On the distribution of random words in a compact Lie group

Hariharan Narayanan*1

${ }^{1}$ School of Technology and Computer Science
Tata Institute of Fundamental Research, Mumbai, India

Abstract

Let G be a compact Lie group. Suppose g_{1}, \ldots, g_{k} are chosen independently from the Haar measure on G. Let $\mathcal{A}=\cup_{i \in[k]} \mathcal{A}_{i}$, where, $\mathcal{A}_{i}:=\left\{g_{i}\right\} \cup\left\{g_{i}^{-1}\right\}$. Let $\mu_{\mathcal{A}}^{\ell}$ be the uniform measure over all words of length ℓ whose alphabets belong to \mathcal{A}. We give probabilistic bounds on the nearness of a heat kernel smoothening of $\mu_{\mathcal{A}}^{\ell}$ to a constant function on G in $\mathcal{L}^{2}(G)$. We also give probabilistic bounds on the maximum distance of a point in G to the support of $\mu_{\mathcal{A}}^{\ell}$.

Keywords: Random generation, Lie groups

1 Introduction

Let G be a compact n-dimensional Lie group endowed with a left-invariant Riemannian distance function d. Thus

$$
\forall g, x, y \in G, d(x, y)=d(g x, g y)
$$

We will denote by C_{G} a constant depending on (G, d) that is greater than 1 . Suppose g_{1}, \ldots, g_{k} are chosen independently from the Haar measure on G. Let $\mathcal{A}=\cup_{i \in[k]} \mathcal{A}_{i}$, where, $\mathcal{A}_{i}:=\left\{g_{i}\right\} \cup\left\{g_{i}^{-1}\right\}$. Let the Heat kernel at x corresponding to Brownian motion on G with respect to the distance function d started at the origin $o \in G$ for time t be $H_{t}(x)$. Let $\mu_{\mathcal{A}}^{\ell}$ be the uniform measure over all words of length ℓ whose alphabets belong to \mathcal{A}.

For the case $G=S U_{n}$, Bourgain and Gamburd proved [3] the existence of a spectral gap provided the entries of the generators are algebraic and the subgroup they generate is dense in G. There is a long line of work that this relates to, touching upon approximate subgroups and pseudorandomness, for which we direct the reader to the references in [3]. The question of a spectral gap when G is $S U_{2}$ for random generators of the kind we consider was reiterated by Bourgain and Gamburd in [2], being first raised by Lubotzky, Philips and Sarnak [8] in 1987 and is still open. In the setting of $S U_{2}$, our results can be viewed as addressing a quantitative version of a weak variant of this question.

[^0]Suppose F_{1}, F_{2}, \ldots are eigenspaces of the Laplacian L_{G} on G corresponding to eigenvalues $0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\ldots$ Let $f_{i}^{1}, \ldots, f_{i}^{j}, \ldots$ be an orthonormal basis for F_{i}, for each $i \in \mathbb{N}$. The Laplacian L_{G} is a second order differential operator, which for all twice differentiable functions f, satisfies $H_{t} * f=e^{t L_{G}} f$. G acts on functions in $\mathcal{L}^{2}(G)$ via T_{g}, the translation operator,

$$
T_{g} f(x)=f\left(g^{-1} x\right)
$$

Thus each F_{i} is a representation of G, though not necessarily an irreducible representation.

As stated in the introduction, let the Heat kernel at x corresponding to Brownian motion on G with respect to the distance function d started at the origin $o \in G$ for time t be $H_{t}(x)$. When we wish to change the starting point for the diffusion, we will denote by $H(x, y, t)$ the probability density of Brownian motion started at x at time zero ending at y at time t. Our first result, Theorem 3.2 relates to equidistribution and gives a lower bound on the probability that $\left\|\mu_{\mathcal{A}}^{\ell} * H_{t}-\frac{1}{\operatorname{volG}}\right\|_{\mathcal{L}^{2}(G)}$ is less than a specified quantity 2η. Our second result, Theorem 3.4 provides conditions under which the set of all elements of G which can be expressed as words of length less or equal to ℓ with alphabets in \mathcal{A}, form a $2 r$-net of G with probability at least $1-\delta$. For constant δ, both k and ℓ can be chosen to be less than $C n \log (1 / r)$, where C is a universal constant.

Our main result on equidistribution, Theorem 3.2 immediately implies the following.
Theorem 1.1. Let (G, d) be a tuple consisting of an n dimensional compact Lie group G and a Riemannian distance function d on it under which the Riemannian volume of G is 1 . There exists a constant C_{G} depending only on on G and the distance function d on it such that the following is true. Let $\eta:=2^{-\ell} t^{-\frac{n}{4}}$ be sufficiently small. Let $\delta:=\left(C_{G} / \eta\right) \exp \left(-\frac{k}{16 \ln 2}\right)$. Then, denoting by \mathcal{A}^{ℓ}, the set of all ordered ℓ-tuples with elements in \mathcal{A},

$$
\begin{equation*}
\mathbb{P}\left[\left\|1_{G}-\frac{1}{(2 k)^{\ell}} \sum_{g \in \mathcal{A}^{\ell}} H_{t} \circ T_{g}\right\|_{\mathcal{L}^{2}(G)} \leq 2 \eta\right] \geq 1-\delta . \tag{1.1}
\end{equation*}
$$

Our main result on nets, Theorem 3.4 immediately implies the following.
Theorem 1.2. Let $\delta \in(0,1]$ be a real number. Let ϵ be a positive real number less than a sufficiently small constant depending only on G. Choose

$$
k \geq 12\left(n \ln \frac{1}{\epsilon}+\ln \frac{1}{\delta}\right)
$$

i.i.d random points $\left\{g_{1}, \ldots, g_{k}\right\}$ from the Haar measure on G and let

$$
\mathcal{A}=\left\{g_{1}, g_{1}^{-1}, \ldots, g_{k}, g_{k}^{-1}\right\}
$$

Let $\ell=n \log _{2}\left(\frac{1}{\epsilon}\right)$. Then, with probability at least $1-\delta, \mathcal{A}^{\ell}$ is an $\epsilon-$ net of G.

2 Analysis on a compact Lie group

The following is a theorem of Minakshisundaram and Pleijel [9, 10].
Theorem 2.1. For each $x \in G$ there is an asymptotic expansion

$$
H(x, x, t) \sim t^{-n / 2}\left(a_{0}(x)+a_{1}(x) t+a_{2}(x) t^{2}+\ldots\right)
$$

$t \rightarrow 0$. The a_{j} are smooth functions on G.
Since G is equipped with a left invariant distance function, the $a_{j}(x)$ are constant functions. We will use the following theorem of Grigoryan from [6], where it appears as Theorem 1.1.

Theorem 2.2. Assume that for some points $x, y \in M$ and for all $t \in(0, T)$,

$$
p_{t}(x, x) \leq \frac{C_{1}}{\gamma_{1}(t)^{\prime}}
$$

and

$$
p_{t}(y, y) \leq \frac{C_{1}}{\gamma_{2}(t)}
$$

where γ_{1} and γ_{2} are increasing positive functions on \mathbb{R}_{+}both satisfying

$$
\begin{equation*}
\frac{\gamma_{i}(a t)}{\gamma_{i}(t)} \leq A \frac{\gamma_{i}(a s)}{\gamma_{i}(s)} \tag{2.1}
\end{equation*}
$$

for all $0<t \leq s<T$, for some constants $a, A>1$. Then for any $C>4$ and all $t \in(0, T)$,

$$
\begin{equation*}
p_{t}(x, y) \leq \frac{C_{2}}{\sqrt{\gamma_{1}(\epsilon t) \gamma_{2}(\epsilon t)}} \exp \left(-\frac{d^{2}(x, y)}{C t}\right) \tag{2.2}
\end{equation*}
$$

for some $\epsilon=\epsilon(a, C)>0$.
It follows from Theorem 2.1 that for some sufficiently small time $T>0$, we can choose $\gamma_{1}(t)=\gamma_{2}(t)=\left(\frac{1}{2}\right) t^{n / 2}$ for $t \in(0, T)$ in Theorem 2.2.

This gives us the following corollary.
Corollary 2.3. For any constant $C>4$, there exists $T>0$ and C_{1} depending on G and C so that for all $t \in(0, T)$

$$
H(x, y, t) \leq C_{1} t^{-n / 2} \exp \left(-\frac{r^{2}}{C t}\right)
$$

where n is the dimension of G and r is the distance between x and y.

Lemma 2.4. Let $\eta>0$. We take $\epsilon \sqrt{5 \ln \frac{1}{\eta \epsilon^{n}}}=r$. If we choose $t=\epsilon^{2}$, then, for all y such that

$$
d(x, y)>r,
$$

we have

$$
H(x, y, t)<C_{G} \eta .
$$

Proof. In Corollary 2.3, we may set $C=5$ and $T=1$ and ignore the dependence in x since the distance function is left invariant. For all $t \leq \epsilon^{2}$ and all y such that

$$
\begin{align*}
& d(x, y)>r \\
H(x, y, t)< & C_{1} \epsilon^{-n}\left(\exp \left(-\ln \frac{1}{\eta \epsilon^{n}}\right)\right) \tag{2.3}\\
< & C_{1} \eta \tag{2.4}
\end{align*}
$$

By Weyl's law for the eigenvalues of the Laplacian on a Riemannian manifold as proven by Duistermaat and Guillimin [5], we have the following.

Theorem 2.5.

$$
\lim _{\lambda \rightarrow \infty} \frac{\lambda^{n / 2}}{\sum_{\lambda_{i} \leq \lambda} \operatorname{dim} F_{i}}=\frac{\operatorname{vol}\left(B_{n}\right) \operatorname{vol}(G)}{(2 \pi)^{n}}=: C_{2}
$$

where C_{2} is a constant depending only on volume and dimension n of the Lie group.
This has the following corollary, which is improved upon by Theorem 2.7 below.
Corollary 2.6.

$$
\sup _{i \geq 1} \frac{\operatorname{dim} F_{i}}{\lambda_{i}^{n / 2}}=C_{3}
$$

where C_{3} is a finite constant depending only on the Lie group and its distance function.
The following theorem is due to Donnelly (Theorem 1.2, [4]).
Theorem 2.7. Let M be a compact n-dimensional Riemannian manifold and Δ its Laplacian acting on functions. Suppose that the injectivity radius of \mathcal{M} is bounded below by c_{4} and that the absolute value of the sectional curvature is bounded above by c_{5}. If $\Delta \phi=-\lambda \phi$ and $\lambda \neq 0$, then $\|\phi\|_{\infty} \leq c_{2} \lambda^{\frac{(n-1)}{4}}\|\phi\|_{2}$. The constant c_{2} depends only upon c_{4}, c_{5}, and the dimension n of \mathcal{M}. Moreover the multiplicity $m_{\lambda} \leq c_{3} \lambda^{\frac{(n-1)}{2}}$ where c_{3} depends only on c_{2} and an upper bound for the volume of \mathcal{M}.

Hörmander [7] proved this result earlier without specifying which geometric parameters the constants depended upon. Then, by the Fourier expansion of the heat kernel into eigenfunctions of the Laplacian,

$$
H_{t}=\sum_{\lambda_{i} \geq 0} \sum_{j} a_{i j} f_{i j}
$$

where $a_{i j}=e^{-\lambda_{i} t} f_{i j}(0) \leq e^{-\lambda_{i} t}\left(c_{2} \lambda_{i}^{\frac{n-1}{4}}\right)$, where the $f_{i j}$ for $j \in\left[1, \operatorname{dim} F_{i}\right] \cap \mathbb{N}$, form an orthonormal basis of F_{i}. Let

$$
\tilde{H}_{t, M}(y)=\sum_{0<\lambda_{i} \leq M} \sum_{j} a_{i j} f_{i j}
$$

and

$$
H_{t, M}(y)=\sum_{0 \leq \lambda_{i} \leq M} \sum_{j} a_{i j} f_{i j},
$$

Lemma 2.8. For any $M>0$,

$$
\begin{equation*}
\left\|\tilde{H}_{t, M}\right\|_{\mathcal{L}^{2}}<C_{G} t^{-n / 4} \tag{2.5}
\end{equation*}
$$

Proof. We note that

$$
\begin{equation*}
\left\|\tilde{H}_{t, M}\right\|_{\mathcal{L}^{2}} \leq\left\|H_{t}\right\|_{\mathcal{L}^{2}} \tag{2.6}
\end{equation*}
$$

because $\tilde{H}_{t, M}$ is the image of H_{t} under a projection (with respect to \mathcal{L}^{2}) onto a subspace spanned by the eigenfunctions of the Laplacian corresponding to eigenvalues in the range $(0, M]$. Thus it suffices to bound $\left\|H_{t}\right\|_{\mathcal{L}^{2}}$ from above in the appropriate manner. Choosing $\eta=1$ in Lemma 2.4, we see that if we take $\epsilon \sqrt{5 \ln \left(\epsilon^{-n}\right)}=r$ and $t=\epsilon^{2}$, then,
for all y such that

$$
d(x, y)>r,
$$

we have

$$
H(x, y, t)<C_{G}
$$

Let μ_{n} denote the Lebesgue measure on \mathbb{R}^{n} and μ the volume measure on G. We next need an upper bound on $\int_{B(o, r)} H_{t}(y)^{2} \mu(d y)$. Note that when ϵ is sufficiently small, $B(o, r)$ is almost isometric via the exponential map to a Euclidean ball of radius r in \mathbb{R}^{n}. Further, it is known that

$$
\begin{equation*}
\sqrt{\operatorname{det} g_{i j}\left(\exp _{x}(\alpha v)\right)}=1-\frac{1}{6} \operatorname{Ric}^{g}(v, v) \alpha^{2}+o\left(\alpha^{2}\right) \tag{2.7}
\end{equation*}
$$

where Ric denotes the Ricci tensor, and $\exp _{x}$, the exponential map at x. Since $\operatorname{Ric}^{g}(v, v)$ is bounded above by a finite real number for v on the unit sphere,

$$
\begin{aligned}
\int_{B(o, r)} H_{t}(y)^{2} \mu(d y) & \leq C_{G}\left(\int_{\mathbb{R}^{n}} \epsilon^{-n}\left(\exp \left(-\frac{|y|^{2}}{5 t}\right)\right) \mu_{n}(d y)\right) \\
& \leq C_{G}\left(\int_{\mathbb{R}} \epsilon^{-1}\left(\exp \left(-\frac{|y|^{2}}{5 t}\right)\right) \mu_{1}(d y)\right)^{n} \\
& \leq C_{G} \epsilon^{-n}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left\|H_{t}\right\|_{\mathcal{L}^{2}} \leq C_{G} \epsilon^{-n / 2} \tag{2.8}
\end{equation*}
$$

Lemma 2.9. For $M=2^{\frac{2 k_{0}}{n}}$ where

$$
\begin{gather*}
k_{0} \geq \max \left(\log _{2} \frac{1}{\eta}, C_{G}+(1+o(1)) \frac{n}{2} \log _{2} \frac{1}{t}\right) \\
\left\|H_{t}-H_{t, M}\right\|_{\mathcal{L}^{2}} \leq \eta \tag{2.9}
\end{gather*}
$$

Proof. It follows by the \mathcal{L}^{2}-convergence of Fourier series that

$$
\begin{equation*}
\left\|H_{t}-H_{t, M}\right\|_{\mathcal{L}^{2}} \leq \sum_{\lambda_{i} \geq M} \operatorname{dim}\left(F_{i}\right) e^{-\lambda_{i} t}\left(c_{2} \lambda_{i}^{\frac{n-1}{4}}\right) \tag{2.10}
\end{equation*}
$$

By Weyl's law (Theorem 2.5),

$$
\lim _{\lambda \rightarrow \infty} \frac{\lambda^{n / 2}}{\sum_{\lambda<\lambda_{i} \leq 2^{\frac{2}{n}} \lambda} \operatorname{dim} F_{i}}=\frac{\operatorname{vol}\left(B_{n}\right) \operatorname{vol}(G)}{(2 \pi)^{n}}=: C_{2}^{-1}
$$

Let, for $k \in \mathbb{N}$,

$$
\begin{equation*}
I_{k}=\left(2^{\frac{2 k}{n}}, 2^{\frac{2 k+2}{n}}\right] \tag{2.11}
\end{equation*}
$$

Now, for $k_{0}>C_{G}$,

$$
\begin{align*}
\sum_{\lambda_{i}>2^{\frac{2 k_{0}}{n}}} \operatorname{dim}\left(F_{i}\right) e^{-\lambda_{i} t}\left(c_{2} \lambda_{i}^{\frac{n-1}{4}}\right) & \leq \sum_{k \geq k_{0}}\left(\sum_{\lambda_{i} \in I_{k}} \operatorname{dim}\left(F_{i}\right)\right) \sup _{\lambda_{i} \in I_{k}}\left(\frac{c_{2} \lambda_{i}^{\frac{n-1}{4}}}{e^{\lambda_{i} t}}\right) \tag{2.12}\\
& \leq C_{2} \sum_{k \geq k_{0}} 2^{k+1} \sup _{\lambda_{i} \in I_{k}}\left(\frac{c_{2} \lambda_{i}^{\frac{n-1}{4}}}{e^{\lambda_{i} t}}\right) \tag{2.13}
\end{align*}
$$

We see that

$$
\begin{align*}
\sup _{\lambda_{i} \in I_{k}}\left(\frac{\lambda_{i}^{\frac{n-1}{4}}}{e^{\lambda_{i} t}}\right) & <\frac{2^{\frac{(k+1)}{2}}}{\exp \left(2^{\frac{2 k}{n}} t\right)} \tag{2.14}\\
& <\exp \left(\frac{(k+1)}{2}-2^{\frac{2 k}{n}} t\right) \tag{2.15}
\end{align*}
$$

When

$$
\begin{equation*}
k \geq\left(\frac{n}{2}\right) \log _{2} \frac{6 k}{t} \tag{2.16}
\end{equation*}
$$

assuming $k>5$, we have

$$
\begin{equation*}
\frac{k / t}{n / 2 t} \geq \log _{2} \frac{\frac{5}{2}(k+1)}{t} \tag{2.17}
\end{equation*}
$$

and then, we see that

$$
\begin{equation*}
\exp \left(\frac{(k+1)}{2}-2^{\frac{2 k}{n}} t\right)<2^{-2(k+1)} \tag{2.18}
\end{equation*}
$$

In order to enforce (2.16), it suffices to have

$$
\begin{equation*}
\frac{k}{\log _{2} \frac{6 k}{t}} \geq \frac{n}{2} \tag{2.19}
\end{equation*}
$$

which is implied by

$$
\begin{equation*}
\frac{6 k}{\log _{2} \frac{6 k}{t}} \log _{2}\left(\frac{6 k}{t \log _{2} \frac{6 k}{t}}\right) \geq 3 n \log _{2}\left(\frac{3 n}{t}\right) \tag{2.20}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
k\left(1-\frac{\log _{2} \log _{2} \frac{6 k}{t}}{\log _{2} \frac{6 k}{t}}\right) \geq \frac{n}{2} \log _{2}\left(\frac{3 n}{t}\right) \tag{2.21}
\end{equation*}
$$

which is in turn implied by

$$
\begin{align*}
k & \geq \frac{n}{2}\left(\log _{2} \frac{3 n}{t}\right)\left(1-\frac{\log _{2} \log _{2} \frac{3 n}{t}}{\log _{2} \frac{3 n}{t}}\right)^{-1} \tag{2.22}\\
& =(1+o(1)) \frac{n}{2} \log _{2} \frac{3 n}{t} \tag{2.23}
\end{align*}
$$

Therefore, for any

$$
\begin{gather*}
k_{0}>C_{G}+(1+o(1)) \frac{n}{2} \log _{2} \frac{3 n}{t} \\
\sum_{\lambda_{i}>2^{\frac{2 k_{0}}{n}}} \operatorname{dim}\left(F_{i}\right) e^{-\lambda_{i} t}\left(c_{2} \lambda_{i}^{\frac{n-1}{4}}\right)<\frac{2^{\left(-k_{0}-1\right)}}{1-(1 / 2)}<2^{\left(-k_{0}\right)} \tag{2.24}
\end{gather*}
$$

It follows from (2.9) that for any η, by choosing

$$
k_{0}=\max \left(\log _{2} \frac{1}{\eta}, C_{G}+(1+o(1)) n \log _{2} \frac{1}{\epsilon}\right)
$$

and

$$
\begin{equation*}
M \geq 2^{2 k_{0} / n} \tag{2.25}
\end{equation*}
$$

we have that

$$
\begin{equation*}
\left\|\tilde{H}_{t, M}-H_{t}\right\|_{\mathcal{L}^{2}}<\eta \tag{2.26}
\end{equation*}
$$

3 Equidistribution and an upper bound on the Hausdorff distance.

Let $A(V)$ denote the collection of self adjoint operators on the finite dimensional Hilbert space V. For $B \in A(V)$, we let $\|B\|$ denote the operator norm of B, equal to the largest absolute value attained by an eigenvalue of A. The cone of non-negative definite operators

$$
\Lambda(V)=\{B \in A(V) \mid \forall v,\langle A v, v\rangle \geq 0\}
$$

turns $A(V)$ into a poset by the relation $A \geq B$ if $A-B \in \Lambda(V)$.
We next state a matrix Chernoff bound due to Ahlswede and Winter from [1].
Theorem 3.1. Let V be a Hilbert Space of dimension D and let A_{1}, \ldots, A_{k} be independent identically distributed random variables taking values in $\Lambda(V)$ with expected value $\mathbb{E}\left[A_{i}\right]=$ $A \geq \mu I$ and $A_{i} \leq I$. Then for all $\epsilon \in[0,1 / 2]$,

$$
\mathbb{P}\left[\frac{1}{k} \sum_{i=1}^{k} A_{i} \notin[(1-\epsilon) A,(1+\epsilon) A]\right] \leq 2 D \exp \left(\frac{-\epsilon^{2} \mu k}{2 \ln 2}\right)
$$

For any $g \in G$

$$
\begin{equation*}
\left(I d-T_{g}\right) \tilde{H}_{t, M} \tag{3.1}
\end{equation*}
$$

lies in

$$
\begin{equation*}
\tilde{F}_{M}:=\bigoplus_{0<\lambda_{i} \leq M} F_{i} \tag{3.2}
\end{equation*}
$$

\tilde{F}_{M} has, by Weyl's law, a dimension that is bounded above by $O\left(M^{n / 2}\right)$. We will study the Markov operator $P: \tilde{F}_{M} \longrightarrow \tilde{F}_{M}$ given by

$$
\begin{equation*}
P(f)(x):=\frac{\sum_{g \in \mathcal{A}}(f(x)+f(g x))}{2|\mathcal{A}|} \tag{3.3}
\end{equation*}
$$

We know that $\mathcal{A}=\cup_{i} \mathcal{A}_{i}$, where, $\mathcal{A}_{i}=\left\{g_{i}\right\} \cup\left\{g_{i}^{-1}\right\}$. Note that P is the sum of k i.i.d operators

$$
\begin{equation*}
P_{i}:=\frac{\sum_{g \in \mathcal{A}_{i}}(f(x)+f(g x))}{4} \tag{3.4}
\end{equation*}
$$

We see that $\forall f \in \tilde{F}_{M}$, and $1 \leq i \leq k$,

$$
\begin{equation*}
\mathbb{E} P_{i}(f)=(1 / 2) f \tag{3.5}
\end{equation*}
$$

which is equivalent to

$$
\mathbb{E} P_{i}=(1 / 2) I .
$$

By Theorem 3.1, for all $\epsilon \in[0,1 / 2]$,

$$
\begin{equation*}
\mathbb{P}\left[\frac{1}{k} \sum_{i=1}^{k} P_{i} \notin[((1-\epsilon) / 2) I,((1+\epsilon) / 2) I]\right] \leq C_{G} M^{n / 2} \exp \left(\frac{-\epsilon^{2} k}{4 \ln 2}\right) \tag{3.6}
\end{equation*}
$$

Setting $\epsilon=1 / 2$ and substituting for M, we see that

$$
\begin{equation*}
\mathbb{P}\left[\frac{1}{k} \sum_{i=1}^{k} P_{i} \notin[(1 / 4) I,(3 / 4) I]\right] \leq\left(C_{G} M^{n / 2}\right) \exp \left(\frac{-k}{16 \ln 2}\right) \tag{3.7}
\end{equation*}
$$

Let the map $x \mapsto g x$ be denoted by T_{g}. It follows that

$$
\mathbb{P}\left[\forall f \in \tilde{F}_{M},\left\|\frac{1}{2 k} \sum_{g \in \mathcal{A}} f \circ T_{g}\right\|_{\mathcal{L}^{2}} \leq(1 / 2)\|f\|_{\mathcal{L}^{2}}\right] \geq 1-\left(C_{G} M^{n / 2}\right) \exp \left(\frac{-k}{16 \ln 2}\right)
$$

Iterating the above inequality ℓ times, we observe that

$$
\mathbb{P}\left[\forall f \in \tilde{F}_{M},\left\|\frac{1}{(2 k)^{\ell}} \sum_{g \in \mathcal{A}^{\ell}} f \circ T_{g}\right\|_{\mathcal{L}^{2}} \leq(1 / 2)^{\ell}\|f\|_{\mathcal{L}^{2}}\right] \geq 1-\delta,
$$

where

$$
\begin{equation*}
\delta:=\left(C_{G} M^{n / 2}\right) \exp \left(\frac{-k}{16 \ln 2}\right) \tag{3.8}
\end{equation*}
$$

Choosing $f=\tilde{H}_{t, M}$, we see that

$$
\mathbb{P}\left[\left\|\frac{1}{(2 k)^{\ell}} \sum_{g \in \mathcal{A}^{\ell}} \tilde{H}_{t, M} \circ T_{g}\right\|_{\mathcal{L}^{2}} \leq(1 / 2)^{\ell}\left\|\tilde{H}_{t, M}\right\|_{\mathcal{L}^{2}}\right] \geq 1-\delta
$$

By the above, and Lemmas 2.8 and 2.9, we see that

$$
\mathbb{P}\left[\left\|\frac{1}{(2 k)^{\ell}} \sum_{g \in \mathcal{A}^{\ell}} \tilde{H}_{t} \circ T_{g}\right\|_{\mathcal{L}^{2}} \leq \eta+2^{-\ell} t^{-n / 4}\right] \geq 1-\delta
$$

Thus, we see that

$$
\begin{equation*}
\mathbb{P}\left[\left\|\frac{1_{G}}{\operatorname{volG}}-\frac{1}{(2 k)^{\ell}} \sum_{g \in \mathcal{A}^{\ell}} H_{t} \circ T_{g}\right\|_{\mathcal{L}^{2}} \leq \eta+2^{-\ell} t^{-n / 4}\right] \geq 1-\delta . \tag{3.9}
\end{equation*}
$$

We derive from this, the following theorem on the equidistribution of \mathcal{A}^{ℓ}.
Theorem 3.2. Let $2^{-\ell} t^{-\frac{n}{4}} \leq \eta \leq 2^{-C_{G}} t^{\frac{(1+o(1)) n}{2}}$. Let $\delta=\left(C_{G} / \eta\right) \exp \left(-\frac{k}{16 \ln 2}\right)$. Then,

$$
\begin{equation*}
\mathbb{P}\left[\left\|\frac{1_{G}}{\operatorname{volG}}-\frac{1}{(2 k)^{\ell}} \sum_{g \in \mathcal{A}^{\ell}} H_{t} \circ T_{g}\right\|_{\mathcal{L}^{2}} \leq 2 \eta\right] \geq 1-\delta \tag{3.10}
\end{equation*}
$$

Proof. This follows from (3.9) on setting $M=\eta^{-\frac{2}{n}}$ and substituting in (3.8).
Lemma 3.3. Suppose $\epsilon \sqrt{5 \ln \frac{C_{G}}{\epsilon^{n}}}=r$, and $t=\epsilon^{2}$ are sufficiently small. If

$$
\left\|\frac{1_{G}}{\operatorname{vol} G}-\frac{1}{(2 k)^{\ell}} \sum_{g \in \mathcal{A}^{\ell}} H_{t} \circ T_{g}\right\|_{\mathcal{L}^{2}} \leq \sqrt{\operatorname{vol}\left(B_{n}\right) r^{n}}\left(\frac{1}{2 \operatorname{vol}(G)}\right)
$$

then, \mathcal{A}^{ℓ} is a $2 r$-net of G.

Proof. Suppose \mathcal{A}^{ℓ} is not a $2 r$-net of G. Then, there exists an element \tilde{g} such that $d\left(\tilde{g}, \mathcal{A}^{\ell}\right)>2 r$. Let $B(r, \tilde{g})$ be the metric ball of radius r centered at \tilde{g}. Then, for any $g \in \mathcal{A}^{\ell}, B(r, g) \cap B(r, \tilde{g})=\varnothing$. Applying Lemma 2.4 we see that $H_{t}\left(g^{-1} y\right)<\frac{1}{3 \mathrm{volG}}$ for all $g \in \mathcal{A}^{\ell}$ and all $y \in B(r, \tilde{g})$. Therefore,

$$
\frac{1}{(2 k)^{\ell}} \sum_{g \in \mathcal{A}^{\ell}} H_{t} \circ T_{g}(y)<\frac{1}{3 \mathrm{volG}}
$$

for all all $y \in B(r, \tilde{g})$. This implies that

$$
\begin{align*}
\left\|\frac{1_{G}}{\operatorname{volG}}-\frac{1}{(2 k)^{\ell}} \sum_{g \in \mathcal{A}^{\ell}} H_{t} \circ T_{g}\right\|_{\mathcal{L}^{2}} & >\sqrt{\operatorname{vol}(B(0, r))}\left(\frac{2}{3 \operatorname{vol}(G)}\right) \tag{3.11}\\
& >\sqrt{\operatorname{vol}\left(B_{n}\right) r^{n}}\left(\frac{1}{2 \operatorname{vol}(G)}\right) \tag{3.12}
\end{align*}
$$

which is a contradiction.
Theorem 3.4. Suppose $\epsilon \sqrt{5 \ln \frac{C_{G}}{\epsilon^{n}}}=r$. Choose

$$
k \geq C_{G}+(16 \ln 2)\left((1+o(1)) n \ln \frac{1}{\epsilon}+\ln \frac{1}{\delta}\right)
$$

i.i.d random points $\left\{g_{1}, \ldots, g_{k}\right\}$ from the Haar measure on G and let

$$
\mathcal{A}=\left\{g_{1}, g_{1}^{-1}, \ldots, g_{k}, g_{k}^{-1}\right\}
$$

Let X be the set of all elements of G which can be expressed as words of length less or equal to ℓ with alphabets in \mathcal{A}, where $\ell \geq C_{G}+\frac{n}{2} \log _{2}\left(\frac{1}{\epsilon r}\right)$. Then, with probability at least $1-\delta$, for every element $g \in G$ there is $x \in X$ such that $d(g, x)<2 r$.
Proof. Let $\eta=2^{-C_{G}} \epsilon^{(1+o(1)) n}$ in Lemma 2.9. We set $\log _{2} M=C_{G}+\log _{2} \frac{1}{t^{1+o(1)}}$, by enforcing an equality in (2.25). Taking logarithms on both sides of (3.8), we see that

$$
-\ln \frac{1}{\delta}=C_{G}+\frac{n}{2} \ln t^{-(1+o(1))}-\frac{k}{16 \ln 2} .
$$

This fixes the lower bound for k in the statement of the corollary. In order to use (3.9) in conjunction with Lemma 3.3, we see that it suffices to set $2^{-\ell} t^{-\frac{n}{4}}$ to a value less than $r^{n / 2}$, because for small ϵ, the value of η that we have chosen is significantly smaller than $r^{n / 2}$. This shows that the theorem holds for any ℓ greater or equal to $\frac{n}{2} \log _{2} \frac{1}{\epsilon r}+C_{G}$.

Acknowledgements

We are grateful to Charles Fefferman, Anish Ghosh, Sergei Ivanov and Matti Lassas for helpful discussions. We thank Emmanuel Breuillard for a useful correspondence. We are grateful to Somnath Chakraborty for a careful reading. This work was supported by NSF grant \#1620102 and a Ramanujan fellowship.

References

[1] R. Ahlswede and A. Winter. "Strong Converse for Identification via Quantum Channels". IEEE Trans. Inf. Theor. 48.3 (Sept. 2006), pp. 569-579. Link.
[2] J. Bourgain and A. Gamburd. "On the spectral gap for finitely-generated subgroups of SU(2)". Inventiones mathematicae 171 (2007), pp. 83-121.
[3] J. Bourgain and A. Gamburd. "A spectral gap theorem in $\mathrm{SU}(d)$ ". Journal of the European Mathematical Society 014.5 (2012), pp. 1455-1511. Link.
[4] H. Donnelly. "Eigenfunctions of the Laplacian on Compact Riemannian Manifolds". Asian J. Math. 10.1 (Mar. 2006), pp. 115-126. Link.
[5] J. Duistermaat and V. Guillemin. "The Spectrum of Positive Elliptic Operators and Periodic Bicharacteristics." Inventiones mathematicae 29 (1975), pp. 39-80. Link.
[6] A. Grigoryan. "Heat Kernel and Analysis on Manifolds". 2012.
[7] L. Hörmander. "The spectral function of an elliptic operator". Acta Math. 121 (1968), pp. 193218. Link.
[8] A. Lubotzky, R. Phillips, and P. Sarnak. "Hecke operators and distributing points on S2. II". Communications on Pure and Applied Mathematics 40.4 (1987), pp. 401-420. Link.
[9] S. Minakshisundaram. "Eigenfunctions on Riemannian Manifolds". The Journal of the Indian Mathematical Society 17.4 (1953), pp. 159-165. Link.
[10] S. Minakshisundaram and A. Pleijel. "Some Properties of the Eigenfunctions of The LaplaceOperator on Riemannian Manifolds". Canadian Journal of Mathematics 1.3 (1949), pp. 242256. Link.

[^0]: *hariharan.narayanan@tifr.res.in.

