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Abstract. Powers of (monomial) ideals is a subject that still calls attraction in various
ways. In this paper we present a nice presentation of high powers of ideals in a certain
class in C[x1, ..., xn] and C[[x1, ..., xn]]. As an interesting application it leads to an al-
gorithm to compute Ratliff-Rush ideals for that class. The Ratliff-Rush operation itself
has several applications, for instance, if I is a regular m-primary ideal in a local ring
(R, m), then the Ratliff-Rush associated ideal Ĩ is the unique largest ideal containing I
with the same Hilbert polynomial as I.
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1 Introduction

Let R be a commutative Noetherian ring and I a regular ideal in it, that is, an ideal
containing a non-zerodivisor. The Ratliff-Rush ideal associated to I is defined as Ĩ =
∪k≥0(Ik+1 : Ik). For simplicity we will call it the Ratliff-Rush operation on I, even
though it does not preserve inclusion, as shown in [6]. In [5] it is proved that Ĩ is the
unique largest ideal that satisfies I l = Ĩ l for all large l. An ideal I is called Ratliff-Rush
if I = Ĩ. Properties of the Ratliff-Rush operation and its interaction with other algebraic
operations have been studied by several authors, see [6, 5, 3]. In particular, we would like
to mention the following two results. If I is an m-primary ideal in a local ring (R,m),
then Ĩ is the unique largest ideal containing I with the same Hilbert polynomial (the
length of (R/I l) for sufficiently large l) as I. It is also known that the associated graded
ring ⊕k≥0 Ik/Ik+1 has positive depth if and only if all powers of I are Ratliff-Rush (see [3]
for a proof). Recently there have been discovered connections to Castelnuovo-Mumford
regularity (see [2]).

In this paper we describe an algorithm for computing the Ratliff-Rush ideal of m-
primary monomial ideals of a certain class (we will call it a class of good ideals), which
is a generalization of algorithms described in [4] and [1]: if we restrict to two variables,
the ideals Iq1,0 and I0,q2 , defined in Section 5, are exactly IT and IS, defined in [4] and [1].

In Section 3 we introduce the notion of a good ideal. The idea is as follows: any
m-primary monomial ideal has some xd1

1 , . . . , xdn
n as minimal generators and thus defines
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a (non-disjoint) covering of Nn with rectangular "boxes" of sizes d1, . . . , dn. Then I is
called a good ideal if it satisfies the so-called box decomposition principle, namely, if
for any positive integer l any minimal generator of I l belongs to some box Ba1,...,an with
a1 + . . . + an = l − 1. We also discuss a necessary and a sufficient condition for being a
good ideal. From this point we will work with good ideals, unless stated otherwise.

In Section 4 we associate an ideal to each box in the following way: if I is a good ideal
and Ba1,...,an is some box, then it contains some of the minimal generators of I l, where
l = a1 + . . . + an + 1. Since they are in Ba1,...,an , they are divisible by (xd1

1 )a1 · · · (xdn
n )an .

Therefore, we can define

Ia1,...,an :=

〈
m

(xd1
1 )a1 · · · (xdn

n )an
| m ∈ Ba1,...,an ∩ G(I l)

〉
.

We will conclude this section by showing that

Ia1,...,an = I l : 〈(xd1
1 )a1 · · · (xdn

n )an〉,

which immediately implies the following property: if (a1, . . . , an) ≤ (b1, . . . , bn), then
Ia1,...,an ⊆ Ib1,...,bn . We also study the asymptotic behaviour of Ia1,...,an . Now that we know
that Ia1,...,an grows when (a1, . . . , an) grows, and given that ideals can not grow forever,
we are expecting some sort of stabilization in Ia1,...,an when (a1, . . . , an) is large enough.
In other words, we are expecting some pattern on I l for large l.

In Section 5 we prove the main theorem of this paper, namely, the following: if I is
a good ideal, then Ĩ = Iq1,0,...,0 ∩ I0,q2,...,0 ∩ . . . ∩ I0,...,0,qn , where Iq1,0,...,0 is the stabilizing
ideal of the chain I0,0,...,0 ⊆ I1,0,...,0 ⊆ I2,0,...,0 ⊆ . . ., I0,q2,...,0 is the stabilizing ideal of the
chain I0,0,...,0 ⊆ I0,1,...,0 ⊆ I0,2,...,0 ⊆ . . . and so on. The pattern established in Section 4
plays an important role in the proof of the main theorem.

In Section 6 we show that computation of I0,0,...,qi,0,...,0 is much easier than it seems. In
particular, we show that the corresponding chain stabilizes immediately as soon as we
have two equal ideals.

Section 7 contains examples and explicit computations of Ĩ.

2 Preliminaries and notation

Let R = C[x1, ..., xn], n ≥ 2. We start by listing a few basic properties of monomial ideals
in R that will be used later.

1. There is a natural bijection between monomials in C[x1, . . . , xn] and points in Nn

via xα1
1 xα2

2 · · · x
αn
n ↔ (α1, α2, . . . , αn). We say that (β1, β2, . . . , βn) ≤ (α1, α2, . . . , αn) if

βi ≤ αi for all i ∈ {1, 2, . . . , n}. Clearly, xβ1
1 xβ2

2 · · · x
βn
n divides xα1

1 xα2
2 · · · x

αn
n if and

only if (β1, β2, . . . , βn) ≤ (α1, α2, . . . , αn). Multiplication of monomials corresponds
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to addition of points. We will say that a monomial belongs to a subset of Nn,
meaning that the corresponding point belongs to that subset. We will also say that
a point belongs to an ideal I, meaning that the corresponding monomial belongs
to I.

2. I : (J1 + J2) = (I : J1) ∩ (I : J2), (I1 + I2) : 〈m〉 = I1 : 〈m〉+ I2 : 〈m〉 and 〈m1〉 :
〈m2〉 =

〈
m1

gcd(m1,m2)

〉
.

Let I be an m-primary monomial ideal of R, where m = 〈x1, x2, . . . , xn〉, that is, for some
positive integers d1, . . . , dn we have {xd1

1 , . . . , xdn
n } ⊂ G(I). Henceforth, by I we always

mean an m-primary monomial ideal and denote µi := xdi
i , 1 ≤ i ≤ n. In this paper we

do not consider any polynomials other than monomials since it will always be sufficient
to prove statements for monomials only.

Definition 2.1. Let I be an ideal, let a1, . . . , an be nonnegative integers and denote

Ba1,...,an := ([a1d1, (a1 + 1)d1]× . . .× [andn, (an + 1)dn]) ∩Nn.

Ba1,...,an will be called the box with coordinates (a1, . . . , an), associated to I. Points of
the type (k1d1, . . . , kndn) and the corresponding monomials, where all ki are nonnegative
integers, will be called corners.

Note that all minimal generators of I lie in B0,...,0.

3 Good and bad ideals

In this section we will introduce the notion of a good ideal, state a necessary and a
sufficient condition for being a good ideal and give some examples.

Definition 3.1. We will say that an ideal I satisfies the box decomposition principle if
the following holds: for every positive integer l, every minimal generator of I l belongs to
some box Ba1,...,an such that a1 + . . . + an = l− 1. Ideals satisfying the box decomposition
principle will be called good, otherwise they will be called bad.

Example 3.2. Consider the ideal I = 〈x3, y3, z3, xyz〉 in C[x, y, z]. Then x2y2z2 is a minimal
generator of I2, but it only belongs to B0,0,0 and 0+ 0+ 0 6= 1. Therefore, I is a bad ideal.

Example 3.3. Let I = 〈x3, y3, z3, x2y2z2〉 in C[x, y, z]. Then

G(I2) = {x6, y6, z6, x3y3, x3z3, y3z3, x5y2z2, x2y5z2, x2y2z5}.

G(I2) ∩ B1,0,0 = {x6, x3y3, x3z3, x5y2z2},



4 Oleksandra Gasanova

G(I2) ∩ B0,1,0 = {y6, x3y3, y3z3, x2y5z2},

G(I2) ∩ B0,0,1 = {z6, x3z3, y3z3, x2y2z5}.

Note that each minimal generator of I2 belongs to at least one such box. Denote S1,0,0 :=
G(I2) ∩ B1,0,0 and similarly S0,1,0 := G(I2) ∩ B0,1,0 and S0,0,1 := G(I2) ∩ B0,0,1. We see
that S1,0,0 = µ1G(I), S0,1,0 = µ2G(I), S0,0,1 = µ3G(I), that is, I2 = 〈S1,0,0, S0,1,0, S0,0,1〉 =
µ1 I + µ2 I + µ3 I. Geometrically it means that I2 is minimally generated by all appropriate
shifts of I. Clearly, the pattern repeats in all powers of I:

I l = ∑
l1+...+ln=l−1

µl1
1 . . . µln

n I,

that is, I is a good ideal.

Now we are interested in necessary and sufficient conditions for an ideal to be good.

Theorem 3.4. (A necessary condition) Let I be an ideal in C[x1, ..., xn]. If I is a good ideal, then
for any minimal generator xα1

1 xα2
2 · · · x

αn
n of I the following holds:

α1

d1
+ · · ·+ αn

dn
≥ 1.

The idea of the proof is the following: assume that there is a minimal generator for
which the above condition fails, that is, m = xα1

1 xα2
2 · · · x

αn
n with α1

d1
+ · · · + αn

dn
= 1− ε,

ε > 0. Then it is easy to show that the box decomposition principle fails for any l > 1
ε .

Theorem 3.5. (A sufficient condition) Let I be an ideal in C[x1, ..., xn]. Assume that for any
minimal generator xα1

1 xα2
2 · · · x

αn
n of I which is not a corner the following holds:

α1

d1
+ · · ·+ αn

dn
≥ n

2
.

Then I is a good ideal.

Proof. Let m1 = xα1
1 · · · x

αn
n , m2 = xβ1

1 · · · x
βn
n with α1

d1
+ · · ·+ αn

dn
≥ n

2 and β1
d1
+ · · ·+ βn

dn
≥ n

2 .
It suffices to show that m1m2 = µix

γ1
1 · · · x

γn
n for some i and with γ1

d1
+ · · ·+ γn

dn
≥ n

2 . Note

that α1+β1
d1

+ · · ·+ αn+βn
dn
≥ n, thus we must have αi+βi

di
≥ 1 for some i. We can assume

i = 1, then α1+β1−d1
d1

+ · · ·+ αn+βn
dn
≥ n− 1 ≥ n

2 . Setting γ1 = α1 + β1− d1 and γi = αi + βi
for 2 ≤ i ≤ n finishes the proof.

Remark 3.6. For n = 2 the necessary and sufficient conditions are equivalent.
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Example 3.7. (A good ideal that does not satisfy the sufficient condition)
Let I = 〈µ1, µ2, µ3, m〉 = 〈x5, y5, z5, xyz4〉 ⊂ C[x, y, z]. The ideal satisfies the necessary

condition, but not the sufficient one. For examining G(I l), we first of all notice that
m5 = x5y5z20 is divisible by µ1µ2µ3

3 ∈ I5, thus m 6∈ G(I5). Therefore, for any l, the
minimal generators of I l will be of the form µk1

1 µk2
2 µk3

3 mk, where k1 + k2 + k3 + k = l
and k ≤ 4. If k = 0, the monomial is just a corner and this case is trivial, so let k ≥ 1.
Clearly, such a monomial belongs to a box whose sum of coordinates is l− 1 if and only
if mk belongs to a box whose sum of coordinates is k − 1. So the only thing we need
to check is whether mk belongs to a box whose sum of coordinates is k− 1, 2 ≤ k ≤ 4
(this is always true for k = 1). We see that m2 = x2y2z8 ∈ B0,0,1, m3 = x3y3z12 ∈ B0,0,2,
m4 = x4y4z16 ∈ B0,0,3. Therefore, I is a good ideal.

Example 3.8. (A bad ideal that satisfies the necessary condition)
Let I = 〈x5, y5, z5, x2y2z2〉 ⊂ C[x, y, z]. The ideal satisfies the necessary condition, but

not the sufficient one. We see that x4y4z4 is a minimal generator of I2 and it only belongs
to B0,0,0. Since 0 + 0 + 0 6= 1, I is a bad ideal.

We would also like to point out that for any given ideal there exists a way to deter-
mine whether it is good or bad, but we do not know of any characterisation.

4 Ideals inside boxes, their connection to each other and
asymptotic behaviour

Definition 4.1. Let I be a good ideal and a1, . . . , an nonnegative integers. We define

Ia1,...,an :=

〈
m

µa1
1 · · · µ

an
n
| m ∈ G(I l) ∩ Ba1,...,an

〉
,

where l = a1 + . . . + an + 1. Note that this a minimal generating set of Ia1,...,an .

Example 4.2. Let I = 〈x5, y5, xy4, x4y〉 ⊂ C[x, y]. I is a good ideal by the sufficient
condition. The picture below represents powers of I up to I4.

Consider the box B1,0. Then

G(I2) ∩ B0,1 = {x5y5, x6y4, x8y2, x9y, x10}.

Therefore, I1,0 = 〈y5, xy4, x3y2, x4y, x5〉. Geometrically, this means viewing monomi-
als in B1,0 as if the smallest corner of B1,0 was the origin. In this particular exam-
ple we have I0,0 = I, I1,0 = 〈y5, xy4, x3y2, x4y, x5〉, I0,1 = 〈y5, xy4, x2y3, x4y, x5〉, Ia,b =
〈y5, xy4, x2y3, x3y2, x4y, x5〉 for all other (a, b).
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It is easy to show that if I is a good ideal, then any corner µk1
1 · · · µ

kn
n is a minimal

generator of Ik1+...+kn , therefore,
{

µj ∏n
i=1 µ

ai
i | 1 ≤ j ≤ n

}
⊆ I l ∩ Ba1,...,an , where l = a1 +

. . . + an + 1 and therefore {µ1, . . . , µn} ⊆ G(Ia1,...,an) for all a1, . . . , an.

Proposition 4.3. Let I be a good ideal and a1, . . . , an nonnegative integers. Then

Ia1,...,an = I l : 〈µa1
1 · · · µ

an
n 〉,

where l = a1 + . . . + an + 1.

Proof. It is clear from the definition that Ia1,...,an ⊆ I l : 〈µa1
1 · · · µ

an
n 〉. For the other in-

clusion, let m ∈ I l : 〈µa1
1 · · · µ

an
n 〉. Then mµa1

1 · · · µ
an
n ∈ I l, that is, mµa1

1 · · · µ
an
n is a

multiple of some g ∈ G(I l), say, mµa1
1 · · · µ

an
n = gg1. Being a minimal generator of

I l, g belongs to some box, say, Bb1,...,bn with b1 + . . . + bn = l − 1 = a1 + . . . + an. If
(a1, . . . , an) = (b1, . . . , bn), then m is a multiple of g

µ
a1
1 ···µ

an
n

, which is a generator of Ia1,...,an

and thus we are done. If (a1, . . . , an) 6= (b1, . . . , bn), then there is some ai < bi. Without
loss of generality, we assume that a1 < b1. Then the right hand side of mµa1

1 · · · µ
an
n = gg1

is divisible by µb1
1 , thus m is divisible by µ1, and µ1 is a minimal generator of Ia1,...,an by

the discussion before this proposition. Therefore, m ∈ Ia1,...,an .

Corollary 4.4. Let I be a good ideal and let a1, a2, . . . , an and b1, b2, . . . , bn be nonnegative
integers such that (a1, . . . , an) ≤ (b1, . . . , bn). Then Ia1,...,an ⊆ Ib1,...,bn .

Now we know that Ia1,...,an grows as (a1, . . . , an) grows. Since Ia1,...,an can not increase
forever, one expects some pattern on high powers of I, which is indeed the case.

Definition 4.5. Let a1, . . . , an be nonnegative integers. We will use the following notation:

Ca1,a2,...,ak,ak+1,ak+2,...,an := {(b1, . . . , bn) ∈Nn | b1 = a1, . . . , bk = ak, bk+1 ≥ ak+1, . . . , bn ≥ an}.

We will use a similar notation for any configuration of fixed and non-fixed coordinates.
Sets of this type will be called cones, for any cone the number of non-fixed coordinates
will be called its dimension and (a1, . . . , an) will be called its vertex. Note that Nn =
C0,0,...,0.
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Definition 4.6. Let a1, . . . , an be nonnegative integers. By Aa1,...,an we denote the set of all
cones that satisfy the following conditions:

1. if (b1, . . . , bn) is the vertex of the cone, then bi ≤ ai for all 1 ≤ i ≤ n;

2. for all 1 ≤ i ≤ n the following holds: if bi = ai, then bi is not underlined and if
bi < ai, then bi is underlined.

Note that the unique cone of dimension n in Aa1,...,an is Ca1,...,an

Example 4.7. Let n = 2, a1 = 2, a2 = 1. Then A2,1 = {C0,0, C0,1, C1,0, C1,1, C2,0, C2,1}

The picture above represents the six cones from A2,1. The boundary lines are only
drawn for better visibility. Clearly, the number of boundary lines equals the dimension
of the cone.

Lemma 4.8. Let a1, . . . , an be nonnegative integers. Then cones in Aa1,...,an form a disjoint
covering of Nn.

The previous lemma can be restated in a more general context:

Theorem 4.9. Given any cone C in Nn of dimension k and a point a ∈ C, we can decompose C
into a disjoint union of finitely many cones, where exactly one cone has dimension k and vertex
a, and all other cones have strictly lower dimensions.

Example 4.10. Let n = 5 and consider C5,7,4,2,3. Consider (a1, . . . , a5) = (5, 9, 4, 3, 3) ∈
C5,7,4,2,3. The first, the third and the fifth coordinates are fixed once and forever, that
is, all cones will have the form C5,?,4,?,3. We are left with the second and the fourth
coordinate, that is, (7, 2) for the cone and (9, 3) for the point. Shifting in the negative
direction by (7, 2), we will get (0, 0) and (2, 1) respectively. Thus it is enough to find
the decomposition of N2 with respect to (2, 1), which has been done in Example 4.7.
We obtained A2,1 = {C0,0, C0,1, C1,0, C1,1, C2,0, C2,1}. Shifting in the positive direction
by (7, 2) gives us {C7,2, C7,3, C8,2, C8,3, C9,2, C9,3} and inserting back the first, the third
and the fifth coordinates gives us {C5,7,4,2,3, C5,7,4,3,3, C5,8,4,2,3, C5,8,4,3,3, C5,9,4,2,3, C5,9,4,3,3}.
Therefore, C5,7,4,2,3 is a disjoint union of these six cones.
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Now we will use these results on monomial ideals. Let I be a good ideal. Then for
any vector of nonnegative integers (a1, . . . , an) we have defined a box Ba1,...,an and the
corresponding ideal Ia1,...,an . There is a bijection between points in Nn and boxes/ideals;
recall that if (a1, . . . , an) ≤ (b1, . . . , bn), then Ia1,...,an ⊆ Ib1,...,bn by Corollary 4.4.

Theorem 4.11. For any good ideal I there exists a finite coloring of Nn such that if (a1, . . . , an)
has the same color as (b1, . . . , bn), then Ia1,...,an = Ib1,...,bn and for each color the set of points with
this color forms a cone.

Proof. We use induction on the highest dimension of uncolored cones. We are starting
with an n-dimensional cone Nn. We will show how to obtain finitely many cones of
strictly lower dimensions, each of which will then be treated similarly in a recursive
way. First of all, note that it is possible to find a point (a1, . . . , an) such that the following
holds: if (b1, . . . , bn) ≥ (a1, . . . , an), then Ia1,...,an = Ib1,...,bn . Indeed, if we assume the
converse, then for every point of Nn there exists a strictly larger point that corresponds
to a strictly larger ideal, therefore, we can build an infinite chain of strictly increasing
ideals, which is impossible by Noetherianity of the polynomial ring. So existence of such
a point (a1, . . . , an) is justified. Then from the Theorem 4.9, Nn can be covered with a
disjoint union of (finitely many) cones in Aa1,...,an . The unique n-dimensional cone in
Aa1,...,an is Ca1,...,an and, as we have just figured out, we may paint all points in this cone
with the same color. Now we are left with a disjoint union of cones of dimension at most
n− 1 which need to be painted and we apply induction on each of them, lowering the
maximal dimension by 1 again. Since it is a finite process, in the end we will obtain a
finite coloring of Nn.

We remark that the coloring described above is not unique since it depends on the
choice of (a1, . . . , an) and its lower dimensional analogues.

Example 4.12. Let I be the ideal in Example 4.2. We can choose (a1, a2) = (1, 1) since
Ib1,b2 = I1,1 for all b1 ≥ 1 and b2 ≥ 1. Then N2 is a disjoint union of C1,1, C0,1, C1,0 and
C0,0. Now consider C0,1. We see that I0,b = I0,2 for all b ≥ 2. Therefore, we consider
the decomposition of C0,1 with respect to (0, 2): C0,1 is a disjoin union of C0,2 and C0,1.
Similarly, C1,0 is a disjoint union of C2,0 and C1,0. The left picture below describes the
coloring we have just discussed. The picture on the right describes another possible
coloring if, for instance, we choose (a1, a2) = (0, 2).
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Given a good ideal I, any coloring as in Theorem 4.11 represents a finite disjoint union
of cones. Each cone has a vertex. Let L denote the maximum of sums of coordinates
of these vertices. This number depends on I and on the coloring we choose, but we
will not put any additional indices: as soon as we found some coloring (which exists
according to Theorem 4.11), we simply work with it henceforth. For example, for both
colorings in the picture above we have L = 2. The geometric meaning of this number is
the following: starting from IL+1, we know exactly how powers of I look like, given that
we know the coloring. For instance, for the left coloring in the picture above we know
that every power of I starting from I3 consists of a green box, an orange box and several
red boxes and we exactly know where each of them is. This means, there is a pattern on
high powers of I, and this is a key point for finding the Ratliff-Rush closure of I.

5 The main result

Now we are ready to prove our main theorem, but first we need a preliminary lemma.

Lemma 5.1. Let I be a good ideal and let Q be any nonnegative integer. Then there exists a
number L(Q) such that for any l ≥ L(Q) the following holds: for every minimal generator m of
I l there is an i such that m = m′µQ

i and m′ is a minimal generator of I l−Q.

Proof. If Q = 0, the claim is trivial. Let Q > 0 and let L be the number defined in
the end of Section 4. Take L(Q) = L + nQ − n + 2 and let l ≥ L(Q). Let m be a
minimal generator of I l, then it belongs to some box Bb1,...,bn with b1 + . . . + bn = l −
1 ≥ L + nQ − n + 1. We also know that (b1, . . . , bn) belongs to one of the cones from
our coloring; assume that the vertex of this cone is (a1, . . . , an) (some coordinates are
underlined, some are not underlined). Now we want to find a coordinate bi such that
(b1, . . . , bi−1, bi−Q, bi+1, . . . , bn) belongs to the same cone. Assume that it is not possible.
Then it follows that b1 − Q ≤ a1 − 1, . . . , bn − Q ≤ an − 1. These inequalities yield a
contradiction L < b1 + . . . + bn − nQ + n ≤ a1 + . . . + an ≤ L, where the last inequality
follows from the definition of L. So we can find an index i such that bi − Q ≥ ai (in
particular, this implies that ai is not underlined). Without loss of generality we assume
that i = 1. That means, (b1, . . . , bn) and (b1 − Q, b2, . . . , bn) are both in the same cone.
This implies that their colors are equal, which means Ib1,...,bn = Ib1−Q,b2,...,bn . In other
words, the set of monomials in Bb1,...,bn ∩ G(I l) coincides with the set of monomials
in Bb1−Q,b2,...,bn ∩ G(I l−Q) up to a shift by µQ

1 . Therefore, if m ∈ Bb1,...,bn is a minimal
generator of I l, then m

µQ
1
∈ Bb1−Q,b2,...,bn is a minimal generator of I l−Q, as desired.

Now let us consider the following line of boxes which is in bijection with nonnegative
integer points on the x-axis: B0,0,...,0, B1,0,...,0, B2,0,...,0 etc. Let Bq1,0...,0 be the stabilizing box
of this sequence in a sense that if t ≥ q1, then It,0,...,0 = Iq1,0,...,0. Similarly, considering
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lines of boxes going along the other coordinate axes, we will get q2, q3, . . . , qn. Denote
q := max{q1, . . . , qn}.
Theorem 5.2. Let I be a good ideal, let L and qi be as above. Then Ĩ = Iq1,0,...,0 ∩ I0,q2,...,0 ∩ . . .∩
I0,...,0,qn .

Proof. ⊆ Let l ≥ q. We will show that I l+1 : I l ⊆ Iq1,0,...,0 ∩ I0,q2,...,0 ∩ . . . ∩ I0,...,0,qn . In
fact, we will show that I l+1 : I l ⊆ Iq1,0,...,0, other inclusions are analogous. Since I l+1 :
I l ⊆ I l+1 : 〈µl

1〉, it is sufficient to show that I l+1 : 〈µl
1〉 ⊆ Iq1,0,...,0. By Proposition 4.3,

I l+1 : 〈µl
1〉 = Il,0,...,0 which equals Iq1,0,...,0, given the way Iq1,0,...,0 was defined and given

that l ≥ q ≥ q1 . Therefore, everything follows.
⊇ Let m ∈ Iq1,...,0 ∩ I0,q2,...,0 ∩ . . . ∩ I0,...,0,qn , let l ≥ L(q) = L + nq − n + 2 (as in

Lemma 5.1). We will show that for every ml ∈ I l we have mml ∈ I l+1. It is enough
to consider ml to be minimal generators of I l. First of all, from Lemma 5.1 we know
that we can factor out some µ

q
i from ml and get a minimal generator of I l−q, that is,

ml = µ
q
i ml−q for some index i and ml−q a minimal generator in I l−q. Also, since m

belongs (in particular) to I0,...,0,qi,0...,0 = Iqi+1 : 〈µqi
i 〉, it means, mµ

qi
i ∈ Iqi+1. Therefore,

mml = mµ
qi
i µ

q−qi
i ml−q ∈ I l+1 since mµ

qi
i ∈ Iqi+1, µ

q−qi
i ∈ Iq−qi , ml−q ∈ I l−q.

6 Explicit computation of I0,...,0,qi,0,...,0

We have seen that, given a good ideal I, its Ratliff-Rush closure is computed as Ĩ =
Iq1,0,...,0∩ I0,q2,...,0∩ . . .∩ I0,...,0,qn . Therefore, we would like to know more about I0,...,0,qi,0...,0.
Let i = 1, other cases are analogous. So far we only know that It,0,...,0...,0 = It+1 :
〈µt

1〉. Computation of It might take much time if t is large enough. In addition, we do
not know yet at which moment the line has stabilized. So far the process seems more
complicated than it is. We will state a few remarks to make this computation easier.

Remark 6.1. If I is a good ideal, then It+1,0,...,0 = (It,0...,0 · I) : 〈µ1〉 for all t ≥ 0.

According to Remark 6.1, we have

It+1,0,...,0 =

〈
f m

gcd( f m, µ1)
| f ∈ G(It,0,...,0), m ∈ G(I)

〉
.

Let f ∈ G(It,0,...,0) and m ∈ G(I). Write f m = xα1
1 · · · x

αn
n . If αi ≥ di for any 2 ≤ i ≤ n,

then f m
gcd( f m,µ1)

is a multiple of µi ∈ G(It+1,0,...,0). Therefore, in the above formula we may

force that degxi( f m) < di for 2 ≤ i ≤ n. Moreover, consider xα1
1 · · · x

αn
n µt

1 = f µt
1m ∈ It+2

since f µt
1 ∈ It+1 according to Proposition 4.3. Since αi < di for all 2 ≤ i ≤ n, we must

have α1 ≥ d1, otherwise f µt
1m would belong to a box with the sum of coordinates at

most t. Thus gcd( f m, µ1) = µ1. Therefore, we conclude that

It+1,0,...,0 =

〈
f m
µ1
| f ∈ G(It,0,...,0), m ∈ G(I), degxi( f m) < di for 2 ≤ i ≤ n

〉
.
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Remark 6.2. If It,0,...,0 = It+1,0,...,0, then the line has stabilized, that is, Ik,0,...,0 = It,0,...,0 for
all k ≥ t. This is a direct corollary of Remark 6.1.

Remark 6.3. Assume that we have computed It,0,...,0 and It+1,0,...,0 and let Et := G(It,0,...,0)
and Ft+1 := {minimal generators of It+1,...,0 which are not in It,...,0}. Clearly, Et+1 is the
reduced union of Et and Ft+1. From Remark 6.1 we remember that It+2,0,...,0 = (It+1,0,...,0 ·
I) : 〈µ1〉 = (〈Et ∪ Ft+1〉 · I) : 〈µ1〉 = ((It,...,0 + 〈Ft+1〉) · I) : 〈µ1〉 = (It,...,0 · I + 〈Ft+1〉 · I) :
〈µ1〉 = (It,...,0 · I) : 〈µ1〉+ (〈Ft+1〉 · I) : 〈µ1〉 = It+1,0,...,0 + (〈Ft+1〉 · I) : 〈µ1〉. Therefore, we
conclude that minimal generators of It+2,0,...,0 which are not in It+1,0,...,0 (our future Ft+2)
could only be among (〈Ft+1〉 · I) : 〈µ1〉, that is, only new monomials from the previous
iteration can give rise to new monomials in the next iteration. Therefore, in order to
compute Ft+2 we need to compute (〈Ft+1〉 · I) : 〈µ1〉, reduce this set and throw away
monomials that are already in Et+1. We can start with E−1 = ∅, F0 = G(I).

Remark 6.4. We can exclude all µi from all sets and it will not affect the algorithm. In
other words, we can replace G(I) by P(I) := G(I)\{µ1, . . . , µn} everywhere and then
include the corners in the very end of the algorithm. We have already discussed why we
can exclude µi for 2 ≤ i ≤ n (we want degxi( f m) < di for 2 ≤ i ≤ n). We can also exclude
µ1 since multiplying and then dividing by µ1 does not give us any new monomials.

7 Examples

Example 7.1. Let I = 〈µ1, µ2, µ3, m1, m2, m3〉 = 〈x29, y29, z29, x28y8z8, x8y28z8, x8y8z28〉 ⊂
C[x, y, z]. Since I satisfies the sufficient condition, it is a good ideal. Computations in
Singular show that

I2 : I = I + 〈x27y27z27〉,

I3 : I2 = I4 : I3 = I + 〈x26y27z27, x27y26z27, x27y27z26〉,

I5 : I4 = I6 : I5 = · · · = I10 : I9 = I + 〈x26y26z26〉.

It is natural to conjecture that Ĩ = I + 〈x26y26z26〉. Now let us see what we get if we apply
the algorithm above. We start with E−1 = ∅, F0 = P(I) = {m1, m2, m3}. Then we obtain
E0 by reducing E−1 ∪ F0, that is, E0 = P(I). In order to compute F1, we take all products
of F0 = P(I) with P(I), keeping in mind that y− and z− coordinates of each product
need to be less than 29, and divide each such product by µ1. The only such monomial

is m2
1

µ1
= x56y16z16

x29 = x27y16z16. This monomial is not in 〈E0〉, therefore, we add it to our
set F1 (and this set is already reduced). Thus E0 = P(I), F1 = {x27y16z16}. Now E1 =
E0 ∪ F1 = P(I) ∪ {x27y16z16} (this union is already reduced), and in order to compute F2
we need to multiply x27y16z16 with monomials from P(I) (keeping in mind the condition
on y− and z− coordinates) and divide the products by µ1. The only possible monomial

is x27y16z16·m1
µ1

= x26y24z24. This monomial is not in 〈E1〉, therefore, F2 = {x26y24z24}.
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E2 = E1 ∪ F2 = P(I) ∪ {x27y16z16, x26y24z24} (this set is already reduced) and if we try to
compute F3, we see that we can not get any new monomials. Therefore, F3 = ∅ and the
stabilizing point is I2,0,0 = 〈E2 ∪ {µ1, . . . , µn}〉 = I + 〈x27y16z16, x26y24z24〉. By symmetry,
I0,2,0 = I + 〈x16y27z16, x24y26z24〉 and I0,0,2 = I + 〈x16y16z27, x24y24z26〉. According to the
theorem, Ĩ = I2,0,0 ∩ I0,2,0 ∩ I0,0,2 = I + 〈x26y26z26〉, just as expected.

Example 7.2. Let I = 〈x41, y41, z41, x40y5z5, x5y40z5, x5y5z40〉 ⊂ C[x, y, z]. It can be shown
that I is a good ideal. All the new monomials can only be obtained from powers of
non-corners: I1,0,0 = I + x39y10z10, I2,0,0 = I1,0,0 + x38y15z15, . . . , I6,0,0 = I5,0,0 + x34y35z35.
Here the line stabilizes. We similarly get I0,6,0 and I0,0,6. Intersecting them we will get

Ĩ = I6,0,0 ∩ I0,6,0 ∩ I0,0,6 = I + 〈x34y35z35, x35y34z35, x35y35z34〉.

Computing successive quotients via computer algebra gives is the following: I2 : I1 has
7 minimal generators, that is, |G(I2 : I1)| = 7; |G(I3 : I2)| = 9; |G(I4 : I3)| = 12;
|G(I5 : I4)| = 16; |G(I6 : I5)| = 21; |G(I7 : I6)| = 27; |G(I8 : I7)| = 31; |G(I9 : I8)| = 33;
|G(I10 : I9)| = 33; |G(I11 : I10)| = 31; |G(I12 : I11)| = 24; |G(I13 : I12)| = 18; |G(I14 :
I13)| = 13; |G(I15 : I14)| = 9 and it finally coincides with the ideal obtained above. It
takes much time to perform these computations using computer algebra, whereas the
computation of I6,0,0, I0,6,0 and I0,0,6 and their intersection is much easier.
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