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On the distribution of random words in a compact
Lie group
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Abstract. Let G be a compact Lie group. Suppose g1, . .., gk are chosen independently
from the Haar measure on G. Let A = U;c[A;, where, A; := {g;} U {g:'}. Let !, be
the uniform measure over all words of length ¢ whose alphabets belong to A. We give
probabilistic bounds on the nearness of a heat kernel smoothening of i/, to a constant
function on G in £2(G). We also give probabilistic bounds on the maximum distance
of a point in G to the support of p';.
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1 Introduction

Let G be a compact n—dimensional Lie group endowed with a left-invariant Riemannian
distance function d. Thus

Vg, x,y € G, d(x,y) =d(gx,gy).

We will denote by C; a constant depending on (G, d) that is greater than 1. Suppose
81,---, 8 are chosen independently from the Haar measure on G. Let A = U;jciyA;,

where, A; := {g;} U{ gi_l}. Let the Heat kernel at x corresponding to Brownian motion
on G with respect to the distance function d started at the origin o0 € G for time ¢ be H;(x).
Let Vﬁt be the uniform measure over all words of length ¢ whose alphabets belong to A.

For the case G = SU,, Bourgain and Gamburd proved [3] the existence of a spectral
gap provided the entries of the generators are algebraic and the subgroup they generate
is dense in G. There is a long line of work that this relates to, touching upon approximate
subgroups and pseudorandomness, for which we direct the reader to the references in
[3]. The question of a spectral gap when G is SU; for random generators of the kind we
consider was reiterated by Bourgain and Gamburd in [2], being first raised by Lubotzky,
Philips and Sarnak [8] in 1987 and is still open. In the setting of SU,, our results can be
viewed as addressing a quantitative version of a weak variant of this question.
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Suppose Fy, b, ... are eigenspaces of the Laplacian Lg on G corresponding to eigen-

values 0 = Apg < A1 < Ay < .... Let fil,. . .,fl.],... be an orthonormal basis for F;, for
each i € IN. The Laplacian L¢ is a second order differential operator, which for all twice
differentiable functions f, satisfies H; * f = e'l¢f. G acts on functions in £3(G) via Ty,
the translation operator,

Tof(x) = f(g™'x).

Thus each F; is a representation of G, though not necessarily an irreducible representa-
tion.

As stated in the introduction, let the Heat kernel at x corresponding to Brownian
motion on G with respect to the distance function d started at the origin 0 € G for time
t be H¢(x). When we wish to change the starting point for the diffusion, we will denote
by H(x,y,t) the probability density of Brownian motion started at x at time zero ending
at y at time ¢. Our first result, Theorem 3.2 relates to equidistribution and gives a lower
bound on the probability that || * Hy — = || £2(c) is less than a specified quantity 27.
Our second result, Theorem 3.4 provides conditions under which the set of all elements
of G which can be expressed as words of length less or equal to ¢ with alphabets in A,
form a 2r—net of G with probability at least 1 — 4. For constant J, both k and ¢ can be
chosen to be less than Cnlog(1/r), where C is a universal constant.

Our main result on equidistribution, Theorem 3.2 immediately implies the following.

Theorem 1.1. Let (G, d) be a tuple consisting of an n dimensional compact Lie group G and a
Riemannian distance function d on it under which the Riemannian volume of G is 1. There exists
a constant Cg depending only on on G and the distance function d on it such that the following

is true. Let i := 2=t 1 be sufficiently small. Let 6 := (Cg /1) exp (—ﬁ) . Then, denoting
by A", the set of all ordered {—tuples with elements in A,

1
Plilg— —— H;o T, <2n| >1-5. 1.1
8¢ £2(G)

Our main result on nets, Theorem 3.4 immediately implies the following.
Theorem 1.2. Let 6 € (0,1] be a real number. Let € be a positive real number less than a

sufficiently small constant depending only on G. Choose

1 1
> il il
k> 12(nln€ —i—ln5)

i.i.d random points {g1,. .., gk} from the Haar measure on G and let
A={g1,8" . 808}
Let ¢ = nlog,(L). Then, with probability at least 1 — 6, A" is an e—net of G.
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2 Analysis on a compact Lie group
The following is a theorem of Minakshisundaram and Pleijel [9, 10].
Theorem 2.1. For each x € G there is an asymptotic expansion

H(x,x,t) ~ t 72 (ag(x) + ay (x)t + ax(x) 2 +...),
t — 0. The a;j are smooth functions on G.

Since G is equipped with a left invariant distance function, the a;(x) are constant

functions. We will use the following theorem of Grigoryan from [6], where it appears as
Theorem 1.1.

Theorem 2.2. Assume that for some points x,y € M and forall t € (0, T),

G
71(t)’

pr(x,x) <

and

C
V4 S 7
Pt(y y) 'YZ(t)

where 71 and 7y, are increasing positive functions on R both satisfying

i(at) _ A')’i(as)

21
7i(t) T 7i(s) 2
forall 0 < t <s < T, for some constants a, A > 1. Then for any C > 4and all t € (0,T),
C d?(x,
pe(x,y) < 2 exp (—%) (2.2)
71(et)12(et) t

for some € = €(a,C) > 0.

It follows from Theorem 2.1 that for some sufficiently small time T > 0, we can
choose 71 (t) = 12(t) = (3)#"/2 for t € (0, T) in Theorem 2.2.
This gives us the following corollary.

Corollary 2.3. For any constant C > 4, there exists T > 0 and Cy depending on G and C so
that forall t € (0, T)

2
r
)

where n is the dimension of G and r is the distance between x and y.

H(x,y,t) < Cit "% exp(—
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Lemma 2.4. Let 7 > 0. We take €,/51n 771” = r. If we choose t = €2, then,
for all y such that
d(x,y) >,

we have
H(x,y,t) < Cgy.

Proof. In Corollary 2.3, we may set C = 5 and T = 1 and ignore the dependence in x
since the distance function is left invariant. For all ¢ < €2 and all y such that

d(x,y) >r,
H(x,y,t) < Cie "(exp(—In ;71”)) (2.3)

]

By Weyl’s law for the eigenvalues of the Laplacian on a Riemannian manifold as
proven by Duistermaat and Guillimin [5], we have the following.

Theorem 2.5.
lim A2 _ vol(By)vol(G)

A—00 ZAI‘S/\ dlmPZ o (271—)7’1 - C2,

where Cy is a constant depending only on volume and dimension n of the Lie group.
This has the following corollary, which is improved upon by Theorem 2.7 below.

Corollary 2.6.

where C3 is a finite constant depending only on the Lie group and its distance function.
The following theorem is due to Donnelly (Theorem 1.2, [4]).

Theorem 2.7. Let M be a compact n—dimensional Riemannian manifold and A its Laplacian
acting on functions. Suppose that the injectivity radius of M is bounded below by c4 and that
the absolute value of the sectional curvature is bounded above by cs. If Ap = —A¢ and A # 0,

then ||¢|le < Cz/\m‘l;l) |p||2- The constant ¢, depends only upon cy, cs, and the dimension n of

M. Moreover the multiplicity m) < C3A%1) where c3 depends only on cy and an upper bound
for the volume of M.
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Hormander [7] proved this result earlier without specifying which geometric param-
eters the constants depended upon. Then, by the Fourier expansion of the heat kernel
into eigenfunctions of the Laplacian,

Hy = ) ) aiifi.

Ai=0 j

n—1
where a;; = e7 Y f;;(0) < e7Mf(cpA;* ), where the fj; for j € [1,dimF] NN, form an
orthonormal basis of F;. Let

Hom(y)= Y, Y aifij

0<A <M j
and
Hiom(y) = Y, Y aifij
0<A<M j
Lemma 2.8. For any M > 0,
1A mll g2 < Cot ™/ (2.5)
Proof. We note that
[ Hepll g2 < 11 Hill c2, (2.6)

because H; y is the image of H; under a projection (with respect to £2) onto a subspace
spanned by the eigenfunctions of the Laplacian corresponding to eigenvalues in the
range (0, M]. Thus it suffices to bound ||H¢|| r2 from above in the appropriate manner.
Choosing 7 = 1 in Lemma 2.4, we see that if we take €1/5In(e~") = r and t = €, then,
for all y such that
d(x,y) >,

we have
H(x,y,t) < Cg.
Let i, denote the Lebesgue measure on R" and u the volume measure on G. We next

need an upper bound on | B(os) H;(y)*u(dy). Note that when ¢ is sufficiently small,

B(o,r) is almost isometric via the exponential map to a Euclidean ball of radius r in
IR". Further, it is known that

\/detgij(expx(rxv)) =1- éRicg(v,v)oc2 +o(a?), (2.7)

where Ric denotes the Ricci tensor, and exp,, the exponential map at x. Since Ric8(v,v)
is bounded above by a finite real number for v on the unit sphere,
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2 n
< Co [ e exp(- L man)
< CGG "
Therefore
|Hel| 2 < Cge™"/? (2.8)
O
Lemma 2.9. For M = 27 where
1 n 1
ko > max (log2 ;,CG +(1+ o(l))zlog2 ?) ,
IH: = Hemll 2 < 77 (2.9)
Proof. 1t follows by the £2—convergence of Fourier series that
n-1
IHt — Homll 2 <Y dim(F)e M (), T ). (2.10)
Ai>M
By Weyl’s law (Theorem 2.5),
n/2
lim A | _ VOl(Bn)V(zl(G) — ol
A—oo0 ZA<)\,-§2%)\ dim F; (27‘[)
Let, for k € IN,
I, = (2%",22"12} . 2.11)

Now, for kg > Cg,

Y clim(Pi)e—Az’f(CZA?1 ) < Y (Z dim(Fi)> sup (CZ?;I: ) (2.12)

2 k>k A€l
/\,’>270 =0 =k

IN

n—1
AT
Co Z ok+1 sup <C2e/\lit ) (2.13)

k>ko A€l
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We see that
n—1
At _ 254
sup )
el \ €M exp(227kt)
< exp( (k+1) _ Z%kt)
2
When
n 6k
> (= -
k= (2> log,
assuming k > 5, we have
K/t 2(k+1)
nj2t = 082 ’
and then, we see that
exp(—(k er D 25ty < 272kt ),
In order to enforce (2.16), it suffices to have
L
log, 6Tk 2
which is implied by
6k 6k
lo — | > 3nlo
logs & (%%) = o
This is equivalent to
n 3n

. (1 _ log, log, %)

log2

which is in turn implied by

n 3n
> = il
kK > > (log2 n ) (1

— (1+0(1)5

6k
t

2

log2

- 2

B log, log, 37n> B

3n

7

log, ?%

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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Therefore, for any
n 3n
kO > CG + (1 + 0(1))5 10g2 T,
n-1 2(—ko—1)
dim(E)e M (oA, T ) < ———
szo ( l) ( 1 ) 1 o (1/2)
/\i>2T

< 2(=ko), (2.24)

It follows from (2.9) that for any 7, by choosing

1 1
ko = maX (logz 5/ CG + (1 + 0(1))7’1 logZ E) 4
and
M 2 22](0/1’1 (225)
we have that

||Ht,M — Ht||£2 <7. (2.26)

3 Equidistribution and an upper bound on the Hausdorff
distance.

Let A(V) denote the collection of self adjoint operators on the finite dimensional Hilbert
space V. For B € A(V), we let || B|| denote the operator norm of B, equal to the largest
absolute value attained by an eigenvalue of A. The cone of non-negative definite operators

A(V) ={B € A(V)|Vv, (Av,v) > 0}

turns A(V) into a poset by the relation A > Bif A — B € A(V).
We next state a matrix Chernoff bound due to Ahlswede and Winter from [1].

Theorem 3.1. Let V be a Hilbert Space of dimension D and let Ay,..., Ay be independent
identically distributed random variables taking values in A(V') with expected value E[A;] =
A > uland A; < 1. Then forall e € [0,1/2],

P 1[Vi;fwzf[m—em (1+e)A]| <2Dex —cpk
ke ’ =2 OP 22 )
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Forany ¢ € G
(Id — Tg) Hy m (3.1)
lies in
Fv:= € F. (3.2)
0<A; <M

Fyr has, by Weyl’s law, a dimension that is bounded above by O(M"/2). We will study
the Markov operator P : Fyy — Fy given by
L (f(x)+ f(gx))
8
P = . 3.3

We know that A = U;A;, where, A; = {g;} U{g; '}. Note that P is the sum of k i.i.d
operators

Y (f(x) + f(gx))

84,

P, : y (3.4)
We see that Vf € Fy;,and 1 <i <k,
EP(f) = (1/2)f, (3.5)
which is equivalent to
EP; = (1/2)1.
By Theorem 3.1, for all € € [0,1/2],
P3P ¢ [ /DL (1 +e)/2)0| < Comexp ZEK 36)
=1 ' = Plamz) '
Setting € = 1/2 and substituting for M, we see that
P lip- ¢ [(1/4), (3/4)1]| < (C M”/Z) exp [ —~ (3.7)
ke ’ =@ P\16in2)" ’

Let the map x — gx be denoted by T. It follows that

r VfE ﬁM,

1
ﬂZfng

geA

£2

< (1/2)|f,cz] >1- (CoM™?) exp (@ﬁz) -
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Iterating the above inequality ¢ times, we observe that

P \VfeFu | =7 3 foTe| <@/ Nflle| 215,
a R
where
—k
. n/2
6= (CgM > exp (16ln2) . (3.8)

Choosing f = H; p, we see that

21_5/

P (2k) Y HmoT,|| < (1/2)% )| Ay | g2
geA‘ L2

By the above, and Lemmas 2.8 and 2.9, we see that

[l

Thus, we see that

|

We derive from this, the following theorem on the equidistribution of A’

" Let§ = (CG/n)exp< 161n2) Then,

;Y HioT,

<7y +2ft”/4] >1-0.
L2

1
volG (2k) Z HeoTg

<n+ zﬂt"/4] >1—06. (3.9)
EZ

+o(1

Theorem 3.2. Let 2=+ 1 <n<2° Cth

|

Proof. This follows from (3.9) on setting M = 17_% and substituting in (3.8). O

Lemma 3.3. Suppose €1/5In S—,? =1, and t = €2 are sufficiently small. If

¥
— HioT,
volG (2k)£’ gﬂ g

< 2;7] >1-04. (3.10)
EZ

1¢ 1
< n
volG 2k Z HioTgl) < y/vol(Bu)r (2v01(c)>’

[r2

then, A" is a 2r-net of G.
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Proof. Suppose A’ is not a 2r-net of G. Then, there exists an element § such that
d(g, AY) > 2r. Let B(r,§) be the metric ball of radius r centered at §. Then, for any
g € A%, B(r,g) NB(r,§) = @. Applying Lemma 2.4 we see that H;(g~ly) < 5.1z for all
g € Al and all y € B(r,§). Therefore,

1

H; o To(
gg[ s 3V01G
for all all y € B(r,§). This implies that

lc Z HioT, > 4/vol(B(0,r)) 2 (3.11)

volG 2k to s © ’ 3vol(G) '

L2

> 4/ vol(By,)r" 1 (3.12)

" 2vol(G) )’ '
which is a contradiction. O]

Theorem 3.4. Suppose €4/51n CG = r. Choose

k> Co+ (16m2)((1 —I—o(l))nln% + ln%)

i.i.d random points {g1, ..., gk} from the Haar measure on G and let

A={g1.8" - 88}
Let X be the set of all elements of G which can be expressed as words of length less or equal to
¢ with alphabets in A, where £ > Cg + glogz(é) . Then, with probability at least 1 — 6, for
every element g € G there is x € X such that d(g,x) < 2r.

Proof. Let y =2~ Coe1+0()m in Temma 2.9. We set log, M = C¢ +10g, oy +o 7, by enforc-
ing an equality in (2.25). Taking logarithms on both sides of (3.8), we see that

1 k
R z (140(1)) _
ln5 CG+ lnt Teln’

This fixes the lower bound for k in the statement of the corollary. In order to use (3.9)
in conjunction with Lemma 3.3, we see that it suffices to set 2=/t~ 4 to a value less than
/2, because for small ¢, the value of 7 that we have chosen is significantly smaller than
/2. This shows that the theorem holds for any ¢ greater or equal to 5 log, % +Cg. O
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