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Simple formulas for constellations and bipartite
maps with prescribed degrees
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IRIF, Université Paris Diderot, Paris, France

Abstract. We obtain simple quadratic recurrence formulas counting bipartite maps
on surfaces with prescribed degrees (in particular, 2k-angulations), and constellations.
These formulas are the fastest known way of computing these numbers.

Our work is a natural extension of previous works on integrable hierarchies (2-Toda
and KP), namely the Pandharipande recursion for Hurwitz numbers (proven by Ok-
ounkov and simplified by Dubrovin–Yang–Zagier), as well as formulas for several
models of maps (Goulden–Jackson, Carrell–Chapuy, Kazarian–Zograf). As for those
formulas, a bijective interpretation is still to be found.

We also include a formula for monotone simple Hurwitz numbers derived in the same
fashion.
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1 Introduction

A map is a combinatorial object describing the embedding up to homeomorphism of a
multigraph on a compact oriented surface. A bipartite map is a map with black and
white vertices, each edge having a black end and a white end. Constellations are gener-
alizations of bipartite maps with more colors (see Section 2 for precise definitions).

Map enumeration has been an important research topic for many years now, go-
ing back to Tutte [22] with planar maps. He used analytic techniques on generating
functions, and later on, Schaeffer enumerated planar maps bijectively [21], with many
generalizations (see for instance [5, 4, 1]). The enumeration of maps was extended to
other models : for instance, asymptotic formulas were obtained by Bender and Canfield
[3] for maps of higher genus, by Gao [12] for maps with prescribed degrees, and Cha-
puy [7] for constellations. Another way to count maps is to see them as factorizations of
permutations and to use algebraic properties of Sn. In particular, maps fit in the more
general context of weighted Hurwitz numbers (see e.g. [2]). Their generating functions
satisfy integrable hierarchies of PDEs that arose from mathematical physics, namely the
KP and 2-Toda hierarchies (a good introduction can be found in [17]).
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The first numbers that were studied from the point of view of integrable hierarchies
were Hurwitz numbers, that enumerate ramified coverings of the sphere. Pandhari-
pande conjectured a recurrence formula for those numbers [20], which was proven by
Okounkov [18] and later simplified by Dubrovin, Yang and Zagier [9]. Later, recurrence
formulas for maps were found, starting with Goulden and Jackson for triangulations
[14]. They were followed by Carrell and Chapuy for general maps [6], and Kazarian and
Zograf for bipartite maps [15]. All these works start from the fact that an underlying
generating function is a "tau function" of an integrable hierarchy, and then use ad-hoc
techniques to obtain explicit recurrence formulas. The generality of this second step is
not well understood. In particular, although the methods mentioned in the previous
page enable to control face degrees, this is not the case of the efficient recurrences of
[9, 14, 6, 15]. This raises the question of obtaining similar formulas for other models of
maps.

Contributions of this article: We show that similar techniques as in [18, 9] apply
more generally in the context of maps, and we derive recurrence formulas for bipartite
maps with prescribed degrees, allowing us in particular to derive a formula for bipartite
2k-angulations. We also find recurrence formulas for constellations. These formulas are,
up to our knowledge, the simplest and fastest way to calculate those numbers (in all
models, it takes O(n2g3) arithmetic operations to calculate the coefficient for n edges
and genus g, see Remark 1). We insist on the fact that the underlying "tau function"
structure is well-known, the contribution of this paper is to show that it can be used to
control face degrees and count constellations.

Structure of the paper: In Section 2, we will give precise definitions and state our
main results. The rest of the paper presents the main steps of the proof. The first part of
the proof is common to all models : we introduce the "tau function" τ, a certain gener-
ating function for constellations. This function, along with some auxiliary functions τn,
classically satisfies a set of differential equations called the 2-Toda hierarchy. Our first
contribution, inspired by [18], is to link τ to the τn and derive an equation involving τ

only (Proposition 6). This will be presented in Section 3. From this equation, specialized
to the model we wish for (bipartite maps or constellations), we perform a few combina-
torial operations (that are specific to the model, similarly as in [6, 14, 15]) to obtain our
formulas. We will present this in details for bipartite maps in Section 4, and we briefly
mention the case of constellations.

2 Definitions and main results

Definition 1. A map M is the data of a connected multigraph (multiple edges and loops
are allowed) G (called the underlying graph) embedded in a compact oriented surface S,
such that S \ G is homeomorphic to a collection of disks. The connected components of
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S \ G are called the faces. The genus g of M is the genus of S (the number of "handles" in
S). M is defined up to orientation-preserving homeomorphism. A bipartite map is a map
with two types of vertices (black or white), such that each edge connects two vertices of
different colors. A bipartite map is said to be rooted if a particular edge is distinguished.

An m-constellation is a particular kind of map with special vertices : colored vertices,
carrying a "color" between 1 and m, and star vertices. Each edge connects a star vertex to
a colored vertex. A star vertex has degree m, and its neighbors have color 1,2,. . . ,m in the
clockwise cyclic order. Bipartite maps are in bijection with 2-constellations, since each
star vertex and its two adjacent edges can be merged into a single edge connecting a
black and a white vertex. A constellation is said to be rooted if a particular star vertex is
distinguished. A constellation with n star vertices is said to be labeled if each star vertex
carries a different label between 1 and n. Since rooting kills all possible automorphisms,
there is a (n− 1)!-to-1 correspondence between labeled and rooted constellations with n
star vertices. From now on, we will only consider rooted objects unless stated otherwise.

Some basic, well-known, properties of maps and constellations will be useful later.

Proposition 1. Labeled (non-necessarily connected) m-constellations with n star vertices are in
bijection with (m + 1)-uples (σ1, σ2, . . . , σm, φ) of permutations of Sn such that σ1 · σ2 · . . . ·
σm = φ. The permutation σi represents the vertices of color i : each vertex is a cycle of σi, and the
elements of the cycle represent the neighboring star vertices, in that cyclic order. The permutation
φ encodes the faces. See Figure 1 for an example.
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Figure 1: Left : a (labeled) 3-constellation (of genus 0) and the corresponding permu-
tations, right : the permutation φ, whose cycles describe the faces.
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Our main results are the following theorems :

Theorem 2. The number A(k)
g,n of bipartite 2k-angulations of genus g with n faces satisfies the

following recurrence formula :(
kn + 1

2

)
A(k)

g,n = ∑
n1+n2=n
n1,n2≥1

g1+g2+g∗=g

(kn1 + 1)
(
(k− 1)n2 + 2− 2g2

2g∗ + 2

)
A(k)

g1,n1 A(k)
g2,n2

+ ∑
g∗≥0

(
(k− 1)n + 2− 2(g− g∗)

2g∗ + 2

)
A(k)

g−g∗,n.

Theorem 2 is actually a particular case of the following theorem for bipartite maps
with prescribed degrees :

Theorem 3. The number Bg(f) of bipartite maps of genus g with fi faces of degree 2i (for
f = ( f1, f2, . . . )) satisfies :(

n + 1
2

)
Bg(f) = ∑

s+t=f
s,t 6=0

g1+g2+g∗=g

(1 + n1)

(
v2

2g∗ + 2

)
Bg1(s)Bg2(t) + ∑

g∗≥0

(
v + 2g∗

2g∗ + 2

)
Bg−g∗(f)

(2.1)

where n = ∑i i fi, n1 = ∑i isi, v = 2− 2g+n−∑i fi, v2 = 2− 2g2 +n2−∑i ti and n2 = ∑i iti
(the n’s count edges, the v’s count vertices, in accordance with the Euler formula).

Theorem 4. The numbers C(m)
g,n of m-constellations of genus g with n star vertices satisfy the

following recurrence formula :(
n
2

)
C(m)

g,n = ∑
n1+n2=n
n1,n2≥1

g=g1+g2+g∗

n1

(
(m− 1)n2 + 2− 2g2

2g∗ + 2

)
C(m)

g1,n1C(m)
g2,n2 .

Remark 1. Theorem 3 allows to compute the number of maps with prescribed degrees
way faster than the usual Tutte-Lehman-Walsh approach [23, 3, 12] or the topological
recursion (see e.g. [10]), especially for higher genus (because these methods require
counting maps with up to g boundaries to enumerate maps of genus g). It can also be
specialized to maps with bounded face degrees (contrarily to the Tutte equation).

We observe that Theorem 4 applies to bipartite maps (for m = 2). It is also possible
to obtain an analogue of Theorem 3 (with prescribed degrees) for m-constellations with
m ≥ 3, but the formula is more complicated and is not quadratic anymore (we do not
include it in this short version). We give a brief explanation of that fact in Section 4.2.

We can also derive a similar-looking formula for monotone simple Hurwitz numbers,
see (5.1).
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3 Generating functions for constellations

Our goal is to prove Proposition 6. In order to do this, we first have to introduce Maya
diagrams and the semi infinite wedge space.

3.1 The semi infinite wedge space

We give some definitions, mostly following the notations of the appendix in [19] :

Definition 2. A Maya diagram is a decoration of Z + 1
2 with a particle or an antiparticle

at each position, such that for some n1, n2 there are only particles at positions < n1 and
only antiparticles at positions > n2. The semi infinite wedge space Λ

∞
2 is the vector

space whose orthonormal basis elements are the Maya diagrams.
For any k ∈ Z + 1

2 , we define the fermion operators ψk and ψ∗k . For each Maya diagram
m, we define :

ψkm =

{
0 if m has a particle in position k
m̃ otherwise

ψ∗k m =

{
0 if m has an antiparticle in position k
m otherwise

where m̃ is the same as m except there is a particle in position k, and m is the same as
m except there is an antiparticle in position k.

We can now define the boson operators : for all n ∈ Z \ {0}, let

αn = ∑
k∈Z+ 1

2

ψk−nψ∗k .

Finally, the two vertex operators are

Γ±(p) = exp

(
∞

∑
n=1

pn

n
α±n

)
.

Definition 3. We define the normally ordered products

: ψkψ∗k :=

{
ψkψ∗k if k > 0
−ψ∗k ψk if k < 0

and the charge and energy operators :

C = ∑
k∈Z+ 1

2

: ψkψ∗k : H = ∑
k∈Z+ 1

2

k : ψkψ∗k : .
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The Maya diagrams are eigenvectors of C. The eigenvalue of a Maya diagram m is the
number of particles in positive position minus the number of antiparticles in negative
position. We call this number the charge of m. We introduce the translation operator R :
for any m, Rm has a particle in position k + 1 if and only if m has a particle in position
k. Note that if the charge of m is c, the charge of Rm is c + 1.

There is a bijection between Maya diagrams of charge 0 and partitions, as depicted
in Figure 2. Thus, any Maya diagram m can be encoded by its charge c and a partition
λ (that corresponds to the Maya diagram R−cm).

0
3

Z

Figure 2: A maya diagram of charge 0 and its corresponding partition (above it, pre-
sented as a rotated Young diagram). In blue, a box and its content (the abscissa of the
projection of the center of the box on Z)

We will use the braket notation, and denote the Maya diagram corresponding to the
empty partition by |∅〉, and set |∅n〉 = Rn |∅〉. We will also set |λ〉 to be the Maya
diagram of charge 0 corresponding to the partition λ. In particular, H |λ〉 = |λ| |λ〉,
where |λ| is the number of boxes in λ.

3.2 Constellations and content products

Definition 4. Fix integers r, n and g, fix λ, µ two partitions of n. Let Wλ,µ
n (l1, l2, . . . , lr)

be the number of (r + 2)-uples of permutations (σ1, σ2, . . . , σr, σλ, σµ) of Sn such that
σ1 · σ2 · . . . · σr = σλσµ and σi has li cycles, and σλ, σµ have respective cycle types λ and µ.
The Wλ,µ

n enumerate (labeled, non-necessarily connected) constellations, in accordance
with Proposition 1. Let τ be the associated generating function (that implicitly depends
on r):

τ(z, p, q, (uj)) = ∑
n≥0

|µ|=|λ|=n
li≥1 ∀i

zn

n!

r

∏
i=1

un−li
i pλqµWλ,µ

n (l1, l2, . . . , lr)

It is a classical result (under different forms and variants, see for instance [14, 18])
that the function τ can be expressed in terms of elements and operators of Λ

∞
2 :



Simple formulas for constellations and bipartite maps with prescribed degrees 7

Lemma 5 (Classical).

τ(z, p, q, (uj)) = 〈∅|Γ+(p)zHΛΓ−(q)|∅〉 (3.1)

with

F(u) = ∑
k>0

k−1/2

∑
i=0

log(1 + ui)ψkψ∗k + ∑
k<0

−k−1/2

∑
i=0

log(1− ui)ψ∗k ψk

and Λ = ∏r
j=1 exp

(
F(uj)

)
.

Proof. For reasons of space, we only include the main ideas of the proof.
First, we have

F(u) |ν〉 =
(

∑
�∈ν

log(1 + uc(�))

)
|ν〉

where the c(�) are the contents of the partition ν (see Figure 2). It can be shown using
the Jacobi-Trudi rule (see e.g. [19]) that

Γ−(q) |∅〉 = ∑
ν

sν(q) |ν〉 and 〈∅| Γ+(p) = ∑
ν

sν(p) 〈ν| .

Thus the RHS of (3.1) can be rewritten as :

∑
n>0
|ν|=n

zn
r

∏
j=1

∏
�∈ν

(1 + ujc(�))sν(p)sν(q).

Here we recognize the "content product form" of the generating function of constel-
lations, as in [14], which concludes the proof.

We introduce the auxiliary functions τn, for n ∈ Z :

τn = 〈∅n|Γ+(p)zHΛΓ−(q)|∅n〉 .

We have τ = τ0. The previous lemma, along with classical considerations (see for in-
stance Section 2.6 in [18]), imply that the τn satisfy an infinite set of equations, the 2-Toda
hierarchy. In particular, the following equation holds :

∂2

∂p1∂q1
log τ0 =

τ1τ−1

τ2
0

. (3.2)

So far, the content presented was classical. Our first main contribution is to transform
the previous equation into an equation implying τ only.

Proposition 6. The function τ introduced in Definition 4 satisfies

∂2

∂p1∂q1
log τ = z

τ(z ·∏r
j=1(1 + uj), p, q, (

uj
1+uj

))τ(z ·∏r
j=1(1− uj), p, q, (

uj
1−uj

))

τ2 . (3.3)
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Proof. It is easily verified that R commutes with Γ+(p) and Γ−(q), as well as R−nHRn =

H + nC + n2

2 . Thus,

τn = 〈∅|R−nΓ+(p)zHΛΓ−(q)Rn|∅〉 = 〈∅|Γ+(p)zH+nC+ n2
2 R−nΛRnΓ−(q)|∅〉 .

But, by a careful change of indices,

RFR−1 = ∑
k>0

k−1/2

∑
i=0

log(1 + ui)ψk+1ψ∗k+1 + ∑
k<0

−k−1/2

∑
i=0

log(1− ui)ψ∗k+1ψk+1

= ∑
k>0

k−1/2

∑
i=1

log(1− u + ui)ψkψ∗k + ∑
k<0

−k−1/2

∑
i=1

log(1− u− ui)ψ∗k ψk

= F(
u

1− u
) + (H − C/2) log(1− u).

Similarly,
R−1FR = F(

u
1 + u

) + (H + C/2) log(1 + u).

Thus, we get :

τ±1(z, p, q, (uj)) = z1/2τ(z ·
r

∏
j=1

(1± uj), p, q, (
uj

1± uj
)),

and the result follows by plugging this into (3.2).

Remark 2. The idea of expressing τ±1 in terms of τ by calculating R∓1ΛR±1 is inspired
by the calculation performed in [18], Section 2.7.

4 Recurrence formulas

4.1 Bipartite maps

In this section we study bipartite maps, therefore we work with r = 2. The objects we
are interested in are connected, thus, in accordance with the "exp-log principle" (see for
instance [11]), we need to consider H = log(τ). Let Hλ,µ be its coefficients in the series
expansion, namely

H = ∑
n≥0,|µ|=|λ|=n

zn

n!
Hλ,µ pλqµ.

Note that Hλ,µ is a polynomial in u1 and u2. We will set u1 = u2 (which is equivalent
to counting vertices regardless of their color) and "get rid" of the q variables. More
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precisely, let Hλ
n = Hλ,1n

u1=u2=u and

H∗(z, p, u) = H qi=δi,1, u1=u2=u = ∑
n≥0,|λ|=n

Hλ
n

zn

n!
pλ.

By Proposition 1, Hλ
n counts (connected, labeled) bipartite maps with n edges, with λ

describing the face type and a weight u per vertex.
The next step, inspired by the case of classical Hurwitz numbers [9], is to obtain a

quadratic (differential) equation for H∗ from (3.3).

Lemma 7.

D2H∗1 − DH∗1 = DH∗1

(
DH∗(z(1 + u)2, p,

u
1 + u

) + DH∗(z(1− u)2, p,
u

1− u
)− 2DH∗

)
(4.1)

with H∗1 = ∂
∂p1

H∗ and D = z ∂
∂z .

Proof. We have

∂2

∂p1∂q1
log τ

qi=δi,1, u1=u2=u
=

(
∑
n>0

Hλ
n

zn

n!
npλqn−1

1

)
q1=1

= z
∂

∂z
H∗1 .

Hence (3.3) now reads

DH∗1 (z, p, u) = z exp
(

H∗(z(1 + u)2, p,
u

1 + u
) + H∗(z(1− u)2, p,

u
1− u

)− 2H∗
)

.

Applying D to the previous equation, and eliminating the exponential term between the
two equations, one gets the result.

We will now interpret H∗ and H∗1 in (4.1) in terms of bipartite maps, using a lo-
cal combinatorial operation that is specific to bipartite maps. This step is conceptually
similar to what was done in [14, 6, 15].

Lemma 8. Let B(z, p, u) be the ordinary generating function of connected rooted bipartite maps,
and Bg(f) be the number of bipartite maps of genus g with fi faces of degree 2i, such that

B = ∑
g,f

zdu2n−v ∏
i≥1

p fi
i Bg(f).

with n = ∑i i fi and v− n + ∑i fi = 2− 2g (Euler formula). B satisfies the following equation :

(D + 1)DB = (u−2 + (D + 1)B)
(

B(z(1 + u)2, p,
u

1 + u
) + B(z(1− u)2, p,

u
1− u

)− 2B
)

.

(4.2)



10 Baptiste Louf

Figure 3: Contraction of a digon.

Proof. H∗ is the exponential generating function of labeled connected bipartite maps,
where u records the number of vertices, z records edges, and pi records faces of degree
2i. We directly have B = DH∗, as there is an (n − 1)!-to-1 correspondence between
labeled and rooted bipartite maps.

The function p1H∗1 would be the EGF of the same objects, with a marked digon (face
of degree 2). There is a n!-to-1 correspondence between labeled and unlabeled-unrooted
bipartite maps with a marked digon and n edges. A marked digon can be contracted
into a root edge (see Figure 3) except when the bipartite map is just one edge, thus
H∗1 = z+ u2zB (the u2z factor comes from the fact that we lose an edge when we contract
the digon, and the z term is the case where we cannot contract the digon).

We are finally ready to prove Theorem 3.

Proof of Theorem 3. We look at the factor B(z(1 + u)2, p, u
1+u ) + B(z(1− u)2, p, u

1−u )− 2B

in (4.2). The coefficient of zn ∏i≥1 p fi
i in it is :

∑
v>0

Bg(f)u2n−v ((1 + u)v + (1− u)v − 2) = ∑
v>0

Bg(f)u2n−v

2 ∑
0<k≤ v

2

u2k
(

v
2k

) .

Extracting coefficients in (4.2), one gets the result.

Remark 3. If we don’t specialize u1 = u2 = u as we did at the beginning of this subsection,
we can obtain formulas for more precise coefficients of bipartite maps (namely knowing
the number of vertices of each color). This will appear in the long version.

4.2 Constellations

The proof of Theorem 4 is similar to the proof of Theorem 3 that was presented in the
previous section : for m-constellations, we consider our function τ with r = m + 1.
However, we now "get rid" of both the p variables and the q variables by specializing
pi = qi = δi,1, hence we do not control over the degrees of the faces.

As mentioned in the introduction, one can also study the effect of the specializa-
tion qi = δi,1 (leaving the pi non specialized) in the case of constellations with m > 2.
However the operation of contracting an m-gon (that can be defined similarly as the
contraction of a digon presented in Figure 3) might disconnect the map, and the formula
we obtain is more complicated (it will be included in a full version).
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5 Conclusion

The coefficients in our recurrence formulas have a combinatorial flavor. It is a natural
question to ask for a bijective proof of these formulas. However, the bijective interpreta-
tion of formulas derived from the KP/2-Toda hierarchies is still a widely open question,
as bijections have only been found for certain formulas, in the particular cases of one-
faced [8] and planar maps [16].

Using the same technique, we can also obtain recurrence formulas for similar num-
bers called monotone simple (i.e. unramified at 0 and ∞) Hurwitz numbers, introduced
in [13], that are also particular cases of weighted Hurwitz numbers. These numbers ~Hg,n
(of genus g, in Sn) satisfy the following recurrence formula :

(n3 − n2)~Hg,n = 2 ∑
n1+n2=n

g∗≥0
g1+g2+g∗=g

n2
1n2

(
2n2 + 2g2 + 2g∗ − 1

2g∗ + 2

)
~Hg1,n1

~Hg2,n2 . (5.1)
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