the zero-block, the blocks C and −C occupy adjacent places.

We indicate ordered partitions by square brackets.

Example 1. The following partitions

P1 = {{±3},±{−2, 1},±{−4, 5}}, P2 = {±{1},±{2},±{−4, 3}},

P3 = [{±1,±3}, {−2}, {2}, {−4, 5}, {−5, 4}] ,

are respectively, a B5-partition which is not a D5-partition, a D4-partition with no zero-block,
and an ordered D5-partition having a zero-block.

4 Connections between Stirling and Eulerian numbers of
types B and D

In this section, we present two generalizations of Theorem 1 for Coxeter groups of types
B and D and we provide a combinatorial proof for type B in the next subsection.

Theorem 3. For all positive integers n, r with n ≥ r, we have

SB(n, r) =
1

2rr!

r

∑
k=0

AB(n, k)
(

n− k
r− k

)
.

Theorem 4. For all positive integers n, r with n ≥ r, we have

SD(n, r) =
1

2rr!

(
n · 2n−1(r− 1)! · S(n− 1, r− 1) +

r

∑
k=0

AD(n, k)
(

n− k
r− k

))
,

where S(n− 1, r− 1) is the usual Stirling number of the second kind.

Now, by inverting these formulas, similarly to [8, Corollary 1.18], we get the following
expression for the Eulerian numbers of type B (resp. type D) in terms of the Stirling
numbers of type B (resp. type D):

Corollary 1. For all positive integers n and k with n ≥ k, we have

AB(n, k) =
k

∑
r=1

(−1)k−r · 2rr! · SB(n, r)
(

n− r
k− r

)
.

Corollary 2. For all positive integers n and k with n ≥ k, we have

AD(n, k) =

[
k

∑
r=0

(−1)k−r · 2rr! · SD(n, r) ·
(

n− r
k− r

)]
− n · 2n−1 · A(n− 1, k− 1).
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4.1 Proof for type B

The proof uses arguments similar to Bona’s proof of Theorem 1.17 in [8] for the corre-
sponding identity for type A.

Proof of Theorem 3. We have to prove the following equality:

2rr!SB(n, r) =
r

∑
k=0

AB(n, k)
(

n− k
r− k

)
.

The number 2rr!SB(n, r) in the left-hand side is the number of ordered Bn-partitions
having r pairs of nonzero blocks. Now, let us show that the right-hand side counts the
same set of partitions in a different way.

Let β ∈ Bn be a signed permutation with desB(β) = k, written in its window notation.
We start by adding a separator after each descent of β and after β(n). If 0 ∈ DesB(β),
this means that a separator is added before β(1). If r > k, we add extra r − k artificial
separators in some of the n− k empty (i.e. without a descent) spots, where a spot is a gap
between two consecutive entries of β or the gap before the first entry β(1). This splits β

into a set of r blocks, where the block Ci is defined as the set of entries between the ith
and the (i + 1)-st separators for 1 ≤ i ≤ r. Now, this set of blocks is transformed into
the ordered Bn-partition with r pairs of nonzero blocks and an optional zero-block C0:

[C0, C1,−C1, . . . , Cr,−Cr],

where the zero-block C0 is a set equal to {±β(1), . . . ,±β(j)} if the first separator is after
β(j), for j ≥ 1, and C0 does not exist if the first separator is before β(1).

For example, if β = [−2, 3, 5, 1,−4] ∈ B5, then after adding the separators induced
by the descents, we get β = [ | − 2, 3, 5 | 1 | − 4 | ]. So, we get a partition with three
non-zero blocks. On the other hand, if β′ = [2, 3, 5, 1,−4] ∈ B5, then after adding the
separators induced by the descents, we have β′ = [ 2, 3, 5 | 1 | − 4 | ]. So, we get a
partition with only two non-zero blocks, and a zero-block {±2,±3,±5}.

There are exactly (n−k
r−k) ordered Bn-partitions obtained from β in this way. From now

on, we refer to this process of creating this set of Bn-partitions starting from a single
signed permutation β ∈ Bn, as the B-procedure.

It is easy to see that the B-procedure applied to different signed permutations pro-

duces disjoint sets of ordered Bn-partitions; therefore,
r
∑

k=0
AB(n, k)(n−k

r−k) distinct ordered

Bn-partitions with r pairs of nonzero blocks can be created by this way.
Let us show that any ordered Bn-partition

λ = [C0, C1,−C1, . . . , Cr,−Cr]

can be obtained by the B-procedure. If λ contains a zero-block C0, then put the positive
elements of C0 in increasing order at the beginning of a sequence S, and add a separator
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after them. Then, order in increasing way the elements in each of the blocks C1, . . . , Cr,
and write them sequentially in S (after the first separator if exists), by adding a separator
after the last entry coming from each block. Reading the formed sequence S left-to-right,
one obtains a signed permutation β ∈ Bn. Note that the number of descents in β is
smaller than or equal to r, since the elements in each block are ordered increasingly.
Now, it is clear that λ can be obtained by applying the B-procedure to β, where the
artificial separators are easily recovered.

Example 2. The signed permutation β = [ 1, 4 | −5,−3, 2 | ] ∈ B5 has one descent in position
2. It produces the following ordered B5-partition with one pair of nonzero blocks

[{±1,±4}, {−5,−3, 2}, {5, 3,−2}],

and exactly (4
1) ordered B5-partitions with two pairs of non-zero blocks, namely:

[{1, 4}, {−1,−4}, {−5,−3, 2}, {5, 3,−2}], [{±1}, {4}, {−4}, {−5,−3, 2}, {5, 3,−2}],
[{±1,±4}, {−5}, {5}, {−3, 2}, {3,−2}], [{±1,±4}, {−5,−3}, {5, 3}, {2}, {−2}],

obtained by placing one artificial separator before positions 1,2,4 and 5, respectively.
Conversely, let λ = [{±1,±4}, {5}, {−5}, {−3, 2}, {3,−2}] be an ordered B5-partition.

The corresponding signed permutation with the added separators is β = [ 1, 4
... 5 | − 3, 2 | ] ∈ B5.

Note that although C1 = {5} is a separate block, there is no descent between 4 and 5, meaning
that λ is obtained by adding an artificial separator in the spot between these two entries.

The proof for type D (Theorem 4) is more tricky. The basic idea is the same as before:
obtaining the set of ordered Dn-partitions with r pairs of nonzero blocks from elements
in Dn with at most r descents. In addition to the B-procedure, there is a need to an
extra step which uses the set Bn − Dn in order to take care of the special structure of
the Dn-partitions. A certain subset of Dn-partitions cannot be obtained in this way and
hence should be added manually. More details can be found in [2, Section 4.2].

5 Falling factorials for Coxeter groups of types B and D

In this section, we present generalizations of Theorem 2 for Coxeter groups of types B
and D and provide a combinatorial proof for both types.

5.1 Type B

The following theorem is natural generalization of Theorem 2 for the Stirling numbers
of type B, and it is a particular case of a formula appearing in Bala [3], where the num-
bers SB(n, k) correspond to the sequence denoted there by S(2,0,1). Bala uses generating
function techniques for proving this identity.
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Theorem 5 (Bala). Let x ∈ R and let n ∈N. Then we have

xn =
n

∑
k=0

SB(n, k)[x]Bk , (5.1)

where [x]Bk := (x− 1)(x− 3) · · · (x− 2k + 1) and [x]B0 := 1.

A combinatorial interpretation of SB(n, k) using the model of k-attacking rooks was
given by Remmel and Wachs [17] (specifically, this is S0,2

n,k(1, 1) in their notation). More
information on the rook interpretation of this and other factorization theorems can be
found in the paper of Miceli and Remmel [14].

Here we provide a kind of a geometric proof, suggested to us by Reiner, and it is
related to a method used by Blass and Sagan [7] to compute the characteristic polynomial
of the poset L(Bn).

Proof. Being a polynomial identity, it is sufficient to prove it only for odd integers
x = 2m + 1.

The left-hand side of Equation (5.1) counts the number of lattice points in the n-
dimensional cube {−m,−m + 1, . . . ,−1, 0, 1, . . . , m}n. We show that the right-hand side
of Equation (5.1) counts the same set of points using the maximal intersection subsets
of hyperplanes the points lie on. More precisely, let P = {C0,±C1, . . . ,±Ck} be a Bn-
partition with k pairs of nonzero blocks.

For k = 0, P consists of only the zero block {±1, . . . ,±n}. This set partition corre-
sponds to the single lattice point (0, . . . , 0).

For 0 < k < n, let P = {C0,±C1, . . . ,±Ck} be a Bn-partition with k pairs of nonzero
blocks and one (possibly nonexisting) zero-block C0. We associate to this partition the
set of lattice points of the form (x1, . . . , xn) with xj1 = xj2 (resp. xj1 = −xj2) whenever
j1, j2 (resp. j1,−j2) belong to the same block Ci or −Ci.

For the first pair of nonzero blocks C1,−C1 of the set partition P, if j1 ∈ C1 ∪ −C1
then there are x− 1 possibilities (excluding the value 0) to choose the value of xj1 .

Next, for the second pair of blocks C2,−C2 of the partition P, we have x− 3 possibil-
ities (excluding the value 0 and the value xj1 and its negative chosen for ±C1) and so on,
until we get x− (2k− 3) possibilities for the last pair of blocks ±Ck.

If the zero-block C0 is not empty, then the coordinates corresponding to the indices
in C0 will be assigned the value 0.

Now, for k = n, the only Bn-partition having n nonzero pairs of blocks is

{{1}, {−1}, . . . , {n}, {−n}}

which corresponds to the points (x1, . . . , xn) such that xi 6= ±xj 6= 0 for all i 6= j. For
this we have (x− 1)(x− 3) · · · (x− (2n− 1)) possibilities. Note that these are the lattice
points which do not lie on any hyperplane.
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Example 3. Let n = 2 and m = 3, so we have that x = 2m + 1 = 7. The lattice
([−3, 3]× [−3, 3]) ∩Z2 is presented in Figure 1.

2 3

1

2

3

−1

−2

−3

1−2 −1−3 0

Figure 1: Lattice points for type B.

For k = 0, we have exactly one B2-partition λ0 consisting only of the zero-block:
λ0 = {{±1,±2}}. The corresponding subspace is {x1 = x2 = 0}, which counts only the
lattice point (0, 0).

For k = 1, we have 4 B2-partitions, two of them contain a zero-block:
λ1 = {{±1}, {2}, {−2}}; λ2 = {{±2}, {1}, {−1}},

and two of them do not:
λ3 = {{1, 2}, {−1,−2}}; λ4 = {{1,−2}, {−1, 2}}.

The partitions λ1 and λ2 correspond to the axes x1 = 0 and x2 = 0, respectively. The second
pair λ3 and λ4 corresponds to the diagonals x1 = x2 and x1 = −x2 respectively. Each of these
four hyperplanes contains 6 points (since the origin is already counted and hence excluded).

For k = 2, the single B2-partition: λ5 = {±{1},±{2}} corresponds to the set of lattice
points (x1, x2) with x1 6= ±x2 6= 0, which are those not lying on any hyperplane.

Remark 1. Note that [7, Theorem 2.1] shows that, when x is an odd number, the cardinality of
the set of lattice points not lying on any hyperplane is counted by the characteristic polynomial
of the lattice L(Bn), denoted by χ(Bn, x) which is exactly [x]Bn .

5.2 Type D

The falling factorial in type D is as follows:

[x]Dk :=


1, k = 0
(x− 1)(x− 3) · · · (x− (2k− 1)), 1 ≤ k < n
(x− 1)(x− 3) · · · (x− (2n− 3))(x− (n− 1)), k = n

We have found no generalization of Equation (1.3) for type D in the literature, so we
supply one here.



Identities involving Stirling numbers of types B and D 11

Theorem 6. For all n ∈N and x ∈ R:

xn = n
(
(x− 1)n−1 − [x]Dn−1

)
+

n

∑
k=0

SD(n, k)[x]Dk . (5.2)

Proof. For Dn-partitions having 0 ≤ k < n pairs of nonzero blocks the proof goes verba-
tim as in type B, so let k = n.

In this case, we have only one possible Dn-partition having n pairs of nonzero blocks:
{{1}, {−1}, . . . , {n}, {−n}}. We associate this Dn-partition with the points of the form
(x1, . . . , xn) such that xi 6= ±xj for i 6= j, having at most one appearance of the value
0. Note that the points with exactly one appearance of 0 cannot be obtained by any
Dn-partition having k < n blocks, since the zero-block cannot consist of exactly one pair.
If 0 does appear, then we have to place it in exactly one of the n coordinates and then we
are left with (x− 1)(x− 3) · · · (x− (2n− 3)) possibilities for the rest, while if 0 does not
exist, then we have (x− 1)(x− 3) · · · (x− (2n− 1)) possibilities. These two values sum
up to a total of [x]Dn = (x− 1)(x− 3) · · · (x− (2n− 3))(x− (n− 1)). As in type B, this
number is equal to the evaluation of the characteristic polynomial χ(Dn, x) of L(Dn),
where x is odd.

Note that during the above process of collecting lattice points of the n-dimensional
cube, the points containing exactly one appearance of 0 and at least two non-zero coor-
dinates with the same absolute value are not counted. The reason is that the zero-block
(if exists) must contain at least two elements. This phenomenon happens when n > 2,
and the number of such points is n((x− 1)n−1 − [x]Dn−1). This concludes the proof.
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