Powers of monomial ideals and the Ratliff-Rush operation

Oleksandra Gasanova
Department of Mathematics, Uppsala University, Box 480, 75106 Uppsala, Sweden

Abstract

Powers of (monomial) ideals is a subject that still calls attraction in various ways. In this paper we present a nice presentation of high powers of ideals in a certain class in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and $\mathbb{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$. As an interesting application it leads to an algorithm to compute Ratliff-Rush ideals for that class. The Ratliff-Rush operation itself has several applications, for instance, if I is a regular \mathfrak{m}-primary ideal in a local ring (R, m), then the Ratliff-Rush associated ideal \tilde{I} is the unique largest ideal containing I with the same Hilbert polynomial as I.

Keywords: Ratliff-Rush operation, powers of monomial ideals, polynomial rings

1 Introduction

Let R be a commutative Noetherian ring and I a regular ideal in it, that is, an ideal containing a non-zerodivisor. The Ratliff-Rush ideal associated to I is defined as $\tilde{I}=$ $\cup_{k>0}\left(I^{k+1}: I^{k}\right)$. For simplicity we will call it the Ratliff-Rush operation on I, even though it does not preserve inclusion, as shown in [6]. In [5] it is proved that \tilde{I} is the unique largest ideal that satisfies $I^{l}=\tilde{I}^{l}$ for all large l. An ideal I is called Ratliff-Rush if $I=\tilde{I}$. Properties of the Ratliff-Rush operation and its interaction with other algebraic operations have been studied by several authors, see $[6,5,3]$. In particular, we would like to mention the following two results. If I is an \mathfrak{m}-primary ideal in a local ring (R, \mathfrak{m}), then \tilde{I} is the unique largest ideal containing I with the same Hilbert polynomial (the length of $\left(R / I^{l}\right)$ for sufficiently large $\left.l\right)$ as I. It is also known that the associated graded ring $\oplus_{k \geq 0} I^{k} / I^{k+1}$ has positive depth if and only if all powers of I are Ratliff-Rush (see [3] for a proof). Recently there have been discovered connections to Castelnuovo-Mumford regularity (see [2]).

In this paper we describe an algorithm for computing the Ratliff-Rush ideal of \mathfrak{m} primary monomial ideals of a certain class (we will call it a class of good ideals), which is a generalization of algorithms described in [4] and [1]: if we restrict to two variables, the ideals $I_{q_{1}, 0}$ and $I_{0, q_{2}}$, defined in Section 5, are exactly I_{T} and I_{S}, defined in [4] and [1].

In Section 3 we introduce the notion of a good ideal. The idea is as follows: any \mathfrak{m}-primary monomial ideal has some $x_{1}^{d_{1}}, \ldots, x_{n}^{d_{n}}$ as minimal generators and thus defines
a (non-disjoint) covering of \mathbb{N}^{n} with rectangular "boxes" of sizes d_{1}, \ldots, d_{n}. Then I is called a good ideal if it satisfies the so-called box decomposition principle, namely, if for any positive integer l any minimal generator of I^{l} belongs to some box $B_{a_{1}, \ldots, a_{n}}$ with $a_{1}+\ldots+a_{n}=l-1$. We also discuss a necessary and a sufficient condition for being a good ideal. From this point we will work with good ideals, unless stated otherwise.

In Section 4 we associate an ideal to each box in the following way: if I is a good ideal and $B_{a_{1}, \ldots, a_{n}}$ is some box, then it contains some of the minimal generators of I^{l}, where $l=a_{1}+\ldots+a_{n}+1$. Since they are in $B_{a_{1}, \ldots, a_{n}}$, they are divisible by $\left(x_{1}^{d_{1}}\right)^{a_{1}} \cdots\left(x_{n}^{d_{n}}\right)^{a_{n}}$. Therefore, we can define

$$
I_{a_{1}, \ldots, a_{n}}:=\left\langle\left.\frac{m}{\left(x_{1}^{d_{1}}\right)^{a_{1}} \cdots\left(x_{n}^{d_{n}}\right)^{a_{n}}} \right\rvert\, m \in B_{a_{1}, \ldots, a_{n}} \cap G\left(I^{l}\right)\right\rangle .
$$

We will conclude this section by showing that

$$
I_{a_{1}, \ldots, a_{n}}=I^{l}:\left\langle\left(x_{1}^{d_{1}}\right)^{a_{1}} \cdots\left(x_{n}^{d_{n}}\right)^{a_{n}}\right\rangle
$$

which immediately implies the following property: if $\left(a_{1}, \ldots, a_{n}\right) \leq\left(b_{1}, \ldots, b_{n}\right)$, then $I_{a_{1}, \ldots, a_{n}} \subseteq I_{b_{1}, \ldots, b_{n}}$. We also study the asymptotic behaviour of $I_{a_{1}, \ldots, a_{n}}$. Now that we know that $I_{a_{1}, \ldots, a_{n}}$ grows when $\left(a_{1}, \ldots, a_{n}\right)$ grows, and given that ideals can not grow forever, we are expecting some sort of stabilization in $I_{a_{1}, \ldots, a_{n}}$ when $\left(a_{1}, \ldots, a_{n}\right)$ is large enough. In other words, we are expecting some pattern on I^{l} for large l.

In Section 5 we prove the main theorem of this paper, namely, the following: if I is a good ideal, then $\tilde{I}=I_{q_{1}, 0, \ldots, 0} \cap I_{0, q_{2}, \ldots, 0} \cap \ldots \cap I_{0, \ldots, 0, q_{n}}$, where $I_{q_{1}, 0, \ldots, 0}$ is the stabilizing ideal of the chain $I_{0,0, \ldots, 0} \subseteq I_{1,0, \ldots, 0} \subseteq I_{2,0, \ldots, 0} \subseteq \ldots, I_{0, q_{2}, \ldots, 0}$ is the stabilizing ideal of the chain $I_{0,0, \ldots, 0} \subseteq I_{0,1, \ldots, 0} \subseteq I_{0,2, \ldots, 0} \subseteq \ldots$ and so on. The pattern established in Section 4 plays an important role in the proof of the main theorem.

In Section 6 we show that computation of $I_{0,0, \ldots, q_{i}, 0, \ldots, 0}$ is much easier than it seems. In particular, we show that the corresponding chain stabilizes immediately as soon as we have two equal ideals.

Section 7 contains examples and explicit computations of \tilde{I}.

2 Preliminaries and notation

Let $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right], n \geq 2$. We start by listing a few basic properties of monomial ideals in R that will be used later.

1. There is a natural bijection between monomials in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and points in \mathbb{N}^{n} via $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}} \leftrightarrow\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$. We say that $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right) \leq\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ if $\beta_{i} \leq \alpha_{i}$ for all $i \in\{1,2, \ldots, n\}$. Clearly, $x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n}^{\beta_{n}}$ divides $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$ if and only if $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right) \leq\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$. Multiplication of monomials corresponds
to addition of points. We will say that a monomial belongs to a subset of \mathbb{N}^{n}, meaning that the corresponding point belongs to that subset. We will also say that a point belongs to an ideal I, meaning that the corresponding monomial belongs to I.
2. $I:\left(J_{1}+J_{2}\right)=\left(I: J_{1}\right) \cap\left(I: J_{2}\right),\left(I_{1}+I_{2}\right):\langle m\rangle=I_{1}:\langle m\rangle+I_{2}:\langle m\rangle$ and $\left\langle m_{1}\right\rangle:$ $\left\langle m_{2}\right\rangle=\left\langle\frac{m_{1}}{\operatorname{gcd}\left(m_{1}, m_{2}\right)}\right\rangle$.

Let I be an \mathfrak{m}-primary monomial ideal of R, where $\mathfrak{m}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, that is, for some positive integers d_{1}, \ldots, d_{n} we have $\left\{x_{1}^{d_{1}}, \ldots, x_{n}^{d_{n}}\right\} \subset G(I)$. Henceforth, by I we always mean an \mathfrak{m}-primary monomial ideal and denote $\mu_{i}:=x_{i}^{d_{i}}, 1 \leq i \leq n$. In this paper we do not consider any polynomials other than monomials since it will always be sufficient to prove statements for monomials only.

Definition 2.1. Let I be an ideal, let a_{1}, \ldots, a_{n} be nonnegative integers and denote

$$
B_{a_{1}, \ldots, a_{n}}:=\left(\left[a_{1} d_{1},\left(a_{1}+1\right) d_{1}\right] \times \ldots \times\left[a_{n} d_{n},\left(a_{n}+1\right) d_{n}\right]\right) \cap \mathbb{N}^{n} .
$$

$B_{a_{1}, \ldots, a_{n}}$ will be called the box with coordinates $\left(a_{1}, \ldots, a_{n}\right)$, associated to I. Points of the type $\left(k_{1} d_{1}, \ldots, k_{n} d_{n}\right)$ and the corresponding monomials, where all k_{i} are nonnegative integers, will be called corners.

Note that all minimal generators of I lie in $B_{0, \ldots, 0}$.

3 Good and bad ideals

In this section we will introduce the notion of a good ideal, state a necessary and a sufficient condition for being a good ideal and give some examples.

Definition 3.1. We will say that an ideal I satisfies the box decomposition principle if the following holds: for every positive integer l, every minimal generator of I^{l} belongs to some box $B_{a_{1}, \ldots, a_{n}}$ such that $a_{1}+\ldots+a_{n}=l-1$. Ideals satisfying the box decomposition principle will be called good, otherwise they will be called bad.

Example 3.2. Consider the ideal $I=\left\langle x^{3}, y^{3}, z^{3}, x y z\right\rangle$ in $\mathbb{C}[x, y, z]$. Then $x^{2} y^{2} z^{2}$ is a minimal generator of I^{2}, but it only belongs to $B_{0,0,0}$ and $0+0+0 \neq 1$. Therefore, I is a bad ideal.

Example 3.3. Let $I=\left\langle x^{3}, y^{3}, z^{3}, x^{2} y^{2} z^{2}\right\rangle$ in $\mathbb{C}[x, y, z]$. Then

$$
\begin{aligned}
G\left(I^{2}\right)= & \left\{x^{6}, y^{6}, z^{6}, x^{3} y^{3}, x^{3} z^{3}, y^{3} z^{3}, x^{5} y^{2} z^{2}, x^{2} y^{5} z^{2}, x^{2} y^{2} z^{5}\right\} . \\
& G\left(I^{2}\right) \cap B_{1,0,0}=\left\{x^{6}, x^{3} y^{3}, x^{3} z^{3}, x^{5} y^{2} z^{2}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& G\left(I^{2}\right) \cap B_{0,1,0}=\left\{y^{6}, x^{3} y^{3}, y^{3} z^{3}, x^{2} y^{5} z^{2}\right\} \\
& G\left(I^{2}\right) \cap B_{0,0,1}=\left\{z^{6}, x^{3} z^{3}, y^{3} z^{3}, x^{2} y^{2} z^{5}\right\}
\end{aligned}
$$

Note that each minimal generator of I^{2} belongs to at least one such box. Denote $S_{1,0,0}:=$ $G\left(I^{2}\right) \cap B_{1,0,0}$ and similarly $S_{0,1,0}:=G\left(I^{2}\right) \cap B_{0,1,0}$ and $S_{0,0,1}:=G\left(I^{2}\right) \cap B_{0,0,1}$. We see that $S_{1,0,0}=\mu_{1} G(I), S_{0,1,0}=\mu_{2} G(I), S_{0,0,1}=\mu_{3} G(I)$, that is, $I^{2}=\left\langle S_{1,0,0}, S_{0,1,0}, S_{0,0,1}\right\rangle=$ $\mu_{1} I+\mu_{2} I+\mu_{3} I$. Geometrically it means that I^{2} is minimally generated by all appropriate shifts of I. Clearly, the pattern repeats in all powers of I :

$$
I^{l}=\sum_{l_{1}+\ldots+l_{n}=l-1} \mu_{1}^{l_{1}} \ldots \mu_{n}^{l_{n}} I
$$

that is, I is a good ideal.
Now we are interested in necessary and sufficient conditions for an ideal to be good.
Theorem 3.4. (A necessary condition) Let I be an ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. If I is a good ideal, then for any minimal generator $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$ of I the following holds:

$$
\frac{\alpha_{1}}{d_{1}}+\cdots+\frac{\alpha_{n}}{d_{n}} \geq 1
$$

The idea of the proof is the following: assume that there is a minimal generator for which the above condition fails, that is, $m=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$ with $\frac{\alpha_{1}}{d_{1}}+\cdots+\frac{\alpha_{n}}{d_{n}}=1-\epsilon$, $\epsilon>0$. Then it is easy to show that the box decomposition principle fails for any $l>\frac{1}{\epsilon}$.

Theorem 3.5. (A sufficient condition) Let I be an ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Assume that for any minimal generator $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$ of I which is not a corner the following holds:

$$
\frac{\alpha_{1}}{d_{1}}+\cdots+\frac{\alpha_{n}}{d_{n}} \geq \frac{n}{2}
$$

Then I is a good ideal.
Proof. Let $m_{1}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, m_{2}=x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}}$ with $\frac{\alpha_{1}}{d_{1}}+\cdots+\frac{\alpha_{n}}{d_{n}} \geq \frac{n}{2}$ and $\frac{\beta_{1}}{d_{1}}+\cdots+\frac{\beta_{n}}{d_{n}} \geq \frac{n}{2}$. It suffices to show that $m_{1} m_{2}=\mu_{i} x_{1}^{\gamma_{1}} \cdots x_{n}^{\gamma_{n}}$ for some i and with $\frac{\gamma_{1}}{d_{1}}+\cdots+\frac{\gamma_{n}}{d_{n}} \geq \frac{n}{2}$. Note that $\frac{\alpha_{1}+\beta_{1}}{d_{1}}+\cdots+\frac{\alpha_{n}+\beta_{n}}{d_{n}} \geq n$, thus we must have $\frac{\alpha_{i}+\beta_{i}}{d_{i}} \geq 1$ for some i. We can assume $i=1$, then $\frac{\alpha_{1}+\beta_{1}-d_{1}}{d_{1}}+\cdots+\frac{\alpha_{n}+\beta_{n}}{d_{n}} \geq n-1 \geq \frac{n}{2}$. Setting $\gamma_{1}=\alpha_{1}+\beta_{1}-d_{1}$ and $\gamma_{i}=\alpha_{i}+\beta_{i}$ for $2 \leq i \leq n$ finishes the proof.

Remark 3.6. For $n=2$ the necessary and sufficient conditions are equivalent.

Example 3.7. (A good ideal that does not satisfy the sufficient condition)
Let $I=\left\langle\mu_{1}, \mu_{2}, \mu_{3}, m\right\rangle=\left\langle x^{5}, y^{5}, z^{5}, x y z^{4}\right\rangle \subset \mathbb{C}[x, y, z]$. The ideal satisfies the necessary condition, but not the sufficient one. For examining $G\left(I^{l}\right)$, we first of all notice that $m^{5}=x^{5} y^{5} z^{20}$ is divisible by $\mu_{1} \mu_{2} \mu_{3}^{3} \in I^{5}$, thus $m \notin G\left(I^{5}\right)$. Therefore, for any l, the minimal generators of I^{l} will be of the form $\mu_{1}^{k_{1}} \mu_{2}^{k_{2}} \mu_{3}^{k_{3}} m^{k}$, where $k_{1}+k_{2}+k_{3}+k=l$ and $k \leq 4$. If $k=0$, the monomial is just a corner and this case is trivial, so let $k \geq 1$. Clearly, such a monomial belongs to a box whose sum of coordinates is $l-1$ if and only if m^{k} belongs to a box whose sum of coordinates is $k-1$. So the only thing we need to check is whether m^{k} belongs to a box whose sum of coordinates is $k-1,2 \leq k \leq 4$ (this is always true for $k=1$). We see that $m^{2}=x^{2} y^{2} z^{8} \in B_{0,0,1}, m^{3}=x^{3} y^{3} z^{12} \in B_{0,0,2}$, $m^{4}=x^{4} y^{4} z^{16} \in B_{0,0,3}$. Therefore, I is a good ideal.

Example 3.8. (A bad ideal that satisfies the necessary condition)
Let $I=\left\langle x^{5}, y^{5}, z^{5}, x^{2} y^{2} z^{2}\right\rangle \subset \mathbb{C}[x, y, z]$. The ideal satisfies the necessary condition, but not the sufficient one. We see that $x^{4} y^{4} z^{4}$ is a minimal generator of I^{2} and it only belongs to $B_{0,0,0}$. Since $0+0+0 \neq 1, I$ is a bad ideal.

We would also like to point out that for any given ideal there exists a way to determine whether it is good or bad, but we do not know of any characterisation.

4 Ideals inside boxes, their connection to each other and asymptotic behaviour

Definition 4.1. Let I be a good ideal and a_{1}, \ldots, a_{n} nonnegative integers. We define

$$
I_{a_{1}, \ldots, a_{n}}:=\left\langle\left.\frac{m}{\mu_{1}^{a_{1}} \cdots \mu_{n}^{a_{n}}} \right\rvert\, m \in G\left(I^{l}\right) \cap B_{a_{1}, \ldots, a_{n}}\right\rangle,
$$

where $l=a_{1}+\ldots+a_{n}+1$. Note that this a minimal generating set of $I_{a_{1}, \ldots, a_{n}}$.
Example 4.2. Let $I=\left\langle x^{5}, y^{5}, x y^{4}, x^{4} y\right\rangle \subset \mathbb{C}[x, y]$. I is a good ideal by the sufficient condition. The picture below represents powers of I up to I^{4}.

Consider the box $B_{1,0}$. Then

$$
G\left(I^{2}\right) \cap B_{0,1}=\left\{x^{5} y^{5}, x^{6} y^{4}, x^{8} y^{2}, x^{9} y, x^{10}\right\}
$$

Therefore, $I_{1,0}=\left\langle y^{5}, x y^{4}, x^{3} y^{2}, x^{4} y, x^{5}\right\rangle$. Geometrically, this means viewing monomials in $B_{1,0}$ as if the smallest corner of $B_{1,0}$ was the origin. In this particular example we have $I_{0,0}=I, I_{1,0}=\left\langle y^{5}, x y^{4}, x^{3} y^{2}, x^{4} y, x^{5}\right\rangle, I_{0,1}=\left\langle y^{5}, x y^{4}, x^{2} y^{3}, x^{4} y, x^{5}\right\rangle, I_{a, b}=$ $\left\langle y^{5}, x y^{4}, x^{2} y^{3}, x^{3} y^{2}, x^{4} y, x^{5}\right\rangle$ for all other (a, b).

It is easy to show that if I is a good ideal, then any corner $\mu_{1}^{k_{1}} \cdots \mu_{n}^{k_{n}}$ is a minimal generator of $I^{k_{1}+\ldots+k_{n}}$, therefore, $\left\{\mu_{j} \prod_{i=1}^{n} \mu_{i}^{a_{i}} \mid 1 \leq j \leq n\right\} \subseteq I^{l} \cap B_{a_{1}, \ldots, a_{n}}$, where $l=a_{1}+$ $\ldots+a_{n}+1$ and therefore $\left\{\mu_{1}, \ldots, \mu_{n}\right\} \subseteq G\left(I_{a_{1}, \ldots, a_{n}}\right)$ for all a_{1}, \ldots, a_{n}.
Proposition 4.3. Let I be a good ideal and a_{1}, \ldots, a_{n} nonnegative integers. Then

$$
I_{a_{1}, \ldots, a_{n}}=I^{l}:\left\langle\mu_{1}^{a_{1}} \cdots \mu_{n}^{a_{n}}\right\rangle,
$$

where $l=a_{1}+\ldots+a_{n}+1$.
Proof. It is clear from the definition that $I_{a_{1}, \ldots, a_{n}} \subseteq I^{l}:\left\langle\mu_{1}^{a_{1}} \cdots \mu_{n}^{a_{n}}\right\rangle$. For the other inclusion, let $m \in I^{l}:\left\langle\mu_{1}^{a_{1}} \cdots \mu_{n}^{a_{n}}\right\rangle$. Then $m \mu_{1}^{a_{1}} \cdots \mu_{n}^{a_{n}} \in I^{l}$, that is, $m \mu_{1}^{a_{1}} \cdots \mu_{n}^{a_{n}}$ is a multiple of some $g \in G\left(I^{l}\right)$, say, $m \mu_{1}^{a_{1}} \cdots \mu_{n}^{a_{n}}=g g_{1}$. Being a minimal generator of I^{l}, g belongs to some box, say, $B_{b_{1}, \ldots, b_{n}}$ with $b_{1}+\ldots+b_{n}=l-1=a_{1}+\ldots+a_{n}$. If
 and thus we are done. If $\left(a_{1}, \ldots, a_{n}\right) \neq\left(b_{1}, \ldots, b_{n}\right)$, then there is some $a_{i}<b_{i}$. Without loss of generality, we assume that $a_{1}<b_{1}$. Then the right hand side of $m \mu_{1}^{a_{1}} \cdots \mu_{n}^{a_{n}}=g g_{1}$ is divisible by $\mu_{1}^{b_{1}}$, thus m is divisible by μ_{1}, and μ_{1} is a minimal generator of $I_{a_{1}, \ldots, a_{n}}$ by the discussion before this proposition. Therefore, $m \in I_{a_{1}, \ldots, a_{n}}$.
Corollary 4.4. Let I be a good ideal and let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be nonnegative integers such that $\left(a_{1}, \ldots, a_{n}\right) \leq\left(b_{1}, \ldots, b_{n}\right)$. Then $I_{a_{1}, \ldots, a_{n}} \subseteq I_{b_{1}, \ldots, b_{n}}$.

Now we know that $I_{a_{1}, \ldots, a_{n}}$ grows as $\left(a_{1}, \ldots, a_{n}\right)$ grows. Since $I_{a_{1}, \ldots, a_{n}}$ can not increase forever, one expects some pattern on high powers of I, which is indeed the case.
Definition 4.5. Let a_{1}, \ldots, a_{n} be nonnegative integers. We will use the following notation:
$C_{\underline{a_{1}}, a_{2}, \ldots, a_{k}, a_{k+1}, a_{k+2}, \ldots, a_{n}}:=\left\{\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{N}^{n} \mid b_{1}=a_{1}, \ldots, b_{k}=a_{k}, b_{k+1} \geq a_{k+1}, \ldots, b_{n} \geq a_{n}\right\}$.
We will use a similar notation for any configuration of fixed and non-fixed coordinates. Sets of this type will be called cones, for any cone the number of non-fixed coordinates will be called its dimension and $\left(a_{1}, \ldots, a_{n}\right)$ will be called its vertex. Note that $\mathbb{N}^{n}=$ $C_{0,0, \ldots, 0}$.

Definition 4.6. Let a_{1}, \ldots, a_{n} be nonnegative integers. By $A_{a_{1}, \ldots, a_{n}}$ we denote the set of all cones that satisfy the following conditions:

1. if $\left(b_{1}, \ldots, b_{n}\right)$ is the vertex of the cone, then $b_{i} \leq a_{i}$ for all $1 \leq i \leq n$;
2. for all $1 \leq i \leq n$ the following holds: if $b_{i}=a_{i}$, then b_{i} is not underlined and if $b_{i}<a_{i}$, then b_{i} is underlined.

Note that the unique cone of dimension n in $A_{a_{1}, \ldots, a_{n}}$ is $C_{a_{1}, \ldots, a_{n}}$
Example 4.7. Let $n=2, a_{1}=2, a_{2}=1$. Then $A_{2,1}=\left\{C_{0,0}, C_{0,1}, C_{1,0}, C_{1,1}, C_{2,0}, C_{2,1}\right\}$

The picture above represents the six cones from $A_{2,1}$. The boundary lines are only drawn for better visibility. Clearly, the number of boundary lines equals the dimension of the cone.

Lemma 4.8. Let a_{1}, \ldots, a_{n} be nonnegative integers. Then cones in $A_{a_{1}, \ldots, a_{n}}$ form a disjoint covering of \mathbb{N}^{n}.

The previous lemma can be restated in a more general context:
Theorem 4.9. Given any cone C in \mathbb{N}^{n} of dimension k and a point $a \in C$, we can decompose C into a disjoint union of finitely many cones, where exactly one cone has dimension k and vertex \boldsymbol{a}, and all other cones have strictly lower dimensions.

Example 4.10. Let $n=5$ and consider $C_{5,7,4,2, \underline{2}}$. Consider $\left(a_{1}, \ldots, a_{5}\right)=(5,9,4,3,3) \in$ $C_{5,7,4,2, \underline{3}}$. The first, the third and the fifth coordinates are fixed once and forever, that is, all cones will have the form $C_{5, ?, 4, ?, 3}$. We are left with the second and the fourth coordinate, that is, $(7,2)$ for the cone and $(9,3)$ for the point. Shifting in the negative direction by $(7,2)$, we will get $(0,0)$ and $(2,1)$ respectively. Thus it is enough to find the decomposition of \mathbb{N}^{2} with respect to $(2,1)$, which has been done in Example 4.7. We obtained $A_{2,1}=\left\{C_{0,0}, C_{0,1}, C_{1,0}, C_{1,1}, C_{2,0}, C_{2,1}\right\}$. Shifting in the positive direction by $(7,2)$ gives us $\left\{C_{\underline{7}, 2}, C_{\underline{7}, 3}, C_{\underline{8}, 2}, C_{\underline{8}, 3}, C_{9,2}, C_{9,3}\right\}$ and inserting back the first, the third and the fifth coordinates gives us $\left\{C_{5,7,4,2, \underline{3}}, C_{5,7,4,3, \underline{3}}, C_{5,8,4,2,3}, C_{5,8,4,3, \underline{3}}, C_{5,9,4,2,3}, C_{5,9,4,3,3}\right\}$. Therefore, $C_{5,7,4,2, \underline{3}}$ is a disjoint union of these six cones.

Now we will use these results on monomial ideals. Let I be a good ideal. Then for any vector of nonnegative integers $\left(a_{1}, \ldots, a_{n}\right)$ we have defined a box $B_{a_{1}, \ldots, a_{n}}$ and the corresponding ideal $I_{a_{1}, \ldots, a_{n}}$. There is a bijection between points in \mathbb{N}^{n} and boxes/ideals; recall that if $\left(a_{1}, \ldots, a_{n}\right) \leq\left(b_{1}, \ldots, b_{n}\right)$, then $I_{a_{1}, \ldots, a_{n}} \subseteq I_{b_{1}, \ldots, b_{n}}$ by Corollary 4.4.

Theorem 4.11. For any good ideal I there exists a finite coloring of \mathbb{N}^{n} such that if $\left(a_{1}, \ldots, a_{n}\right)$ has the same color as $\left(b_{1}, \ldots, b_{n}\right)$, then $I_{a_{1}, \ldots, a_{n}}=I_{b_{1}, \ldots, b_{n}}$ and for each color the set of points with this color forms a cone.

Proof. We use induction on the highest dimension of uncolored cones. We are starting with an n-dimensional cone \mathbb{N}^{n}. We will show how to obtain finitely many cones of strictly lower dimensions, each of which will then be treated similarly in a recursive way. First of all, note that it is possible to find a point $\left(a_{1}, \ldots, a_{n}\right)$ such that the following holds: if $\left(b_{1}, \ldots, b_{n}\right) \geq\left(a_{1}, \ldots, a_{n}\right)$, then $I_{a_{1}, \ldots, a_{n}}=I_{b_{1}, \ldots, b_{n}}$. Indeed, if we assume the converse, then for every point of \mathbb{N}^{n} there exists a strictly larger point that corresponds to a strictly larger ideal, therefore, we can build an infinite chain of strictly increasing ideals, which is impossible by Noetherianity of the polynomial ring. So existence of such a point $\left(a_{1}, \ldots, a_{n}\right)$ is justified. Then from the Theorem $4.9, \mathbb{N}^{n}$ can be covered with a disjoint union of (finitely many) cones in $A_{a_{1}, \ldots, a_{n}}$. The unique n-dimensional cone in $A_{a_{1}, \ldots, a_{n}}$ is $C_{a_{1}, \ldots, a_{n}}$ and, as we have just figured out, we may paint all points in this cone with the same color. Now we are left with a disjoint union of cones of dimension at most $n-1$ which need to be painted and we apply induction on each of them, lowering the maximal dimension by 1 again. Since it is a finite process, in the end we will obtain a finite coloring of \mathbb{N}^{n}.

We remark that the coloring described above is not unique since it depends on the choice of $\left(a_{1}, \ldots, a_{n}\right)$ and its lower dimensional analogues.

Example 4.12. Let I be the ideal in Example 4.2. We can choose $\left(a_{1}, a_{2}\right)=(1,1)$ since $I_{b_{1}, b_{2}}=I_{1,1}$ for all $b_{1} \geq 1$ and $b_{2} \geq 1$. Then \mathbb{N}^{2} is a disjoint union of $C_{1,1}, C_{0,1}, C_{1,0}$ and $C_{0, \underline{0}}$. Now consider $C_{0,1}$. We see that $I_{0, b}=I_{0,2}$ for all $b \geq 2$. Therefore, we consider the decomposition of $C_{0,1}$ with respect to $(0,2)$: $C_{0,1}$ is a disjoin union of $C_{0,2}$ and $C_{0,1}$. Similarly, $C_{1,0}$ is a disjoint union of $C_{2,0}$ and $C_{1,0}$. The left picture below describes the coloring we have just discussed. The picture on the right describes another possible coloring if, for instance, we choose $\left(a_{1}, a_{2}\right)=(0,2)$.

Given a good ideal I, any coloring as in Theorem 4.11 represents a finite disjoint union of cones. Each cone has a vertex. Let L denote the maximum of sums of coordinates of these vertices. This number depends on I and on the coloring we choose, but we will not put any additional indices: as soon as we found some coloring (which exists according to Theorem 4.11), we simply work with it henceforth. For example, for both colorings in the picture above we have $L=2$. The geometric meaning of this number is the following: starting from I^{L+1}, we know exactly how powers of I look like, given that we know the coloring. For instance, for the left coloring in the picture above we know that every power of I starting from I^{3} consists of a green box, an orange box and several red boxes and we exactly know where each of them is. This means, there is a pattern on high powers of I, and this is a key point for finding the Ratliff-Rush closure of I.

5 The main result

Now we are ready to prove our main theorem, but first we need a preliminary lemma.
Lemma 5.1. Let I be a good ideal and let Q be any nonnegative integer. Then there exists a number $L(Q)$ such that for any $l \geq L(Q)$ the following holds: for every minimal generator m of I^{l} there is an i such that $m=m^{\prime} \mu_{i}^{Q}$ and m^{\prime} is a minimal generator of I^{l-Q}.

Proof. If $Q=0$, the claim is trivial. Let $Q>0$ and let L be the number defined in the end of Section 4. Take $L(Q)=L+n Q-n+2$ and let $l \geq L(Q)$. Let m be a minimal generator of I^{l}, then it belongs to some box $B_{b_{1}, \ldots, b_{n}}$ with $b_{1}+\ldots+b_{n}=l-$ $1 \geq L+n Q-n+1$. We also know that $\left(b_{1}, \ldots, b_{n}\right)$ belongs to one of the cones from our coloring; assume that the vertex of this cone is $\left(a_{1}, \ldots, a_{n}\right)$ (some coordinates are underlined, some are not underlined). Now we want to find a coordinate b_{i} such that $\left(b_{1}, \ldots, b_{i-1}, b_{i}-Q, b_{i+1}, \ldots, b_{n}\right)$ belongs to the same cone. Assume that it is not possible. Then it follows that $b_{1}-Q \leq a_{1}-1, \ldots, b_{n}-Q \leq a_{n}-1$. These inequalities yield a contradiction $L<b_{1}+\ldots+b_{n}-n Q+n \leq a_{1}+\ldots+a_{n} \leq L$, where the last inequality follows from the definition of L. So we can find an index i such that $b_{i}-Q \geq a_{i}$ (in particular, this implies that a_{i} is not underlined). Without loss of generality we assume that $i=1$. That means, $\left(b_{1}, \ldots, b_{n}\right)$ and $\left(b_{1}-Q, b_{2}, \ldots, b_{n}\right)$ are both in the same cone. This implies that their colors are equal, which means $I_{b_{1}, \ldots, b_{n}}=I_{b_{1}-Q, b_{2}, \ldots, b_{n}}$. In other words, the set of monomials in $B_{b_{1}, \ldots, b_{n}} \cap G\left(I^{l}\right)$ coincides with the set of monomials in $B_{b_{1}-Q, b_{2}, \ldots, b_{n}} \cap G\left(I^{l-Q}\right)$ up to a shift by μ_{1}^{Q}. Therefore, if $m \in B_{b_{1}, \ldots, b_{n}}$ is a minimal generator of I^{l}, then $\frac{m}{\mu_{1}^{Q}} \in B_{b_{1}-Q, b_{2}, \ldots, b_{n}}$ is a minimal generator of I^{l-Q}, as desired.

Now let us consider the following line of boxes which is in bijection with nonnegative integer points on the x-axis: $B_{0,0, \ldots, 0}, B_{1,0, \ldots, 0}, B_{2,0, \ldots, 0}$ etc. Let $B_{q_{1}, 0 \ldots, 0}$ be the stabilizing box of this sequence in a sense that if $t \geq q_{1}$, then $I_{t, 0, \ldots, 0}=I_{q_{1}, 0, \ldots, 0}$. Similarly, considering
lines of boxes going along the other coordinate axes, we will get $q_{2}, q_{3}, \ldots, q_{n}$. Denote $q:=\max \left\{q_{1}, \ldots, q_{n}\right\}$.
Theorem 5.2. Let I be a good ideal, let L and q_{i} be as above. Then $\tilde{I}=I_{q_{1}, 0, \ldots, 0} \cap I_{0, q_{2}, \ldots, 0} \cap \ldots \cap$ $I_{0, \ldots, 0, q_{n}}$.
Proof. \subseteq Let $l \geq q$. We will show that $I^{l+1}: I^{l} \subseteq I_{q_{1}, 0, \ldots, 0} \cap I_{0, q_{2}, \ldots, 0} \cap \ldots \cap I_{0, \ldots, 0, q_{n}}$. In fact, we will show that $I^{l+1}: I^{l} \subseteq I_{q_{1}, 0, \ldots, 0}$, other inclusions are analogous. Since I^{l+1} : $I^{l} \subseteq I^{l+1}:\left\langle\mu_{1}^{l}\right\rangle$, it is sufficient to show that $I^{l+1}:\left\langle\mu_{1}^{l}\right\rangle \subseteq I_{q_{1}, 0, \ldots, 0}$. By Proposition 4.3, $I^{l+1}:\left\langle\mu_{1}^{l}\right\rangle=I_{l, 0, \ldots, 0}$ which equals $I_{q_{1}, 0, \ldots, 0}$, given the way $I_{q_{1}, 0, \ldots, 0}$ was defined and given that $l \geq q \geq q_{1}$. Therefore, everything follows.
\supseteq Let $m \in I_{q_{1}, \ldots, 0} \cap I_{0, q_{2}, \ldots, 0} \cap \ldots \cap I_{0, \ldots, 0, q_{n}}$, let $l \geq L(q)=L+n q-n+2$ (as in Lemma 5.1). We will show that for every $m_{l} \in I^{l}$ we have $m m_{l} \in I^{l+1}$. It is enough to consider m_{l} to be minimal generators of I^{l}. First of all, from Lemma 5.1 we know that we can factor out some μ_{i}^{q} from m_{l} and get a minimal generator of I^{l-q}, that is, $m_{l}=\mu_{i}^{q} m_{l-q}$ for some index i and m_{l-q} a minimal generator in I^{l-q}. Also, since m belongs (in particular) to $I_{0, \ldots, 0, q_{i}, 0 \ldots, 0}=I^{q_{i}+1}:\left\langle\mu_{i}^{q_{i}}\right\rangle$, it means, $m \mu_{i}^{q_{i}} \in I^{q_{i}+1}$. Therefore, $m m_{l}=m \mu_{i}^{q_{i}} \mu_{i}^{q-q_{i}} m_{l-q} \in I^{l+1}$ since $m \mu_{i}^{q_{i}} \in I^{q_{i}+1}, \mu_{i}^{q-q_{i}} \in I^{q-q_{i}}, m_{l-q} \in I^{l-q}$.

6 Explicit computation of $I_{0, \ldots, 0, q_{i}, 0, \ldots, 0}$

We have seen that, given a good ideal I, its Ratliff-Rush closure is computed as $\tilde{I}=$ $I_{q_{1}, 0, \ldots, 0} \cap I_{0, q_{2}, \ldots, 0} \cap \ldots \cap I_{0, \ldots, 0, q_{n}}$. Therefore, we would like to know more about $I_{0, \ldots, 0, q_{i}, \ldots, 0,0}$. Let $i=1$, other cases are analogous. So far we only know that $I_{t, 0, \ldots, 0 \ldots, 0}=I^{t+1}$: $\left\langle\mu_{1}^{t}\right\rangle$. Computation of I^{t} might take much time if t is large enough. In addition, we do not know yet at which moment the line has stabilized. So far the process seems more complicated than it is. We will state a few remarks to make this computation easier.
Remark 6.1. If I is a good ideal, then $I_{t+1,0, \ldots, 0}=\left(I_{t, 0 \ldots, 0} \cdot I\right):\left\langle\mu_{1}\right\rangle$ for all $t \geq 0$.
According to Remark 6.1, we have

$$
I_{t+1,0, \ldots, 0}=\left\langle\left.\frac{f m}{\operatorname{gcd}\left(f m, \mu_{1}\right)} \right\rvert\, f \in G\left(I_{t, 0, \ldots, 0}\right), m \in G(I)\right\rangle
$$

Let $f \in G\left(I_{t, 0, \ldots, 0}\right)$ and $m \in G(I)$. Write $f m=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$. If $\alpha_{i} \geq d_{i}$ for any $2 \leq i \leq n$, then $\frac{f m}{\operatorname{gcd}\left(f m, \mu_{1}\right)}$ is a multiple of $\mu_{i} \in G\left(I_{t+1,0, \ldots, 0}\right)$. Therefore, in the above formula we may force that $\operatorname{deg}_{x_{i}}(f m)<d_{i}$ for $2 \leq i \leq n$. Moreover, consider $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mu_{1}^{t}=f \mu_{1}^{t} m \in I^{t+2}$ since $f \mu_{1}^{t} \in I^{t+1}$ according to Proposition 4.3. Since $\alpha_{i}<d_{i}$ for all $2 \leq i \leq n$, we must have $\alpha_{1} \geq d_{1}$, otherwise $f \mu_{1}^{t} m$ would belong to a box with the sum of coordinates at most t. Thus $\operatorname{gcd}\left(f m, \mu_{1}\right)=\mu_{1}$. Therefore, we conclude that

$$
\left.I_{t+1,0, \ldots, 0}=\left\langle\frac{f m}{\mu_{1}}\right| f \in G\left(I_{t, 0, \ldots, 0}\right), m \in G(I), \operatorname{deg}_{x_{i}}(f m)<d_{i} \text { for } 2 \leq i \leq n\right\rangle
$$

Remark 6.2. If $I_{t, 0, \ldots, 0}=I_{t+1,0, \ldots, 0}$, then the line has stabilized, that is, $I_{k, 0, \ldots, 0}=I_{t, 0, \ldots, 0}$ for all $k \geq t$. This is a direct corollary of Remark 6.1.

Remark 6.3. Assume that we have computed $I_{t, 0, \ldots, 0}$ and $I_{t+1,0, \ldots, 0}$ and let $E_{t}:=G\left(I_{t, 0, \ldots, 0}\right)$ and $F_{t+1}:=\left\{\right.$ minimal generators of $I_{t+1, \ldots, 0}$ which are not in $\left.I_{t, \ldots, 0}\right\}$. Clearly, E_{t+1} is the reduced union of E_{t} and F_{t+1}. From Remark 6.1 we remember that $I_{t+2,0, \ldots, 0}=\left(I_{t+1,0, \ldots, 0}\right.$. $I):\left\langle\mu_{1}\right\rangle=\left(\left\langle E_{t} \cup F_{t+1}\right\rangle \cdot I\right):\left\langle\mu_{1}\right\rangle=\left(\left(I_{t, \ldots, 0}+\left\langle F_{t+1}\right\rangle\right) \cdot I\right):\left\langle\mu_{1}\right\rangle=\left(I_{t, \ldots, 0} \cdot I+\left\langle F_{t+1}\right\rangle \cdot I\right):$ $\left\langle\mu_{1}\right\rangle=\left(I_{t, \ldots, 0} \cdot I\right):\left\langle\mu_{1}\right\rangle+\left(\left\langle F_{t+1}\right\rangle \cdot I\right):\left\langle\mu_{1}\right\rangle=I_{t+1,0, \ldots, 0}+\left(\left\langle F_{t+1}\right\rangle \cdot I\right):\left\langle\mu_{1}\right\rangle$. Therefore, we conclude that minimal generators of $I_{t+2,0, \ldots, 0}$ which are not in $I_{t+1,0, \ldots, 0}$ (our future F_{t+2}) could only be among $\left(\left\langle F_{t+1}\right\rangle \cdot I\right):\left\langle\mu_{1}\right\rangle$, that is, only new monomials from the previous iteration can give rise to new monomials in the next iteration. Therefore, in order to compute F_{t+2} we need to compute $\left(\left\langle F_{t+1}\right\rangle \cdot I\right):\left\langle\mu_{1}\right\rangle$, reduce this set and throw away monomials that are already in E_{t+1}. We can start with $E_{-1}=\varnothing, F_{0}=G(I)$.

Remark 6.4. We can exclude all μ_{i} from all sets and it will not affect the algorithm. In other words, we can replace $G(I)$ by $P(I):=G(I) \backslash\left\{\mu_{1}, \ldots, \mu_{n}\right\}$ everywhere and then include the corners in the very end of the algorithm. We have already discussed why we can exclude μ_{i} for $2 \leq i \leq n$ (we want $\operatorname{deg}_{x_{i}}(f m)<d_{i}$ for $2 \leq i \leq n$). We can also exclude μ_{1} since multiplying and then dividing by μ_{1} does not give us any new monomials.

7 Examples

Example 7.1. Let $I=\left\langle\mu_{1}, \mu_{2}, \mu_{3}, m_{1}, m_{2}, m_{3}\right\rangle=\left\langle x^{29}, y^{29}, z^{29}, x^{28} y^{8} z^{8}, x^{8} y^{28} z^{8}, x^{8} y^{8} z^{28}\right\rangle \subset$ $\mathbb{C}[x, y, z]$. Since I satisfies the sufficient condition, it is a good ideal. Computations in Singular show that

$$
\begin{gathered}
I^{2}: I=I+\left\langle x^{27} y^{27} z^{27}\right\rangle \\
I^{3}: I^{2}=I^{4}: I^{3}=I+\left\langle x^{26} y^{27} z^{27}, x^{27} y^{26} z^{27}, x^{27} y^{27} z^{26}\right\rangle \\
I^{5}: I^{4}=I^{6}: I^{5}=\cdots=I^{10}: I^{9}=I+\left\langle x^{26} y^{26} z^{26}\right\rangle
\end{gathered}
$$

It is natural to conjecture that $\tilde{I}=I+\left\langle x^{26} y^{26} z^{26}\right\rangle$. Now let us see what we get if we apply the algorithm above. We start with $E_{-1}=\varnothing, F_{0}=P(I)=\left\{m_{1}, m_{2}, m_{3}\right\}$. Then we obtain E_{0} by reducing $E_{-1} \cup F_{0}$, that is, $E_{0}=P(I)$. In order to compute F_{1}, we take all products of $F_{0}=P(I)$ with $P(I)$, keeping in mind that y - and $z-$ coordinates of each product need to be less than 29 , and divide each such product by μ_{1}. The only such monomial is $\frac{m_{1}^{2}}{\mu_{1}}=\frac{x^{56} y^{16} z^{16}}{x^{29}}=x^{27} y^{16} z^{16}$. This monomial is not in $\left\langle E_{0}\right\rangle$, therefore, we add it to our set F_{1} (and this set is already reduced). Thus $E_{0}=P(I), F_{1}=\left\{x^{27} y^{16} z^{16}\right\}$. Now $E_{1}=$ $E_{0} \cup F_{1}=P(I) \cup\left\{x^{27} y^{16} z^{16}\right\}$ (this union is already reduced), and in order to compute F_{2} we need to multiply $x^{27} y^{16} z^{16}$ with monomials from $P(I)$ (keeping in mind the condition on y - and z - coordinates) and divide the products by μ_{1}. The only possible monomial is $\frac{x^{27} y^{16} z^{16} \cdot m_{1}}{\mu_{1}}=x^{26} y^{24} z^{24}$. This monomial is not in $\left\langle E_{1}\right\rangle$, therefore, $F_{2}=\left\{x^{26} y^{24} z^{24}\right\}$.
$E_{2}=E_{1} \cup F_{2}=P(I) \cup\left\{x^{27} y^{16} z^{16}, x^{26} y^{24} z^{24}\right\}$ (this set is already reduced) and if we try to compute F_{3}, we see that we can not get any new monomials. Therefore, $F_{3}=\varnothing$ and the stabilizing point is $I_{2,0,0}=\left\langle E_{2} \cup\left\{\mu_{1}, \ldots, \mu_{n}\right\}\right\rangle=I+\left\langle x^{27} y^{16} z^{16}, x^{26} y^{24} z^{24}\right\rangle$. By symmetry, $I_{0,2,0}=I+\left\langle x^{16} y^{27} z^{16}, x^{24} y^{26} z^{24}\right\rangle$ and $I_{0,0,2}=I+\left\langle x^{16} y^{16} z^{27}, x^{24} y^{24} z^{26}\right\rangle$. According to the theorem, $\tilde{I}=I_{2,0,0} \cap I_{0,2,0} \cap I_{0,0,2}=I+\left\langle x^{26} y^{26} z^{26}\right\rangle$, just as expected.

Example 7.2. Let $I=\left\langle x^{41}, y^{41}, z^{41}, x^{40} y^{5} z^{5}, x^{5} y^{40} z^{5}, x^{5} y^{5} z^{40}\right\rangle \subset \mathbb{C}[x, y, z]$. It can be shown that I is a good ideal. All the new monomials can only be obtained from powers of non-corners: $I_{1,0,0}=I+x^{39} y^{10} z^{10}, I_{2,0,0}=I_{1,0,0}+x^{38} y^{15} z^{15}, \ldots, I_{6,0,0}=I_{5,0,0}+x^{34} y^{35} z^{35}$. Here the line stabilizes. We similarly get $I_{0,6,0}$ and $I_{0,0,6}$. Intersecting them we will get

$$
\tilde{I}=I_{6,0,0} \cap I_{0,6,0} \cap I_{0,0,6}=I+\left\langle x^{34} y^{35} z^{35}, x^{35} y^{34} z^{35}, x^{35} y^{35} z^{34}\right\rangle .
$$

Computing successive quotients via computer algebra gives is the following: $I^{2}: I^{1}$ has 7 minimal generators, that is, $\left|G\left(I^{2}: I^{1}\right)\right|=7 ;\left|G\left(I^{3}: I^{2}\right)\right|=9 ;\left|G\left(I^{4}: I^{3}\right)\right|=12$; $\left|G\left(I^{5}: I^{4}\right)\right|=16 ;\left|G\left(I^{6}: I^{5}\right)\right|=21 ;\left|G\left(I^{7}: I^{6}\right)\right|=27 ;\left|G\left(I^{8}: I^{7}\right)\right|=31 ;\left|G\left(I^{9}: I^{8}\right)\right|=33 ;$ $\left|G\left(I^{10}: I^{9}\right)\right|=33 ;\left|G\left(I^{11}: I^{10}\right)\right|=31 ;\left|G\left(I^{12}: I^{11}\right)\right|=24 ;\left|G\left(I^{13}: I^{12}\right)\right|=18 ; \mid G\left(I^{14}:\right.$ $\left.I^{13}\right)\left|=13 ;\left|G\left(I^{15}: I^{14}\right)\right|=9\right.$ and it finally coincides with the ideal obtained above. It takes much time to perform these computations using computer algebra, whereas the computation of $I_{6,0,0}, I_{0,6,0}$ and $I_{0,0,6}$ and their intersection is much easier.

References

[1] I. Al-Ayyoub. "An algorithm for computing the Ratliff-Rush closure". J. Algebra Appl. 8.4 (2009), pp. 521-532. Link.
[2] T. T. Dinh, M. E. Rossi, and N. V. Trung. "Castelnuovo-Mumford regularity and Ratliff-Rush closure". J. Algebra 504 (2018), pp. 568-586. Link.
[3] W. Heinzer, D. Lantz, and K. Shah. "The Ratliff-Rush ideals in a Noetherian ring". Comm. Algebra 20.2 (1992), pp. 591-622. Link.
[4] V. C. Quiñonez. "Ratliff-Rush monomial ideals, algebraic and geometric combinatorics". Algebraic and Geometric Combinatorics. Contemp. Math. 423. Amer. Math. Soc., 2007, pp. 4350.
[5] L. J. Ratliff and D. E. Rush. "Two notes on reductions of ideals". Indiana Univ. Math. J 27 (1978), pp. 929-934. Link.
[6] M. E. Rossi and I. Swanson. "Notes on the behavior of the Ratliff-Rush filtration". Commutative Algebra: Interactions with Algebraic Geometry. Contemp. Math. 331. Amer. Math. Soc., 2003, pp. 313-328.

