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On the distribution of random words in a compact
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Abstract. Let G be a compact Lie group. Suppose g1, . . . , gk are chosen independently
from the Haar measure on G. Let A = ∪i∈[k]Ai, where, Ai := {gi} ∪ {g−1

i }. Let µ`
A be

the uniform measure over all words of length ` whose alphabets belong to A. We give
probabilistic bounds on the nearness of a heat kernel smoothening of µ`

A to a constant
function on G in L2(G). We also give probabilistic bounds on the maximum distance
of a point in G to the support of µ`

A.
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1 Introduction

Let G be a compact n−dimensional Lie group endowed with a left-invariant Riemannian
distance function d. Thus

∀g, x, y ∈ G, d(x, y) = d(gx, gy).

We will denote by CG a constant depending on (G, d) that is greater than 1. Suppose
g1, . . . , gk are chosen independently from the Haar measure on G. Let A = ∪i∈[k]Ai,
where, Ai := {gi} ∪ {g−1

i }. Let the Heat kernel at x corresponding to Brownian motion
on G with respect to the distance function d started at the origin o ∈ G for time t be Ht(x).
Let µ`

A be the uniform measure over all words of length ` whose alphabets belong to A.
For the case G = SUn, Bourgain and Gamburd proved [3] the existence of a spectral

gap provided the entries of the generators are algebraic and the subgroup they generate
is dense in G. There is a long line of work that this relates to, touching upon approximate
subgroups and pseudorandomness, for which we direct the reader to the references in
[3]. The question of a spectral gap when G is SU2 for random generators of the kind we
consider was reiterated by Bourgain and Gamburd in [2], being first raised by Lubotzky,
Philips and Sarnak [8] in 1987 and is still open. In the setting of SU2, our results can be
viewed as addressing a quantitative version of a weak variant of this question.
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Suppose F1, F2, . . . are eigenspaces of the Laplacian LG on G corresponding to eigen-
values 0 = λ0 < λ1 < λ2 < . . . . Let f 1

i , . . . , f j
i , . . . be an orthonormal basis for Fi, for

each i ∈N. The Laplacian LG is a second order differential operator, which for all twice
differentiable functions f , satisfies Ht ∗ f = etLG f . G acts on functions in L2(G) via Tg,
the translation operator,

Tg f (x) = f (g−1x).

Thus each Fi is a representation of G, though not necessarily an irreducible representa-
tion.

As stated in the introduction, let the Heat kernel at x corresponding to Brownian
motion on G with respect to the distance function d started at the origin o ∈ G for time
t be Ht(x). When we wish to change the starting point for the diffusion, we will denote
by H(x, y, t) the probability density of Brownian motion started at x at time zero ending
at y at time t. Our first result, Theorem 3.2 relates to equidistribution and gives a lower
bound on the probability that ‖µ`

A ∗ Ht − 1
volG‖L2(G) is less than a specified quantity 2η.

Our second result, Theorem 3.4 provides conditions under which the set of all elements
of G which can be expressed as words of length less or equal to ` with alphabets in A,
form a 2r−net of G with probability at least 1− δ. For constant δ, both k and ` can be
chosen to be less than Cn log(1/r), where C is a universal constant.

Our main result on equidistribution, Theorem 3.2 immediately implies the following.

Theorem 1.1. Let (G, d) be a tuple consisting of an n dimensional compact Lie group G and a
Riemannian distance function d on it under which the Riemannian volume of G is 1. There exists
a constant CG depending only on on G and the distance function d on it such that the following
is true. Let η := 2−`t−

n
4 be sufficiently small. Let δ := (CG/η) exp

(
− k

16 ln 2

)
. Then, denoting

by A`, the set of all ordered `−tuples with elements in A,

P


∥∥∥∥∥∥1G −

1
(2k)` ∑

g∈A`

Ht ◦ Tg

∥∥∥∥∥∥
L2(G)

≤ 2η

 ≥ 1− δ. (1.1)

Our main result on nets, Theorem 3.4 immediately implies the following.

Theorem 1.2. Let δ ∈ (0, 1] be a real number. Let ε be a positive real number less than a
sufficiently small constant depending only on G. Choose

k ≥ 12(n ln
1
ε
+ ln

1
δ
)

i.i.d random points {g1, . . . , gk} from the Haar measure on G and let

A = {g1, g−1
1 , . . . , gk, g−1

k }.

Let ` = n log2(
1
ε ). Then, with probability at least 1− δ, A` is an ε−net of G.
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2 Analysis on a compact Lie group

The following is a theorem of Minakshisundaram and Pleijel [9, 10].

Theorem 2.1. For each x ∈ G there is an asymptotic expansion

H(x, x, t) ∼ t−n/2(a0(x) + a1(x)t + a2(x)t2 + . . . ),

t→ 0. The aj are smooth functions on G.

Since G is equipped with a left invariant distance function, the aj(x) are constant
functions. We will use the following theorem of Grigoryan from [6], where it appears as
Theorem 1.1.

Theorem 2.2. Assume that for some points x, y ∈ M and for all t ∈ (0, T),

pt(x, x) ≤ C1

γ1(t)
,

and
pt(y, y) ≤ C1

γ2(t)
,

where γ1 and γ2 are increasing positive functions on R+ both satisfying

γi(at)
γi(t)

≤ A
γi(as)
γi(s)

(2.1)

for all 0 < t ≤ s < T, for some constants a, A > 1. Then for any C > 4 and all t ∈ (0, T),

pt(x, y) ≤ C2√
γ1(εt)γ2(εt)

exp
(
−d2(x, y)

Ct

)
(2.2)

for some ε = ε(a, C) > 0.

It follows from Theorem 2.1 that for some sufficiently small time T > 0, we can
choose γ1(t) = γ2(t) = (1

2)t
n/2 for t ∈ (0, T) in Theorem 2.2.

This gives us the following corollary.

Corollary 2.3. For any constant C > 4, there exists T > 0 and C1 depending on G and C so
that for all t ∈ (0, T)

H(x, y, t) ≤ C1t−n/2 exp(− r2

Ct
)

where n is the dimension of G and r is the distance between x and y.
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Lemma 2.4. Let η > 0. We take ε
√

5 ln 1
ηεn = r. If we choose t = ε2, then,

for all y such that
d(x, y) > r,

we have
H(x, y, t) < CGη.

Proof. In Corollary 2.3, we may set C = 5 and T = 1 and ignore the dependence in x
since the distance function is left invariant. For all t ≤ ε2 and all y such that

d(x, y) > r,

H(x, y, t) < C1ε−n(exp(− ln
1

ηεn )) (2.3)

< C1η. (2.4)

By Weyl’s law for the eigenvalues of the Laplacian on a Riemannian manifold as
proven by Duistermaat and Guillimin [5], we have the following.

Theorem 2.5.

lim
λ→∞

λn/2

∑λi≤λ dim Fi
=

vol(Bn)vol(G)

(2π)n =: C2,

where C2 is a constant depending only on volume and dimension n of the Lie group.

This has the following corollary, which is improved upon by Theorem 2.7 below.

Corollary 2.6.

sup
i≥1

dim Fi

λn/2
i

= C3,

where C3 is a finite constant depending only on the Lie group and its distance function.

The following theorem is due to Donnelly (Theorem 1.2, [4]).

Theorem 2.7. Let M be a compact n−dimensional Riemannian manifold and ∆ its Laplacian
acting on functions. Suppose that the injectivity radius of M is bounded below by c4 and that
the absolute value of the sectional curvature is bounded above by c5. If ∆φ = −λφ and λ 6= 0,

then ‖φ‖∞ ≤ c2λ
(n−1)

4 ‖φ‖2. The constant c2 depends only upon c4, c5, and the dimension n of

M. Moreover the multiplicity mλ ≤ c3λ
(n−1)

2 where c3 depends only on c2 and an upper bound
for the volume ofM.
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Hörmander [7] proved this result earlier without specifying which geometric param-
eters the constants depended upon. Then, by the Fourier expansion of the heat kernel
into eigenfunctions of the Laplacian,

Ht = ∑
λi≥0

∑
j

aij fij.

where aij = e−λit fij(0) ≤ e−λit(c2λ
n−1

4
i ), where the fij for j ∈ [1, dim Fi] ∩N, form an

orthonormal basis of Fi. Let

H̃t,M(y) = ∑
0<λi≤M

∑
j

aij fij,

and
Ht,M(y) = ∑

0≤λi≤M
∑

j
aij fij,

Lemma 2.8. For any M > 0,

‖H̃t,M‖L2 < CGt−n/4 (2.5)

Proof. We note that

‖H̃t,M‖L2 ≤ ‖Ht‖L2 , (2.6)

because H̃t,M is the image of Ht under a projection (with respect to L2) onto a subspace
spanned by the eigenfunctions of the Laplacian corresponding to eigenvalues in the
range (0, M]. Thus it suffices to bound ‖Ht‖L2 from above in the appropriate manner.
Choosing η = 1 in Lemma 2.4, we see that if we take ε

√
5 ln(ε−n) = r and t = ε2, then,

for all y such that
d(x, y) > r,

we have
H(x, y, t) < CG.

Let µn denote the Lebesgue measure on Rn and µ the volume measure on G. We next
need an upper bound on

∫
B(o,r) Ht(y)2µ(dy). Note that when ε is sufficiently small,

B(o, r) is almost isometric via the exponential map to a Euclidean ball of radius r in
Rn. Further, it is known that√

det gij(expx(αv)) = 1− 1
6

Ricg(v, v)α2 + o(α2), (2.7)

where Ric denotes the Ricci tensor, and expx, the exponential map at x. Since Ricg(v, v)
is bounded above by a finite real number for v on the unit sphere,
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∫
B(o,r)

Ht(y)2µ(dy) ≤ CG

(∫
Rn

ε−n(exp(−|y|
2

5t
))µn(dy)

)
≤ CG

(∫
R

ε−1(exp(−|y|
2

5t
))µ1(dy)

)n

≤ CGε−n.

Therefore

‖Ht‖L2 ≤ CGε−n/2. (2.8)

Lemma 2.9. For M = 2
2k0
n where

k0 ≥ max
(

log2
1
η

, CG + (1 + o(1))
n
2

log2
1
t

)
,

‖Ht − Ht,M‖L2 ≤ η. (2.9)

Proof. It follows by the L2−convergence of Fourier series that

‖Ht − Ht,M‖L2 ≤ ∑
λi≥M

dim(Fi)e−λit(c2λ
n−1

4
i ). (2.10)

By Weyl’s law (Theorem 2.5),

lim
λ→∞

λn/2

∑
λ<λi≤2

2
n λ

dim Fi
=

vol(Bn)vol(G)

(2π)n =: C−1
2 .

Let, for k ∈N,

Ik =
(

2
2k
n , 2

2k+2
n

]
. (2.11)

Now, for k0 > CG,

∑
λi>2

2k0
n

dim(Fi)e−λit(c2λ
n−1

4
i ) ≤ ∑

k≥k0

(
∑

λi∈Ik

dim(Fi)

)
sup
λi∈Ik

 c2λ
n−1

4
i

eλit

 (2.12)

≤ C2 ∑
k≥k0

2k+1 sup
λi∈Ik

 c2λ
n−1

4
i

eλit

 (2.13)
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We see that

sup
λi∈Ik

λ
n−1

4
i

eλit

 <
2
(k+1)

2

exp(2
2k
n t)

(2.14)

< exp(
(k + 1)

2
− 2

2k
n t). (2.15)

When

k ≥
(n

2

)
log2

6k
t

, (2.16)

assuming k > 5, we have

k/t
n/2t

≥ log2

5
2(k + 1)

t
, (2.17)

and then, we see that

exp(
(k + 1)

2
− 2

2k
n t) < 2−2(k+1). (2.18)

In order to enforce (2.16), it suffices to have

k
log2

6k
t

≥ n
2

, (2.19)

which is implied by

6k
log2

6k
t

log2

(
6k

t log2
6k
t

)
≥ 3n log2

(
3n
t

)
. (2.20)

This is equivalent to

k

(
1−

log2 log2
6k
t

log2
6k
t

)
≥ n

2
log2

(
3n
t

)
, (2.21)

which is in turn implied by

k ≥ n
2

(
log2

3n
t

)(
1−

log2 log2
3n
t

log2
3n
t

)−1

(2.22)

= (1 + o(1))
n
2

log2
3n
t

. (2.23)
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Therefore, for any

k0 > CG + (1 + o(1))
n
2

log2
3n
t

,

∑
λi>2

2k0
n

dim(Fi)e−λit(c2λ
n−1

4
i ) <

2(−k0−1)

1− (1/2)
< 2(−k0). (2.24)

It follows from (2.9) that for any η, by choosing

k0 = max
(

log2
1
η

, CG + (1 + o(1))n log2
1
ε

)
,

and

M ≥ 22k0/n (2.25)

we have that

‖H̃t,M − Ht‖L2 < η. (2.26)

3 Equidistribution and an upper bound on the Hausdorff
distance.

Let A(V) denote the collection of self adjoint operators on the finite dimensional Hilbert
space V. For B ∈ A(V), we let ‖B‖ denote the operator norm of B, equal to the largest
absolute value attained by an eigenvalue of A. The cone of non-negative definite operators

Λ(V) = {B ∈ A(V)|∀v, 〈Av, v〉 ≥ 0}

turns A(V) into a poset by the relation A ≥ B if A− B ∈ Λ(V).
We next state a matrix Chernoff bound due to Ahlswede and Winter from [1].

Theorem 3.1. Let V be a Hilbert Space of dimension D and let A1, . . . , Ak be independent
identically distributed random variables taking values in Λ(V) with expected value E[Ai] =
A ≥ µI and Ai ≤ I. Then for all ε ∈ [0, 1/2],

P

[
1
k

k

∑
i=1

Ai 6∈ [(1− ε)A, (1 + ε)A]

]
≤ 2D exp

(
−ε2µk
2 ln 2

)
.
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For any g ∈ G

(Id− Tg)H̃t,M (3.1)

lies in

F̃M :=
⊕

0<λi≤M

Fi. (3.2)

F̃M has, by Weyl’s law, a dimension that is bounded above by O(Mn/2). We will study
the Markov operator P : F̃M −→ F̃M given by

P( f )(x) :=
∑

g∈A
( f (x) + f (gx))

2|A| . (3.3)

We know that A = ∪iAi, where, Ai = {gi} ∪ {g−1
i }. Note that P is the sum of k i.i.d

operators

Pi :=
∑

g∈Ai

( f (x) + f (gx))

4
. (3.4)

We see that ∀ f ∈ F̃M, and 1 ≤ i ≤ k,

EPi( f ) = (1/2) f , (3.5)

which is equivalent to
EPi = (1/2)I.

By Theorem 3.1, for all ε ∈ [0, 1/2],

P

[
1
k

k

∑
i=1

Pi 6∈ [((1− ε)/2)I, ((1 + ε)/2)I]

]
≤ CG Mn/2 exp

(
−ε2k
4 ln 2

)
. (3.6)

Setting ε = 1/2 and substituting for M, we see that

P

[
1
k

k

∑
i=1

Pi 6∈ [(1/4)I, (3/4)I]

]
≤
(

CG Mn/2
)

exp
(
−k

16 ln 2

)
. (3.7)

Let the map x 7→ gx be denoted by Tg. It follows that

P

∀ f ∈ F̃M,

∥∥∥∥∥ 1
2k ∑

g∈A
f ◦ Tg

∥∥∥∥∥
L2

≤ (1/2)‖ f ‖L2

 ≥ 1−
(

CG Mn/2
)

exp
(
−k

16 ln 2

)
.
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Iterating the above inequality ` times, we observe that

P

∀ f ∈ F̃M,

∥∥∥∥∥∥ 1
(2k)` ∑

g∈A`

f ◦ Tg

∥∥∥∥∥∥
L2

≤ (1/2)`‖ f ‖L2

 ≥ 1− δ,

where

δ :=
(

CG Mn/2
)

exp
(
−k

16 ln 2

)
. (3.8)

Choosing f = H̃t,M, we see that

P

∥∥∥∥∥∥ 1
(2k)` ∑

g∈A`

H̃t,M ◦ Tg

∥∥∥∥∥∥
L2

≤ (1/2)`‖H̃t,M‖L2

 ≥ 1− δ,

By the above, and Lemmas 2.8 and 2.9, we see that

P

∥∥∥∥∥∥ 1
(2k)` ∑

g∈A`

H̃t ◦ Tg

∥∥∥∥∥∥
L2

≤ η + 2−`t−n/4

 ≥ 1− δ.

Thus, we see that

P

∥∥∥∥∥∥ 1G

volG
− 1

(2k)` ∑
g∈A`

Ht ◦ Tg

∥∥∥∥∥∥
L2

≤ η + 2−`t−n/4

 ≥ 1− δ. (3.9)

We derive from this, the following theorem on the equidistribution of A`.

Theorem 3.2. Let 2−`t−
n
4 ≤ η ≤ 2−CG t

(1+o(1))n
2 . Let δ = (CG/η) exp

(
− k

16 ln 2

)
. Then,

P

∥∥∥∥∥∥ 1G

volG
− 1

(2k)` ∑
g∈A`

Ht ◦ Tg

∥∥∥∥∥∥
L2

≤ 2η

 ≥ 1− δ. (3.10)

Proof. This follows from (3.9) on setting M = η−
2
n and substituting in (3.8).

Lemma 3.3. Suppose ε
√

5 ln CG
εn = r, and t = ε2 are sufficiently small. If∥∥∥∥∥∥ 1G

volG
− 1

(2k)` ∑
g∈A`

Ht ◦ Tg

∥∥∥∥∥∥
L2

≤
√

vol(Bn)rn
(

1
2vol(G)

)
,

then, A` is a 2r-net of G.
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Proof. Suppose A` is not a 2r-net of G. Then, there exists an element g̃ such that
d(g̃,A`) > 2r. Let B(r, g̃) be the metric ball of radius r centered at g̃. Then, for any
g ∈ A`, B(r, g) ∩ B(r, g̃) = ∅. Applying Lemma 2.4 we see that Ht(g−1y) < 1

3volG for all
g ∈ A` and all y ∈ B(r, g̃). Therefore,

1
(2k)` ∑

g∈A`

Ht ◦ Tg(y) <
1

3volG

for all all y ∈ B(r, g̃). This implies that∥∥∥∥∥∥ 1G

volG
− 1

(2k)` ∑
g∈A`

Ht ◦ Tg

∥∥∥∥∥∥
L2

>
√

vol(B(0, r))
(

2
3vol(G)

)
(3.11)

>
√

vol(Bn)rn
(

1
2vol(G)

)
, (3.12)

which is a contradiction.

Theorem 3.4. Suppose ε
√

5 ln CG
εn = r. Choose

k ≥ CG + (16 ln 2)((1 + o(1))n ln
1
ε
+ ln

1
δ
)

i.i.d random points {g1, . . . , gk} from the Haar measure on G and let

A = {g1, g−1
1 , . . . , gk, g−1

k }.
Let X be the set of all elements of G which can be expressed as words of length less or equal to
` with alphabets in A, where ` ≥ CG + n

2 log2(
1
εr ) . Then, with probability at least 1− δ, for

every element g ∈ G there is x ∈ X such that d(g, x) < 2r.

Proof. Let η = 2−CG ε(1+o(1))n in Lemma 2.9. We set log2 M = CG + log2
1

t1+o(1) , by enforc-
ing an equality in (2.25). Taking logarithms on both sides of (3.8), we see that

− ln
1
δ
= CG +

n
2

ln t−(1+o(1)) − k
16 ln 2

.

This fixes the lower bound for k in the statement of the corollary. In order to use (3.9)
in conjunction with Lemma 3.3, we see that it suffices to set 2−`t−

n
4 to a value less than

rn/2, because for small ε, the value of η that we have chosen is significantly smaller than
rn/2. This shows that the theorem holds for any ` greater or equal to n

2 log2
1
εr + CG.
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