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Abstract. It is known that there are finitely many simplicial complexes (up to iso-
morphism) with a given number of vertices. Translating to the language of h-vectors,
there are finitely many simplicial complexes of bounded dimension with h1 = k for
any natural number k. In this paper we study the question at the other end of the
h-vector: given d and k there are only finitely many d− 1-dimensional independence
complexes, broken circuit complexes, and order complexes of geometric lattices (with-
out coloops) with hd = k. This suggests new upper/lower bound programs for these
types of simplicial complexes.

Resumen. Es conocido que hay finitos complejos simpliciales (módulo isomorfismo)
con un número de vertices fijo. En el lenguage de h-vectores, hay finitos complejos
simpliciales que satisfacen h1 = k para k fijo. En esta nota estudiamos la pregunta
al extremo opuesto del h-vector: dados d y k hay finitos complejos de independencia,
complejos de circuitos cortados, y complejos de orden, con dimension d− 1 y hd = k.
Esto sugiere nuevos programas para determinar cotas inferiores y superiores para estos
tipos de complejos.
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1 Introduction

This paper aims to present a new approach to the study of matroids from the perspective
of the topology of various simplicial complexes. In the survey [5], Björner presented the
story of three complexes associated to a matroid: the independence complex, the broken
circuit complex, and the order complex of its lattice of flats. We introduce a program that
aims to study, for each of the three associated complexes, all matroids whose complex
has a fixed homotopy type.

The program is cast in the language of h-numbers, and their equivalent relatives f -
numbers. These invariants have been extensively studied and are the subject of widely
celebrated new results and old conjectures. For instance, the recent resolution of the
Rota-Herron-Welsh conjecture by Adiprasito, Huh and Katz [1] can be interpreted as a
set of inequalities on f -vectors of broken circuit complexes. Other recent breakthroughs
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include the proof, by Ardila, Denham and Huh [3], that the h-vector of any broken
circuit complex is log concave, and the solutions of Brändén-Huh [6] and Anari-Lui-
Oreis Gharan-Vinzant [2] of the strongest version of Mason’s conjecture for f -vectors of
independence complexes.

From the work of Chari [7] (for independence complexes), Nyman and Swartz [11]
(for order complexes of geometric lattices), and Juhnke-Kubitzke and Van Dihn [9] (for
broken circuit complexes) we now know that the h-vector in all these cases is flawless. In
terms of the entries it says that if h = (h0, . . . hs) is the h-vector of a complex, with hs 6= 0
and δ = b s

2c, then h0 ≤ h1 ≤ · · · ≤ hδ. and hi ≤ hs−i for i ≤ δ.
If i < d and the h-vector is flawless, then hi ≥ h1 = f0 − d, where f0 is the number

of vertices. It follows that, after fixing k and d, the number of (isomorphism types of)
complexes of rank d with hi = k and no cone vertices is finite. This is however, far
away from the case if we consider hd instead: the g-theorem [13, Theorem 1.1 Section III]
implies that the h-vector of the boundary of any (d− 1)-dimensional simplicial polytope
is flawless and has hd = 1.

Surprisingly for independence complexes, broken circuit complexes, and geometric
lattices, the restriction for hd still implies finiteness.

1.1 Independence complexes

Theorem 1. Let d, k be positive integers. There are finitely many isomorphism classes of loopless
rank d matroids M whose independence complex satisfies hd(I(M)) = k.

This result should be surprising at first sight. However, it is a natural consequence of
several results that exist in the literature, some dating back to 1980.

Theorem 1 implies that there are upper bounds on all h-numbers in terms of hd. On
the other hand, lower bounds exist from the fact that the h-vector is an O-sequence. Thus
it seems reasonable to launch a program to understand extremal matroids for upper and
lower bounds for matroid independence complexes with fixed rank and topology.

Another natural path to follow is trying to estimate the size of the set Ψd,k of all
isomorphism classes of loopless matroids of rank d with hd = k. It is a priori not clear
that such a set is not empty, but we provide several examples in each class. Furthermore,
we provide non-trivial upper and lower bounds for the cardinality of |Ψd,1|. In particular,
we extend a result of Chari, who showed that |Ψd,1| = p(d), the number of integer
partitions of d.

Theorem 2. Let d, k > 0 and let Td,k be the number of matroids of rank at most d with at most
k bases. Then

2dkTd,k ≥ |Ψd,k| ≥ |Ψd,1| = p(d).

The bounds above are far from tight. Nonetheless we expect the asymptotics to be
close to the upper bound. It is not even clear that the cardinality of Ψd,k increases as d
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or k increase. Furthermore, restricting to the subset Σd,k of Ψd,k that consists of simple
matroids one observes the following: |Σ2,1| = 1 > 0 = |Σ2,2|. Hence a different behavior
in the case of simple matroids is expected.

1.2 Broken circuit complexes

A natural question that follows after studying independence complexes is that of broken
circuit complexes. They arise naturally in the study of hyperplane arrangements and
are a meaningful generalization of matroids: every matroid is a reduced broken circuit
complex.

Theorem 3. Let d, k be positive integers. The number of isomorphism classes of simple connected,
rank d ordered matroids M whose reduced broken circuit complex satisfies hd−1(BC<(M)) = k
is finite.

It is known that h-vectors of broken circuit complexes properly contain the h-vectors
of matroids (see [13]). The real reason for the difference is not fully understood. There
are examples of broken circuit complexes whose h-vector is not a pure O-sequence and
others which do not admit convex ear decompositions. However, numerical inequalities
known to be satisfied by h-vectors of matroids are also known to hold for broken circuit
complexes after the recent work of Ardila, Denham and Huh.

1.3 Geometric lattices

Interest in geometric lattices has flourished significantly in the last two decades due to
their connection with tropical geometry. They are connected to tropical linear spaces
via the Bergman fan of M. After after intersecting the fan with a unit sphere, the re-
maining cellular complex is triangulated a geometric realization of the order complex of
the lattice of flats of M. See for instance [4]. It is also crucial in the study of the Chow
ring of a matroid and its Hodge structure [1]. Even more, Huh and Wang [8] recently
proved Dowling’s top heavy conjecture for representable geometric lattices: a theorem
on numerical invariants of the lattice, by studying again elements of Hodge theory. It
is therefore desirable to get a better grasp of aforementioned invariants from a different
point of view, which as a way to complement the new results.

Hidden in one of the exercises in [14, Problem 100.(d) Ch. 3 ] is the following result:
the number of isomorphism classes of simple, loop and coloop free matroids whose
geometric lattice is homotopy equivalent to a wedge of k spheres (independently of
dimension!) is finite. This is much stronger than the result for independence complexes
and can be expressed in terms of Euler characteristics, Möbius functions or the top non-
zero h-number of the order complex of the proper part of the lattice. Even though the
result is stated in Stanley’s book, there seems to be no published proof.
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Theorem 4. Let d, k be positive integers. The number of isomorphism classes of simple matroids
M of rank d whose geometric lattice, L(M), satisfies |µ(L(M))| = k is finite. Furthermore if
we restrict to coloopless matroids, we can drop the rank condition.

2 Definitions and notation

This section is devoted to defining, summarizing and relating various aspects of matroid
theory that appear in the arguments of this paper. See [13] for more detailed definitions.

2.1 Simplicial complexes

A simplicial complex ∆ is a collection of subsets of a finite set E that is closed under
inclusion. Any simplicial complex admits a geometric realization, a topological space
whose different aspects (geometric and topological) encode the information about the
complex. The topology of a simplicial complex refers to the topology of its geometric
realization. Throughout this paper we use reduced simplicial homology with rational
coefficients.

Let ∆1 and ∆2 be simplicial complexes on disjoint ground sets E1 and E2, the join
∆1 ∗ ∆2 is the complex on the ground set E1 ∪ E2 whose faces are unions of faces of ∆1
and ∆2. Joins of several complexes are defined in the natural straightforward way. The
join of two spheres is again a sphere and the join of a sphere and a ball yields another
ball. A simplicial complex ∆ is said to be join irreducible if it is not equal to the join of
two non-trivial subcomplexes.

2.2 PS ear decompositions.

The full d-simplex Γd is the simplicial complex whose faces are all the subsets of a set
with d + 1 elements: it is homeomorphic to a d-dimensional ball. The boundary of the
d-simplex Γ̂d is the set of proper subsets of a set with d + 1 elements: it is homeomorphic
to a (d− 1)-sphere. A PS-sphere is a join of boundaries of simplices Γ̂d1 ∗ Γ̂d2 ∗ · · · ∗ Γ̂dk

.
It is homeomorphic to a sphere of dimension d1 + d2 + · · ·+ dk − 1.

Lemma 5. Let ∆ be any PS-sphere of dimension d − 1. For every 1 ≤ i ≤ d, the following
inequality holds:

hi(∆) ≤
(

d
i

)
. (2.1)

Consequently, fd−1(∆) ≤ 2d.

Proof. The join operation on simplicial complexes has the effect of multiplying the re-
spective h-polynomials. We have that h(Γ̂d, t) = 1 + t + · · ·+ td, and h(Γ̂d

1, t) = (1 + t)d,
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where Γ̂d
1 is the join of d boundaries of segments. This implies that, coefficient by coeffi-

cient, we have h(Γ̂d, t) ≤ h(Γ̂d
1, t).

For a general PS-sphere we have h(Γ̂d1 ∗ Γ̂d2 ∗ · · · ∗ Γ̂dk
, t) = h(Γ̂d1 , t)h(Γ̂d2 , t) · · · h(Γ̂dk

, t) ≤
h(Γ̂d1

1 , t)h(Γ̂d2
1 , t) · · · h(Γ̂dk

1 , t) = h(Γ̂d
1, t), where d = d1 + · · ·+ dk, showing the inequality

we wanted. The combinatorially unique maximizer is Γ̂d
1 and it is equal to ∂♦d, the

boundary of a d-dimensional crosspolytope.

A PS-ball is a complex of the form Σ ∗ Γ`, where Σ is a PS-sphere. This is a cone over
Σ̂ with apex the whole ball Γ`. The (topological) boundary of such a PS-ball is the PS-
sphere Σ ∗ Γ̂`. Notice that, unless ` = 0, the vertices of a PS-ball are all in the boundary.
In the special case ` = 0 the PS ball has one interior vertex.

Definition 6. Let ∆ be a simplicial complex and K ∼= Σ ∗ Γ` a PS-ball with dim(∆) = dim(K)
and such that ∆ ∩ K = ∂K. The complex ∆′ = ∆ ∪ K is said to be obtained from ∆ by attaching
a PS ear.

Lemma 7. Under the conditions of Definition 6 above we have the following relation of h-
polynomials:

h(∆′, t) = h(∆, t) + tl+1h(∂K, t).

Proof. This is the polynomial version of Lemma 3 [7] together with the Dehn-Sommerville
relations for simplicial spheres.

Definition 8. A (d− 1)-dimensional simplicial complex ∆ is said to be PS-ear decomposable if
there is k ≥ 0 and a sequence ∆0 ⊂ ∆1 ⊂ · · · ⊂ ∆k = ∆ of complexes, such ∆0 is a PS-sphere
and for 0 ≤ j ≤ k− 1 the complex ∆j+1 is obtained from ∆j by attaching a PS-ear.

Remark 9. Each time we attach an ear the top Betti number goes up by one and hence if we
attach k− 1 PS ears, the resulting complex has |χ̃(∆)| = k.

2.3 Matroids

A matroid is a pair M = (E, r), where E is a finite set and r : 2E → Z is a function on sub-
sets of E that is nonnegative, nondecreasing, and submodular. An independent set I ⊂ E
is a subset such that r(I) = |I|. Independent sets form a simplicial complex denoted by
I(M). A matroid is said to be connected, if I(M) is join irreducible. Maximal indepen-
dent sets are called bases and we denote the set of bases of matroid B(M). Minimally
dependent (that is, not independent) sets are called circuits.

A flat is a subset F ⊂ E such that r(F) < r(F ∪ {x}) for any x /∈ F. If we have a total
order < on E, a broken circuit is a circuit with its smallest element removed. A basis is
called an nbc basis if it does not contain any broken circuit.

An ordered matroid (M,<) is a matroid together with an ordering on its ground set.
Given an ordered matroid M, a basis B and b ∈ B, say that b is internally passive if there
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is b′ < b such that (B\{b}) ∪ {b′} ∈ B(M), i.e., it can be replaced by a smaller element
to obtain another basis of M. The set of all internally passive elements of a basis B is
denoted by IP(B) and it is called the internally passive set of B.

In the paper [5] Bjorner studies three simplicial complexes associated with a matroid
M. The first one is the independence complex defined above. The other two are defined
here:

Definition 10. Let M = (E, r) be a matroid of rank d, i.e., r(E) = d. We define the following
complexes:

• The broken circuit complex BC<(M), whenever (M,<) is an ordered matroid, consists
of the ground set E with faces given by sets that do not contain broken circuits.

• The order complex of the lattice of flats L(M) is the order complex of poset given by
flats of M ordered by inclusion (see the precise definitions below).

All of these complexes have dimension d− 1.

In [5] it is shown that all three complexes are shellable, a concept we will not define
but only state the consequence we need. A shellable simplicial complex ∆ of dimension
d − 1 is homotopy equivalent to the wedge product of k spheres of dimension d − 1,
where k = hd(∆) = |χ̃(∆)|. Hence, its homotopy type depends on just two parameters:
dim(∆) and χ̃(∆) (or alternatively hd(∆)).

The broken circuit complex turns out to be a cone over a non-contractible space: the
number of cone points equals the number of connected components of the matroid as
shown in [5]. The reduced broken circuit complex BC<(M) is the complex that results
from removing the cone points of the broken circuit complex. For simplicity we only
work with connected matroids, i.e matroids whose independence complex cannot be
decomposed as a join of two non-trivial complexes.

The following theorem provides one topological difference between independence
and broken circuit complexes. Indeed, it follows from the work of Swartz [15] that it is
false for broken circuit complexes.

Theorem 11 ([7, Theorem 3]). For any matroid M, the independence complex I(M) is PS-ear
decomposable.

2.4 Geometric lattices

For any matroid M we have a partially ordered set (by inclusion) on the set of flats.
These posets are characterized by certain extra properties, they are precisely the geometric
lattices.

Theorem 12. Assigning the poset L(M) to each matroid M induces a one-to-one correspondence
between geometric lattices and simple matroids.
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Every poset P gives a simplicial complex O(P), called the order complex of P, in the
following way: Its elements are the elements of P and the faces are the chains ordered by
inclusion. As mentioned before, the order complex of a geometric lattice L is shellable.

3 Independence Complexes

This section is devoted to various proofs of Theorem 1. Quite surprisingly the result is a
simple consequence of several standard (yet deep) theorems in matroid theory.

Definition 13. Let Ψd,k be the set of all isomorphism classes of loopless matroids M such that
dim(I(M)) = d− 1 and |χ̃(I(M))| = k.

Theorem 1 implies the existence of upper bounds for each entry of the h-vectors and
f -vectors of a matroid in terms of its dimension and its Euler characteristic. We start
by providing tight bounds. These bounds were first proved in Swartz [16] with a com-
plicated inductive argument. The advantage of our approach is that we can completely
classify equality cases.

Theorem 14. Let M ∈ Ψd,k we have the following inequalities:

1. hi(I(M)) ≤ (d
i) + (k− 1)(d−1

i−1), for 0 ≤ i ≤ d.

2. fi(I(M)) ≤ ( d
i+1)2

i+1 + (k− 1)(d−1
i )2i, for −1 ≤ i ≤ d− 1.

Furthermore, these inequalities are tight and equality holds only if M is isomorphic to the matroid
Vd,k defined below.

Proof. We begin with the first part. We will use Theorem 11, i.e., the fact that I(M) is PS
ear decomposable. To begin with, there is a unique h-vector maximizer among the PS
spheres ∆0; namely it is the boundary of a d-dimensional crosspolytope and its h-vector
is given by the binomial coefficients (Lemma 5). By Lemma 7, together with Lemma 5,
the way to attach a PS ear with maximal resulting h-vector is by attaching a PS ball
whose boundary is isomorphic to ∂♦d−1. We now show that this maximal bound can be
attained.

Set ∆0 to be ∂♦d. Fix a vertex v ∈ ∆0 and attach an ear using the PS ball Σ ∗ Γ0, where
Σ is the link of v (which isomorphic to ∂♦d−1) and Γ0 is just a single new vertex. We
can repeat this process k times, always using the same link of the original vertex v. The
simplicial complex obtained in this way is the independence complex of matroid. Our
choice of ∆0 is the independence complex of the graphical matroid of a path with each
edge doubled. Each ear attachment corresponds to adding parallel elements to a fixed
edge. We denote this matroid by Vd,k.

The second part follows from the fact that Vd,k also maximizes each entry of the
f -vector. This is because the f -vector is a positive combination of the h-vector.
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Figure 1: The graphical matroid V4,7.

Now we can give another proof of Theorem 1.

Proof of Theorem 1. We have hd(I(M)) = |χ̃((I(M)))|, so Theorem 14 gives f0(I(M)) ≤
2d + hd(I(M))− 1. Fixing hd(I(M)) and d bounds the number of vertices (I(M)) can
have, whence the result follows.

In contrast to the case of the Upper Bound Theorem for spheres (see [12]), Vd,k is
the unique maximizer up to isomorphism. However, Vd,k is perhaps not very interesting
from the matroid theoretic perspective (for instance lattice of flats of Vd,k is the boolean
lattice Bd). A relevant variant, which we expect to be harder, is the analogous question
over the family of simple matroids.

Question 15. What is the maximal value of hj(I(M)) for where M ranges over all simple
matroids of Ψd,k? Is there a single simple matroid that simultaneously maximizes all the h-vector
entries? What if we further restrict to the class of simple connected matroids?

In light of the above question, we notice that for simple matroids, the number of
vertices is strictly less than 2d+ hd(I(M))− 1 which is the tight upper bound for general
matroids.

Corollary 16. If M is a matroid with f0(I(M)) = 2d + hd(I(M))− 1, then M is isomorphic
to Vd,k.

To finish, we present a proof of the main theorem which allows us to say something
about the size of Ψd,k.

Second proof of Theorem 1. Given a matroid M and a basis B, Corollary 3.5 in [10] shows
that the h-polynomial of the independence complex of M can be decomposed as:

h(I , x) = ∑
I

x|I|h(linkI(I)|B, x).

The sum is taken over the independent sets I of M that are disjoint from B. Lemma 3.8 in
[10] shows that all maximal such I under inclusion, i.e the bases of the induced matroid
on E\B, satisfy that hd−|I|(linkI(I)|B) 6= 0. It follows that hd(M) is bounded below by
the number of bases of M|E−B. This implies that there are at most k maximal bases.
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Together with the fact that the rank of the restriction is bounded above by d, this implies
that the number of possible restrictions is finite. The missing independent sets consist
of a subset of B together with an element of the restriction, thus the number of matroids
with hd = k is bounded above by 2dkTd,k, where Td,k is the number of matroids of rank
at most d with at most k bases.

In general, it follows from Chari’s Theorem 11 that |Ψd,1| = p(d), the number of
integer partitions of d. Consequently, the best kind of formula we can expect for the
cardinality of Ψd,k is asymptotic. It is unclear that the value of Ψd,k is monotone in either
of the parameters. At least the construction of Vd,k shows that Ψd,k 6= ∅. Using the same
ideas we can say a little more.

Lemma 17. |Ψd,1| ≤ |Ψd,k| for every positive integer d

Proof. Since every matroid in Ψd,1 is a PS-sphere, we can choose any vertex v and repli-
cate the construction of Vd,k to get an inclusion Ψd,1 → Ψd,k.

Notice that the previous argument is not strong enough to prove that Ψd,k ≤ Ψd,k+1
in general (if d = 1 the number of all such matroids is one). In particular, it would be
interesting to find a matroid operation that increases hd(I(M)) by one in general. The
previous construction relies heavily on having a vertex of the independence complex
whose link is a sphere. This is, presumably, almost never the case.

4 Broken Circuit complexes

Theorem 3 is a natural extension of Theorem 1. The proof is a consequence of Theorem
5.4 in [16]. Notice that if M is a connected rank-d simple matroid without coloops, then
the upper bounds for hi in terms of hd−1 coincide with the tight ones found for matroids.

Thus the numerical inequalities found for broken circuit complexes are not stronger
than the ones found for matroids. However, the lack of flexibility of the approach leads
to some potential differences: for instance, while the independence complex maximizer
is unique, none of the arguments that apply to broken circuit complexes. In particular
Swartz [15] provided examples of broken circuit complexes such that the Artinian re-
duction of the Stanley-Reisner ring admits no g-element. This means that some broken
complexes do not admit convex ear decompositions (even after increasing the family of
allowable convex spheres and balls). As a result it follows that the proof using PS-ear
decomposition cannot be extended, and the equality classification fails.

An alternative approach, which is part of a current research project of the second
author, comes from studying the Int<(M) poset when restricted to the facets of BC<(M).
As evidence that an argument along these lines may be reasonable, we provide a new
structural theorem about the subposet of Int<(M) that consists of nbc bases: it is an
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order ideal. By studying the structure of the subposet carefully we expect to be able to
classify upper bounds and hopefully obtain significant quantitative differences between
the two families of h-vectors.

5 Order complexes of geometric lattices.

A careful look at Exercise 100(d) in Chapter 3 of [14] gives a much stronger result than
an analogous of Theorem 1. The level of the problem in the ranking [3-], but unlike most
problems in the book, the solution is not written down. To the best of our knowledge, it
is not anywhere in the literature, so we include it here for the sake of completeness.

Theorem 18. Fix a natural number k. There exist finitely many geometric lattices L1, · · · , Lm
such that if L is any finite geometric lattice satisfying |χ̃(O(L))| = k then L = Li × Bd for some
i, d.

Proof. Notice that the simple matroid associated to L× Bd is the join of the matroid of
L with the full d− 1-simplex Γd−1. Thus it suffices to show that there are finitely many
simple coloop free matroids M whose lattice of flats has Euler characteristic equal to k.

Assume that M is such a matroid and L is the associated geometric lattice. By [5,
Proposition 7.4.5] the Euler characteristic of χ̃(O(L)) equals the number of facets of
BC<(M). And there are finitely many isomorphism classes of such broken circuit com-
plexes with k facets.

Let ∆ be one such broken circuit complex. We claim that only finitely many matroids
can have ∆ as a broken circuit complex. To prove this we will bound the number of
vertices of the independence complex of any such matroid. Let C1, C2, . . . Cs be the
minimal nonfaces of ∆, that is, the broken circuits of any potential matroid. Let M be a
simple ordered matroid that has ∆ as a broken circuit complex. Assume that Ci ∪ x and
Ci ∪ y are circuits of M. Pick an arbitrary c ∈ Ci. Note that by the circuit elimination
axiom, the set (Ci ∪ {x, y})\{c} is a nonface. Since M is simple, x < y are not parallel.
Thus there is a circuit of M containing {x, y}. Such a circuit has to be equal to Cj ∪ {x}
for some j or Cj ∪ {z} for some j and some other z in the groundset of M. In either case
y ∈ Cj, and hence a vertex of ∆. Hence the number of vertices of M not in ∆ that extend
the broken circuit Cj is at most one, which leads to the inequality f0(I(M)) ≤ f0(∆) + s
as desired.

Note that one cannot drop the dimension assumption from Theorem 1, since

χ̃(I(Ud,d+1))) = 1

for every d, where Ud,d+1 is the uniform matroid of rank d on [d + 1].
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