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Abstract. Phylogenetics begins with reconstructing biological family trees from genetic
data. Since Nature is not limited to tree-like histories, we use networks to organize our
data, and have discovered new polytopes, metric spaces, and simplicial complexes that
help us do so. Moreover, we show that the space of phylogenetic trees dually embeds
into the Balanced Minimal Evolution polytope, and use this result to find a complex of
faces within the subtour-elimination facets of the Symmetric Traveling Salesman poly-
tope, which is shown to be dual to a quotient complex in network space.
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1 Introduction

A classical problem in computational biology is the inference of a phylogenetic tree
from the aligned DNA sequences of n species. One can construct a distance between
two species, typically via a model of mutation rates, using the probabilistic calculation
pairwise on taxa. Such information can be encoded by an n× n real symmetric, nonneg-
ative matrix called a dissimilarity matrix, often given as a (n

2)-dimensional distance vector
d with entries dij in lexicographic order. The classical phylogenetic problem is then to
reconstruct a tree (possibly with weighted edges) that represents this matrix. We say
that dt is additive when the entries correspond perfectly to the summed edge values of a
weighted tree t.

Oftentimes, however, dissimilarity matrices are not additive metrics. This may be due
to horizontal gene transfer, recombination, or gene duplication [13]. Indeed, assuming a
tree model and applying phylogenetic inference tools on the data can be misleading [2].
In such cases, the underlying evolutionary relationships are better represented by a split
network, a generalization of a tree in which multiple parallel edges signify divergence; see
Figure 1. From a biological context, network representations are important visualization
tools at the beginning of data analysis, allowing researchers to see several hypothesized
trees simultaneously, while looking for evidence of hybridization or reticulation.

In practice, the construction of a split network from an arbitrary dissimilarity matrix
tends to yield an overcomplicated system. Instead, a common heuristic is to choose a
circular ordering compatible with most of the splits in order to produce a circular split
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Figure 1: A split system, in the center, with its circular split network, and its polygonal
representation.The trivial splits are assumed to be included. This network is externally
refined, so no bridges can be added.

network, adding the remaining splits at a later time [14]. Bryant and Moulton introduced
the neighbor-net algorithm in 2004, equipped to construct such a circular split network
from dissimilarity matrices satisfying the Kalamanson condition [2]. Neighbor-net is a
greedy algorithm, but the circular split networks output by the algorithm are informative
for exploring conflicting signals in data.

Applications of our new polytopes begin with linear programming. We have discov-
ered a series of polytopes whose vertices are phylogenetic networks, filtering between
the Balanced Minimal Evolution (BME) polytopes and the Symmetric Traveling Salesman
polytopes (STSP). We are using combinations of the simplex method, branch and bound,
and cutting planes on these polytopes in order to choose precisely which network best
fits the data. The discovery of large families of facets in every dimension allows us to
attack the BME problem.

2 Trees and Networks

We begin with the set [n] = {1, 2, . . . , n} used to number n taxa, species, or genes. A
split is a partition of [n] into two parts, denoted A|B. A split is called nontrivial when
both parts A and B have more than one element. A split system is a set of splits. We will
always assume that our split systems contain all the trivial splits, with one part having
a single element. Split systems may be drawn as connected graphs called split networks
in which the degree-one nodes (leaves) are given the labels 1 . . . n, and nodes of higher
degree have no label. The interior (un-leafed) edges are drawn in sets of parallel edges
which together represent a split: by cutting such a set of edges the graph separates into
the parts of the split (Figure 1). If a split is represented by a single edge in the network,
we call it a bridge. We say a split system s′ refines s when s′ ⊃ s. In the network picture
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some splits of s′ are collapsed (the parallel edges are assigned length zero) to achieve s.
A phylogenetic tree is a circular split network whose splits form a tree. That is, a

network for which each interior edge is a bridge: cutting it disconnects the graph into
two smaller graphs, called clades. A circular or exterior planar split network is one whose
graph may be drawn on the plane without edge crossings, with all leaves on the exterior.

There exists a dual polygonal representation of a circular split network: Given a circular
split system with a circular ordering c of the species, consider a regular n-gon, with the
edges cyclically labeled according to c. For each split, draw a diagonal partitioning the
appropriate edges (Figure 1). Note that the diagonals which represent bridges in the
split network are noncrossing, that is the diagonal does not intersect any other diagonal.
A fully reticulated split network is one with no bridges.

Definition 1. An externally refined split network s is such that there is no split network
s′ both refining s and possessing more bridges than s.1 Note that an externally refined
network can be a refinement of another externally refined network. An externally refined
phylogenetic tree has all internal nodes of degree three (usually called a binary tree).

Another generalization of an unrooted phylogenetic tree is an (unrooted) phylogenetic
network. The following definitions are from [10]: A phylogenetic network is a simple
connected graph with exactly n labeled nodes of degree one, all other unlabeled nodes
of degree at least three, and every cycle of length at least four.2 If every edge is part of at
most one cycle, then the network is called 1-nested. If every node is part of at most one
cycle, the network is called level-1. By this we will mean strictly level-1, that is, level-1
and not level-0. If that is true and all the unlabeled non-leaf nodes also have degree
three, then the network is called binary level-1. Notice that a phylogenetic tree is both a
split network and a level-0 phylogenetic network.

A minimal cut of a phylogenetic network is a subset of the edges which, when re-
moved, leaves two connected components. The edge set is minimal in the sense that no
more edges are removed than is necessary for the disconnection. The split displayed by
such a cut is the two sets of leaves of the two connected components. A split is consistent
with a phylogenetic network if there is a minimal cut displaying that split. The system
of all such splits for a phylogenetic network N is called Σ(N).

In Figure 2, we show a binary level-1 network N, and the associated maximal split
network Σ(N). There is a close relationship between level-1 (and thus 1-nested) networks
and circular split networks. In [10], it is shown that a split network s is circular if and
only if there exists an unrooted 1-nested network N such that s ⊂ Σ(N). For instance
the split network s in Figure 1 has splits a subset of those in Σ(N) seen in Figure 2.

Definition 2. If s is a circular split system, then there is a simple way to associate to s a
specific 1-nested phylogenetic network denoted as L(s). Construct this network L(s) as

1In the polygonal representation, there are no non-crossing diagonals that can be added.
2Cycles here are simple cycles, with no repeated nodes other than the start.
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Figure 2: A level-1 phylogenetic network N with its associated maximal circular split
system Σ(N), shown both as a network and polygonal representation. Here, N is the
the image L(s) for s the split network from Figure 1.

follows: begin with a split network diagram of s and consider the diagram as a drawing
of its underlying planar graph. Recall that the leaves are on the exterior. First, delete all
the edges that are not adjacent to the exterior of that graph. And second, smooth away
any resulting degree-2 nodes.

As an example, Figure 1 shows s, whereas L(s) is in Figure 2. We see that L(s)
displays all the splits of s, and has the same bridges as s. Note that in [10] the authors
define a similar function called N. Their function is equivalent to ours, if the definition
in [10] is modified so as to not depend on k-marguerites.

Definition 3. A weighting (or metric) of a split system s is a function w : s→ R≥0. Given
such a weighting, we can derive a metric ds on [n], via

ds(i, j) = ∑
i∈A,j∈B

w(A|B) ,

where the sum is over all splits of s with i in one part and j in the other. The metric is
often referred to as the distance vector ds. We define the total weight of the network to
be the sum of all the weights: W(s) = ∑A|B∈s w(A|B).

Often in practice each split is assigned a positive weight, since when splits are as-
signed zero weights, the system can be equated to the same system minus those splits.
This latter equating is important since it is necessary not just to understand individual
network structures, but the relationships between them. Billera, Holmes, and Vogtmann
laid the foundation for this process by constructing a geometric space BHVn of such met-
ric trees with n leaves [1]. This space is contractible (in fact, a cone), formed by gluing
(2n− 5)!! orthants Rn−3

≥0 , one for each type of labeled binary tree. As the weights go to
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zero, we get degenerate trees on the boundaries of the orthants, where two boundary
faces are identified when they contain the same degenerate trees. The space BHVn is not
a manifold but a cone over a relatively singular simplicial complex.

Devadoss and Petti recently constructed a geometric space CSNn of metric circular
split networks with n labeled leaves [5]: A circular split network with n leaves has at
most (n

2)− n = n(n− 3)/2 splits compatible with a specific ordering. From a polygonal
perspective, this is the maximal number of diagonals on an n-gon. Thus, the vector
of interior edge lengths (l1, . . . , ln(n−3)/2) specifies a point in the orthant [0, ∞)n(n−3)/2,
defining coordinate charts for the space of such networks. That is, to each point in this
orthant, we associate the unique network which is combinatorially equivalent but with
differing edge lengths, specified by the coordinates of that point.

The space of networks is assembled from (n− 1)!/2 orthants, each of which corre-
sponds to a unique circular ordering of the n species, up to rotation and reflection. As
the interior edge lengths go to zero, we get degenerate networks representing the com-
mon boundary faces of these orthants. The spaces CSN(4) and BHV(4) are shown in
Figure 4. The link of the origin Sn of CSNn is the union of the set of points in each
orthant with internal edge lengths of networks that sum to 1.

Theorem 1. [5] The space Sn is a connected simplicial complex of dimension (n
2)− n− 1, with

one k-simplex for every labeled n-gon with k + 1 diagonals.

Unlike the link of the origin of BHVn, whose homotopy structure has been known
for several decades, little is known about the topology of Sn. A partial key lies with the
novel gluing of the chambers of Sn: we have recently shown that two chambers of Sn
can intersect along a face of at most dimension (n−2

2 )− 1.

3 Polytopes

We now turn to a wonderful family of polytopes which organize these split networks.
Our new polytope collection is nested between the STSP and BME polytopes.

Definition 4. For each circular ordering c of [n], the incidence vector x(c) has (n
2) com-

ponents. The component xij = 1 if i and j are adjacent in c, and xij = 0 if not. The
n(n− 3)/2-dimensional Symmetric Traveling Salesman Polytope STSP(n) is the convex hull
of these vectors.

A circular ordering c is consistent with a circular split system s if a planar network of
s may be drawn so its leaves lie on the exterior in the order given by c. Examples are
calculated in Figure 3 and their associated STSP(4) is shown in Figure 4.

The Balanced Minimal Evolution Polytope BME(n) was first studied in 2008 [6]. We
have recently found a simple description as follows [8]:
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Definition 5. For each given phylogenetic tree t with n leaves, the vertex vector x(t) has
(n

2) components xij(t) = 2n−3−bij where bij is the number of nontrivial bridges on the
path from leaf i to a different leaf j. The convex hull of all the (2n− 5)!! vertex vectors
(for all binary trees t with n leaves), is the polytope BME(n), of dimension (n

2)− n.

We define new families of polytopes by assigning vectors to each externally refined
circular split network s, and thus to each binary level-1 phylogenetic network.

Definition 6. The vector x(s) is defined to have components xij(s) for each unordered
pair of leaves i, j ∈ [n] as follows:

xij(s) =

{
2k−bij if there exists c consistent with s; with i, j adjacent in c,
0 otherwise.

(3.1)

Here, k is the number of bridges in s and bij is the number of bridges crossed on any
path from i to j.

Note that though both variables in the formula depend on s, they are determined en-
tirely by L(s). Thus two externally refined circular split systems with the same associated
binary level-1 network will have the same vector x.

Definition 7. The convex hull of all the vectors x(s) for s an externally refined circular
network with n leaves and k bridges is the level-1 network polytope BME(n, k).

Theorem 2. The vertices of BME(n, k) are the vectors x(s) corresponding to the distinct binary
level-1 networks L(s). That is for each externally refined circular network s, with n leaves and k
bridges, we get an extreme point of the polytope (but it is determined only by L(s).) The dimension
of BME(n, k) is (n

2)− n.

Proof. To show that the vectors thus calculated are extreme in their convex hull, we
use the fact that each is the sum of the vertices of the STSP which correspond to the
circular orderings consistent with that network. Let ds be the distance vector whose i, j
component is the path length between those leaves on s. Then the linear functional corre-
sponding to the distance vector is simultaneously minimized at each of these (consistent
circular ordering) vertices of the STSP, and thus uniquely minimized at the vertex x(s).

For the dimension we use the fact that each polytope BME(n, k) is nested between
STSP(n) and BME(n). We also have the following: for each leaf j = 1, . . . , n these vertices
x(s) satisfy ∑n

i=1,i 6=j xij = 2k+1 , where k is the number of bridges (non-crossing diagonals)
in the diagram.

Corollary 3. Restricting BME(n, k) to the phylogenetic trees, where k = n − 3, recovers the
polytopes BME(n). Restricting BME(n, k) to the fully reticulated networks, where k = 0, turns
out to recover STSP(n).



Split Network Polytopes and Network Spaces 7

Theorem 4. Every n leaved 1-nested network S with m bridges corresponds to a face F(S) of each
BME(n, k) polytope for k ≤ m. The vertices of the face F(S) are all the binary level-1 k-bridge
networks S′ whose splits refine those of S; that is, Σ(S) ⊂ Σ(S′).

For examples see Figure 3, where shaded subfaces are labeled by the corresponding
network with additional bridges. Those subfaces link up to make an interesting complex.
The topology of these complexes in general is an open question.

Proof. Without loss of generality we choose a split network s which has the exterior
form of S, that is L(s) = S. Let s be weighted by assigning the value of 1 to each split.
Then W(s) is the total number of splits in s. Let ds be the distance vector derived from
that weighting so that the i, j component of ds is the number of splits between those
leaves on s. We see that the dot product x(s′) · ds is minimized simultaneously at each
of the k-bridge networks s′ which externally refine s. In fact we have that the following
inequality

x(s′) · ds ≥ 2k+1W(s)

holds for all k-bridge externally refined networks s′, and is an equality precisely when s′

refines s. The reason is that ds is equivalent to a distance vector derived from s′, where
the splits are given weight = 1 if they are also in s, and weight = 0 if not. Thus the dot
product will equal 2k+1W(s), and that value will be a minimum.

We have found that all of the known facets of BME(n) have analogues in BME(n, k)
for small n. For large n we also see the following:

Theorem 5. Any split A|B of [n] with |A| > 1, |B| > 1 corresponds to a face of BME(n, k), for
all n, k with k ≤ n− 3. The vertices of that face are the binary level-1 networks which display the
split A|B. Furthermore, if |A| > 2, |B| > 2, the face is a facet of the polytope. The face inequality
is:

∑
i,j∈A

xij ≤ (|A| − 1)2k.

Proof. First we show that the collection of vertices corresponding to networks displaying
a split A|B of [n] obey our linear equality, and that all other vertices obey the correspond-
ing inequality. Then we use the fact that for any polytope, its scaling by m is of the same
dimension. Equivalently, taking sets of m vectors all from the same facet of a polytope,
the vector sums of m such vectors will all lie in an affine space of the same dimension as
that facet. (Thus any subset of those sums of m vectors each will have a convex hull of
smaller or equal dimension than the original facet.)

We have that a given split, with both parts larger than two, corresponds to a facet of
STSP(n) = BME(n, 0) and also to a facet of BME(n, n− 3) = BME(n). The vertices of the
proposed split-facet FA(n, k) are each formed by vector summing exactly two vertices of
FA(n, k− 1).
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Now we see that from k = 0 to k = n− 3 at each step we find that the facet FA(n, k)
cannot be of greater dimension than the facet FA(n, k− 1). Since the dimension cannot
increase at any step, and it has the same value for k = 0 and for k = n− 3, then it must
remain constant for each k at (n

2)− n− 1.

We know the case of splits with one part of size two corresponds to a facet when
k = 0, the STSP(n), but not when k = n − 3, the BME(n). It is an open question for
which other (n, k) pairs do the splits of size two correspond to facets of BME(n, k.) We
conjecture this for all k < n− 3, but we can only report the positive result for n = 5.
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Figure 3: A facet (a) in STSP(5) = BME(5,0) , a facet (b) in BME(5,1), and a face (c) in
BME(5) = BME(5,2). All three correspond to the same split, pictured at the top.



Split Network Polytopes and Network Spaces 9

Figure 3(a) shows a subtour elimination facet of STSP(5) = BME(5,0) corresponding
to the split s = {{1, 2}, {3, 4, 5}}. Split networks label subfaces of this facet. Figure 3(b)
shows the corresponding split facet of BME(5,1) in which the vertices are nine networks
with a single bridge that each refine s. Figure 3(c) shows the face of BME(5) correspond-
ing to the same split. Summing either of the horizontal or vertical pairs of vectors shown
in (a) gives the four vectors shown in (b). Summing all four vectors in (a) gives the vector
shown in (c).

4 Facets of BME(n) and Duality with BHVn

Until our recent work, only certain of the low-dimensional faces of BME(n) were known,
namely the clade faces as described in [12]. Now we have discovered exponentially large
collections of (maximum dimensional) facets for all n [8]. In the list below, we review
our new facets and point out how they often fit yet another larger pattern. Namely, faces
of the BME(n) polytope often arise as vertex collections corresponding to binary trees
which display any maximal compatible subset of the splits of a given circular network.
These collections of trees have a biological application: The binary trees which display
any maximal compatible subset of the splits of a given network are known as the fully
resolved trees allowed by the network. The number of these for a given network on n
leaves, divided by the number of binary phylogenetic trees possible with n leaves, gives
us the cladistic information content (CIC) of the tree as defined in [11].

1. Any split of [n] with both parts larger than 3 corresponds to a facet of BME(n),
with vertices all the trees displaying that split. These vertices constitute the CIC
collection of that split. The number of these facets grows like 2n.

2. A cherry is a clade with two leaves. For each intersecting pair of cherries {a, b}, {b, c},
there is a facet of BME(n) whose vertices correspond to trees having either cherry.
The facet inequality is xab + xbc − xac ≤ 2n−3. These vertices constitute the CIC
collection corresponding to a certain network in CSNn.

3. For each pair of leaves {i, j}, the caterpillar trees with that pair fixed at opposite
ends constitute the vertices of a facet. These bound BME(n) from below: xij ≥ 1.

Of course, the number of facets of BME(n) grows much more quickly with n than the
number of facets we know. But these faces are still interesting and useful. One reason is
that we have discovered that the facet structure of BME(n) has a direct relationship to the
quotient structure of BHVn. Let L(BME(n)) be the poset of faces of the BME polytopes,
and let L(BHVn) be the poset of cells of BHVn, both ordered by inclusion.

Theorem 6. There exists a poset injection: f : L(BHVn) → L(BME(n)∆). In particular the
(2n− 5)!! top-dimensional cells of BHVn map to the (2n− 5)!! vertices of BME(n).
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Specifically, any (non-binary) phylogenetic tree t corresponds to a face f (t) of BME(n)
which contains the vertices corresponding to binary trees that refine t. For an example,
consider the triangular face in Figure 3(c). Further, these faces are ordered by inclusion
exactly opposite the inclusion in BHVn. For each (non-binary) t, there is a distance vector
dt for which the product dt · x(t′) is minimized simultaneously by the set of binary
phylogenetic trees t′ which refine t. In particular, for any tree t′, we have

∑
i<j

dij(t) xij(t′) ≥ 2(n−2)|E(t)| ,

where E(t) is the set of edges of t. This inequality is precisely an equality if and only if
the tree t′ is a refinement of t. Thus the distance vector is the normal to the face. The
map thus described is an injective poset map from BHVn to faces in BME(n), ordered by
reverse inclusion (the polar ordering). Figure 4 shows an illustration when n = 4.
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Figure 4: STSP(4) = BME(4,0) on the left is dual to CSN(4) on the right. BME(4) =
BME(4,1) is dual to BHV(4); these are the restrictions to trees.

This discovery allows us to define a projection from Kapranov’s permutoassociahedron
KPn to a complex of the BME(n) polytope,taking faces to faces and preserving the partial
order of faces. This polytope KPn can be viewed as a polyhedral and combinatorial
analog of both tree spaces BHVn and the real moduli space of curvesM0,n(R); see [4] for
details. The polytope KPn blends two classical polytopes: the associahedron (measuring
tree structures) and the permutohedron (measuring permutations of leaves). The details
of the map from KPn to BME(n) are given in [9].
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We have extended this discovery of duality to the space of networks CSNn. In the
following, the projection f defined on networks is the same map f as just described
when restricted to trees.

Theorem 7. The polytope STSP(n) has a complex of subfaces which is the dual image of a
projection f from CSNn. The (n− 1)!/2 orthants of CSNn map to the vertices of STSP(n), and
the networks with a single split map to the the sub-tour elimination facets of STSP(n).

Equivalently, we could say f projects network space onto a complex in the fan of the
STSP. This theorem is illustrated in Figures 3 and 4. A network s maps to the face f (s)
of STSP(n) whose vertices are circular orderings consistent with s.

5 Applications

The balanced minimum evolution method reconstructs phylogenetic trees by minimizing
the total tree length. This method is statistically consistent in that as the dissimilarity
matrix approaches the zero-noise accuracy of an additive metric, the BME output ap-
proaches that tree’s true topology. The BME tree for an arbitrary positive vector d is the
binary tree t that minimizes d · x(t) for all binary trees with n leaves,3 this objective value
dot product being the least variance estimate of tree-length [3]. With our discovery of
large collections of facet inequalities comes the opportunity to infer the BME tree directly
by linear optimization over a polytope. The problem of course is that we know only a
few of the many facet inequalities.

If we take all the split-faces of the BME polytope, including the cherries and cater-
pillar facets, the resulting intersection of half-spaces becomes a bounded polytope, ap-
pearing inside the (n

2)-cube. We can then add the intersecting-cherry facets and other
split-network facets and note that this new polytope envelopes the BME polytope by re-
stricting to a known subset of the latter polytope’s facets. The advantage of considering
this relaxed BME polytope is that it shares many of the same vertices, occasionally allow-
ing linear programming over the relaxation to work just as well as linear programming
over BME(n). Our algorithm, PolySplit, does exactly this and is outlined in [7].
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