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Abstract. We derive a general formula describing the joint distribution of two permutation
statistics—the peak number and the descent number—over any set of permutations
whose quasisymmetric generating function is a symmetric function. Our formula
involves a certain kind of plethystic substitution on quasisymmetric generating functions.
We apply this result to cyclic permutations, involutions, and derangements, and to give
a generating function formula for counting permutations by peaks, descents, and cycle
type. We recover as special cases results previously derived by Désarménien–Foata,
Gessel–Reutenauer, Fulman, and Diaconis–Fulman–Holmes.
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1 Introduction

Let π = π(1)π(2) · · ·π(n) be an element of the symmetric group Sn of permutations of
the set [n] := {1, 2, . . . , n}. We say that i ∈ [n− 1] is a descent of π if π(i) > π(i + 1). The
descent set of π is the set of all descents of π. Let des(π) denote the number of descents
of π (i.e., the size of the descent set) and let maj(π) denote the sum of all descents of
π. The descent number des and major index maj are classical permutation statistics whose
study dates back to Percy MacMahon [9].

The distribution of the descent number over Sn is encoded by the nth Eulerian
polynomial

An(t) := ∑
π∈Sn

tdes(π)+1,

and the joint distribution of the descent number and major index by the nth q-Eulerian
polynomial

An(q, t) := ∑
π∈Sn

qmaj(π)tdes(π)+1.
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MacMahon [9, Vol. 2, Section IX] proved a formula of which a special case is

An(q, t)
(1− t)(1− tq) · · · (1− tqn)

=
∞

∑
k=0

[k]nq tk, (1.1)

where [k]q := 1 + q + q2 + · · ·+ qk−1. (1.1) allows one to compute the joint distribution of
the descent number and major index over Sn, but one may also want to study the joint
distribution of these statistics, as well as others, over certain interesting subsets of Sn.

We are concerned here with permutation statistics that are determined by the descent
set; these statistics are called descent statistics. Examples include the descent number,
major index, and also the “peak number” statistic which is defined below. In many cases,
formulas for distributions of descent statistics can be extracted in a useful way from
quasisymmetric functions. For example, the first author and Reutenauer proved in [6,
Theorem 5.3] (see also [5, Section 4]) that if the quasisymmetric generating function Q(Π)
of Π ⊆ Sn is a symmetric function (see Section 2.2 for relevant definitions), then

∑π∈Π tdes(π)+1qmaj(π)

(1− t)(1− tq) · · · (1− tqn)
=

∞

∑
k=0

psk(Q(Π))tk (1.2)

where psk( f ) := f (1, q, . . . , qk−1). This formula reduces to (1.1) when Π is taken to
be Sn. They then use symmetric function operations to derive from (1.2) formulas
for the joint distribution of des and maj over cyclic permutations, involutions, and
derangements—which all have symmetric quasisymmetric generating functions. Later,
Jason Fulman [3, Theorem 1] used Equation (1.2) to derive a formula for the joint
distribution of des, maj, and cycle type over Sn. These results are notable because the
descent number and major index, like all descent statistics, are statistics which encode
properties of a permutation in one-line representation, and it is generally difficult to
study distributions of such statistics while refining by cycle structure.

In our recent paper [7], we prove several general formulas analogous to Equation (1.2)
for the distributions of various other descent statistics over any subset of Sn whose
quasisymmetric generating function is symmetric. These formulas involve plethysm, an
operation on symmetric functions which has in recent decades been extended to more
general formal power series rings and has found numerous applications within algebraic
combinatorics.

This extended abstract is a summary of our results in [7] with a focus on the peak
number statistic pk. Given π ∈ Sn, we say that i ∈ {2, . . . , n − 1} is a peak of π if
π(i − 1) < π(i) > π(i + 1), and we let pk(π) denote the number of peaks of π. In
Section 2, we review some relevant definitions and results from the theory of symmetric
and quasisymmetric functions. We present our general formula for the joint distribution
of pk and des in Section 3, followed by applications to cyclic permutations, involutions,
derangements, and more generally, counting permutations by peaks, descents, and cycle
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type. Finally, in Section 4 we briefly discuss our general formulas for two other descent
statistics: the left peak number and the number of up-down runs.

2 Preliminaries

2.1 Symmetric functions and plethysm

We assume familiarity with basic definitions from the theory of symmetric functions as
described by Stanley [10, Chapter 7]. In this section we establish notation and define
the plethysm operation which will be needed for our main result. (See [8] for a more
comprehensive introductory reference on plethysm.)

We use the notation |λ| = n to indicate that λ is a partition of n, and we let l(λ) denote
the number of parts of λ. We write λ = (1m12m2 · · · ) to mean that λ has m1 parts of size
1, m2 parts of size 2, and so on; alternatively, we write λ = (λ1, λ2, . . . , λr) to mean that λ

has parts λ1, λ2, . . . , λr. Given a partition λ = (1m12m2 · · · ), let zλ := 1m1m1! 2m2m2! · · · .
Let Λ denote the Q-algebra of symmetric functions in the variables x1, x2, . . . . In

particular, we will need the complete symmetric functions hn, the elementary symmetric
functions en, and the power sum symmetric functions pλ. We will often work in the ring Λ̂
of symmetric functions of unbounded degree (with coefficients in some polynomial ring).
In the ring Λ̂ we define H(x) := ∑∞

n=0 hnxn and E(x) := ∑∞
n=0 enxn to be the ordinary

generating functions for the hn and the en, respectively. We also adopt the notation
H := H(1) = ∑∞

n=0 hn.
Let 〈· , ·〉 : Λ×Λ→ Q denote the usual scalar product on symmetric functions which

may be defined by

〈pλ, pτ〉 :=

{
zλ, if λ = τ,
0, otherwise

for all λ and τ, and then extending bilinearly.
Let A be a Q-algebra of formal power series in some set of variables (possibly

containing Λ). We define an operation Λ× A→ A, where the image of ( f , a) ∈ Λ× A is
denoted f [a], by these two properties:

1. For any i ≥ 1, pi[a] is the result of replacing each variable in a with its ith power.

2. For any fixed a ∈ A, the map f 7→ f [a] is a Q-algebra homomorphism from Λ to A.

For a symmetric function f ∈ Λ, this means that pi[ f (x1, x2, . . . )] = f (xi
1, xi

2, . . . ). If f
contains other variables than the xi then they are raised to the ith power as well. For
example, if q and t are variables then pi[qt2pm] = qit2i pim. If f is expressed in terms of
the power sums, pi[ f ] can be obtained from f by replacing each pm with pmi. The map
( f , a) 7→ f [a] is called plethysm. It is important to note that plethysm does not commute
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with evaluation of variables. If α is a variable then pn[α] = αn, but if y is a rational number
then pn[y] = y; thus in this case pn[α]|α=y 6= pn[y].

We extend plethysm to a partial map Λ̂× A→ A in the obvious way: if each fi is in
Λ then

(
∑∞

k=0 fi
)
[a] := ∑∞

k=0 fi[a] as long as both infinite sums converge as formal power
series.

2.2 Descent compositions, cycle type, and quasisymmetric generating
functions

We use the notation L � n to indicate that L is a composition of n. Every permutation can
be uniquely decomposed into a sequence of maximal increasing consecutive subsequen-
ces— or equivalently, maximal consecutive subsequences containing no descents—which
we call increasing runs. The descent composition of π, denoted Comp(π), is the composition
whose parts are the lengths of the increasing runs of π in the order that they appear. For
example, the increasing runs of π = 85712643 are 8, 57, 126, 4, and 3, so the descent
composition of π is Comp(π) = (1, 2, 3, 1, 1).

For a composition L = (L1, L2, . . . , Lk), let Des(L) := {L1, L1 + L2, . . . , L1 + · · ·+ Lk−1}.
It is easy to see that if L is the descent composition of π, then Des(L) is the descent set of
π. Recall that the fundamental quasisymmetric function FL is defined by

FL := ∑
i1≤i2≤···≤in

ij<ij+1 if j∈Des(L)

xi1 xi2 · · · xin .

Given a set Π of permutations, its quasisymmetric generating function Q(Π) is defined by

Q(Π) := ∑
π∈Π

FComp(π).

Moreover, given a composition L = (L1, . . . , Lk), let rL denote the skew Schur function
of ribbon shape L. That is,

rL := ∑
i1,...in

xi1 xi2 · · · xin

where the sum is over all i1, . . . , in satisfying

i1 ≤ · · · ≤ iL1︸ ︷︷ ︸
L1

> iL1+1 ≤ · · · ≤ iL1+L2︸ ︷︷ ︸
L2

> · · · > iL1+···+Lk−1+1 ≤ · · · ≤ in︸ ︷︷ ︸
Lk

.

The following is [5, Corollary 4].

Theorem 2.1. Suppose that Q(Π) is symmetric. Then the number of permutations in Π with
descent composition L is equal to 〈Q(Π), rL〉.
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We say that a permutation π has cycle type λ = (1m12m2 · · · ) if π has exactly m1
cycles of size 1, m2 cycles of size 2, and so on. Henceforth, cycles of size i are called
i-cycles, 1-cycles in particular are called fixed points, and the number of fixed points of a
permutation π is denoted fix(π). For n ∈ P, define the symmetric function Ln by

Ln :=
1
n ∑

d|n
µ(d)pn/d

d (2.1)

where µ is the number-theoretic Möbius function. Given a partition λ = (1m12m2 · · · ),
define Lλ by

Lλ := hm1 [L1]hm2 [L2] · · · .

The symmetric functions Lλ are called Lyndon symmetric functions. Gessel and Reutenauer
[6, Theorem 2.1] showed that Lλ is the quasisymmetric generating function for the set of
permutations with cycle type λ.

Corollary 2.2. The number of permutations π with cycle type λ and descent composition M is
equal to 〈Lλ, rM〉.

3 Results

3.1 General formula

Given a variable (or integer) y ∈ A and an integer k ∈ Z, define the homomorphism
Θy,k : Λ→ Q[[y]] by

Θy,k( f ) := f [k(1− α)]|α=−y.

That is, Θy,k first sends a symmetric function f to the plethystic substitution f [k(1− α)],
where α is a variable, and then evaluates this expression at α = −y.

Given a set Π of permutations, define

P(pk,des)(Π; y, t) := ∑
π∈Π

ypk(π)+1tdes(π)+1;

this polynomial encodes the joint distribution of pk and des over Π. If Π has a symmetric
quasisymmetric function Q(Π), then the following theorem allows us to describe this
polynomial in terms of Θy,k(Q(Π)) and in terms of Eulerian polynomials.

Theorem 3.1. Let Π ⊆ Sn and suppose that its quasisymmetric generating function Q(Π) is a
symmetric function with power sum expansion Q(Π) = ∑λ`n cλ pλ. Then

1
1 + y

(
1 + yt
1− t

)n+1

P(pk,des)
(

Π;
(1 + y)2t

(y + t)(1 + yt)
,

y + t
1 + yt

)
=

∞

∑
k=0

Θy,k(Q(Π))tk = ∑
λ`n

cλ

Al(λ)(t)

(1− t)l(λ)+1

l(λ)

∏
k=1

(1− (−y)λk).
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The full proof of Theorem 3.1 is in [7], but let us sketch the proof here. We begin by
stating three preliminary lemmas, one concerning plethysm, one giving the power sum
expansion of (1− tE(y)H)−1, and one giving the ribbon expansion of (1− tE(y)H)−1.
The first two lemmas are proved in [7], whereas the third is an immediate consequence of
[11, Lemma 4.1].

Lemma 3.2. Let f ∈ A, let α be a variable, and let k ∈ Z. Then f [k(1− α)] =
〈

f , HkE(−α)k〉.
Lemma 3.3.

1
1− tE(y)H

= ∑
λ

pλ

zλ

Al(λ)(t)

(1− t)l(λ)+1

l(λ)

∏
k=1

(1− (−y)λk).

Lemma 3.4.

1
1− tE(y)H

=
1

1− t

+
1

1 + y

∞

∑
n=1

∑
L�n

(
1 + yt
1− t

)n+1( (1 + y)2t
(y + t)(1 + yt)

)pk(L)+1( y + t
1 + yt

)des(L)+1

rL.

In Lemma 3.4, des(L) is defined to be des(π) for any permutation π with descent
composition L, and pk(L) is defined analogously. These are well-defined because the
descent number and peak number are descent statistics; they depend only on the descent
composition. Lemmas 3.2 to 3.4 allow us to derive three expressions for the scalar product〈

Q(Π), (1− tE(y)H)−1〉:
1. It follows from Lemma 3.2 that〈

Q(Π),
1

1− tE(y)H

〉
=

∞

∑
k=0

〈
Q(Π), E(y)kHk

〉
tk =

∞

∑
k=0

Θy,k(Q(Π))tk.

2. It follows from Lemma 3.3 that〈
Q(Π),

1
1− tE(y)H

〉
= ∑

λ`n
cλ

Al(λ)(t)

(1− t)l(λ)+1

l(λ)

∏
k=1

(1− (−y)λk).

3. It follows from Lemma 3.4 and Theorem 2.1 that〈
Q(Π),

1
1− tE(y)H

〉
=

1
1 + y

(
1 + yt
1− t

)n+1

P(pk,des)
(

Π;
(1 + y)2t

(y + t)(1 + yt)
,

y + t
1 + yt

)
.

Equating these three expressions completes the proof of Theorem 3.1.
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3.2 Cyclic permutations

We say that a permutation of length n is a cyclic permutation (or a cycle) if it has cycle
type (n). We denote the set of cyclic permutations of length n by Cn. The formula below
follows immediately from Theorem 3.1 and (2.1), which is the quasisymmetric generating
function for Cn.

Theorem 3.5. Let n ≥ 1. Then

P(pk,des)
(
Cn;

(1 + y)2t
(y + t)(1 + yt)

,
y + t

1 + yt

)
=

(1 + y)
n(1 + yt)n+1 ∑

d|n
µ(d)(1− (−y)d)n/d(1− t)n−n/d An/d(t).

Although this formula may seem complicated, it allows for easy computation of the
polynomials P(pk,des)(Cn; y, t) in the following way. First, we replace y with u and t with

v in the formula. Then set y = (1+u)2v
(u+v)(1+uv) and t = u+v

1+uv ; solving these two equations

yield u =
1+t2−2yt−(1−t)

√
(1+t)2−4yt

2(1−y)t and v =
(1+t)2−2yt−(1+t)

√
(1+t)2−4yt

2yt . Thus, we have

P(pk,des)(Cn; y, t) =
(1 + u)

n(1 + uv)n+1 ∑
d|n

µ(d)(1− (−u)d)n/d(1− v)n−n/d An/d(v).

(All of the formulas given later in this paper can be inverted in a similar manner, but we
will omit the details.) For example, for n = 5, we have

P(pk,des)(C5; y, t) =
(1 + u)

5(1 + uv)6 ((1 + u)5A5(v)− (1 + u5)(1− v)4A1(v))

=
1 + u

5(1 + uv)6 ((1 + u)5(v + 26v2 + 66v3 + 26v4 + v5)− (1 + u5)(1− v)4v))

= (y + 5y2)t2 + (y + 8y2 + 3y3)t3 + (y + 5y2)t4.

where the last equality was obtained by substituting in u =
1+t2−2yt−(1−t)

√
(1+t)2−4yt

2(1−y)t and

v =
(1+t)2−2yt−(1+t)

√
(1+t)2−4yt

2yt and then simplifying using Maple.

Observe that in P(pk,des)(C5; y, t), the coefficient of t2 is equal to the coefficient of t4.
In fact, for any n ∈ P not congruent to 2 modulo 4, the number of cyclic permutations
of length n with j peaks and k descents is equal to the number of cyclic permutations of
length n with j peaks and n− 1− k descents. This is not easily apparent from the formula
obtained in Theorem 3.5, but is a special case of the following result, which we prove in
[7].
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Theorem 3.6. Suppose that λ is a partition of n with no parts congruent to 2 modulo 4 and
that every odd part of λ occurs only once. Then the number of permutations of cycle type λ with
j peaks and k descents is equal to the number of permutations of cycle type λ with j peaks and
n− 1− k descents.

Given Π ⊆ Sn, let us define

A(Π; t) := ∑
π∈Π

tdes(π)+1 and Ppk(Π; t) := ∑
π∈Π

tpk(π)+1.

Specializing Theorem 3.5 at y = 0 yields

A(Cn; t) =
1
n ∑

d|n
µ(d)(1− t)n−n/d An/d(t),

which is the q = 1 evaluation of a formula by Gessel and Reutenauer [6, Corollary 6.2].
Specializing at y = 1, on the other hand, yields the formula

Ppk
(
Cn;

4t
(1 + t)2

)
=

1
n(1 + t)n+1 ∑

d|n
d odd

µ(d)2n/d+1(1− t)n−n/d An/d(t).

3.3 Involutions

A permutation π is called an involution if π2 is the identity permutation, or equivalently,
if π has no cycles of size larger than 2. We denote the set of involutions of length n
by In. The quasisymmetric generating function for all involutions weighted by length
and number of fixed points is known to be

∞

∑
n=0

∑
π∈In

FComp(π)z
fix(π)xn = ∏

i

1
1− zxxi

∏
i<j

1
1− x2xixj

; (3.1)

see [6, Equation (7.1)].
For Π ⊆ Sn, let

P(pk,des,fix)(Π; y, t, z) := ∑
π∈Π

ypk(π)+1tdes(π)+1zfix(π).

In [7], we use Theorem 3.1 and (3.1) to derive the following generating function formula
for the polynomials P(pk,des,fix)(In; y, t, z).

Theorem 3.7.

1
1− t

+
1

1 + y

∞

∑
n=1

(
1 + yt
1− t

)n+1

P(pk,des,fix)
(
In;

(1 + y)2t
(y + t)(1 + yt)

,
y + t

1 + yt
, z
)

xn

=
∞

∑
k=0

(1 + zxy)k(1 + x2y)k2
tk

(1− zx)k(1− x2)(
k
2)(1− x2y2)(

k+1
2 )
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Given Π ⊆ Sn, let

P(des,fix)(Π; t, z) := ∑
π∈Π

tdes(π)+1zfix(π) and P(pk,fix)(Π; t, z) := ∑
π∈Π

tpk(π)+1zfix(π).

Specializing Theorem 3.7 at y = 0 yields

1
1− t

+
∞

∑
n=1

P(des,fix)(In; t, z)
(1− t)n+1 xn =

∞

∑
k=0

tk

(1− zx)k(1− x2)(
k
2)

,

which is equivalent to Equation (5.5) of Désarménien and Foata [1] and Equation (7.3) of
Gessel and Reutenauer [6]. Specializing at y = 1 yields the formula

1
1− t

+
1
2

∞

∑
n=1

(
1 + t
1− t

)n+1

P(pk,fix)
(
In;

4t
(1 + t)2 , z

)
xn

=
∞

∑
k=0

(1 + zx)k(1 + x2)k2
tk

(1− zx)k(1− x2)(
k
2)(1− x2)(

k+1
2 )

.

3.4 Derangements

Let Dn denote the set of derangements—permutations with no fixed points—of length n.
The quasisymmetric generating function for all permutations weighted by length and
number of fixed points is known to be

∞

∑
n=0

∑
π∈Sn

FComp(π)z
fix(π)xn =

H(zx)
H(x)(1− p1x)

; (3.2)

see the proof of [6, Theorem 8.4]. Setting z = 0 in (3.2) specializes to derangements.
We prove the following in [7] using Theorem 3.1 and (3.2).

Theorem 3.8. We have

1
1− t

+
1

1 + y

∞

∑
n=1

(
1 + yt
1− t

)n+1

P(pk,des,fix)
(
Sn;

(1 + y)2t
(y + t)(1 + yt)

,
y + t

1 + yt
, z
)

xn

=
∞

∑
k=0

(1 + zxy)k

(1− zx)k
(1− x)k

(1 + xy)k
tk

1− k(1 + y)x
and

1
1− t

+
1

1 + y

∞

∑
n=1

(
1 + yt
1− t

)n+1

P(pk,des)
(
Dn;

(1 + y)2t
(y + t)(1 + yt)

,
y + t

1 + yt

)
xn

=
∞

∑
k=0

(1− x)k

(1 + xy)k
tk

1− k(1 + y)x
.
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We can also specialize the formulas in Theorem 3.8 at y = 0 and y = 1 to obtain
generating function formulas for the polynomials P(des,fix)(Sn; t, z), P(pk,fix)(Sn; t, z),
A(Dn; t), and Ppk(Dn; t); we omit these formulas here. In particular, the formula obtained
for P(des,fix)(Sn; t, z) is the q = 1 evaluation of a formula by Gessel and Reutenauer [6,
Equation (8.3)].

3.5 Cycle type

Theorem 3.8 gave a formula for counting permutations by the number of fixed points
jointly with the peak number and descent number. We now refine this result by giving a
formula for counting permutations by peaks, descents, and cycle type.

For a permutation π, let Ni(π) denote the number of i-cycles in π. Similarly, given a
partition λ, let Ni(λ) denote the number of parts of size i in π. Recall that the Lyndon
symmetric function

Lλ = hm1 [L1]hm2 [L2] · · ·

is the quasisymmetric generating function for the set of permutations with cycle type
λ = (1m12m2 · · · ). Then

1 +
∞

∑
n=1

∑
λ`n

Lλxn
∞

∏
i=1

zNi(λ)
i = ∑

m1,m2,...

∞

∏
i=1

hmi [Li](zixi)mi =
∞

∏
i=1

∞

∑
mi=0

hmi [Li](zixi)mi (3.3)

is the quasisymmetric generating function for all permutations refined by cycle type and
length.

Define

F(pk,des)
n (y, t, z1, z2, . . . ) := ∑

π∈Sn

ypk(π)+1tdes(π)+1
∞

∏
i=1

zNi(π)
i ,

Fpk
n (t, z1, z2, . . . ) := ∑

π∈Sn

tpk(π)+1
∞

∏
i=1

zNi(π)
i ,

and

Fdes
n (t, z1, z2, . . . ) := ∑

π∈Sn

tdes(π)+1
∞

∏
i=1

zNi(π)
i .

We prove the next theorem in [7] using Theorem 3.1 and (3.3).

Theorem 3.9.

1
1− t

+
1

1 + y

∞

∑
n=1

(
1 + yt
1− t

)n+1

F(pk,des)
n

(
(1 + y)2t

(y + t)(1 + yt)
,

y + t
1 + yt

, z1, z2, . . .
)

xn

=
∞

∑
k=0

tk
∞

∏
i=1

exp
( ∞

∑
mi=1

(zixi)mi

imi
∑
d|i

µ(d)(k(1− (−y)dmi))i/d
)

.



Counting permutations by peaks, descents, and cycle type 11

Now, define the numbers

fi,k :=
1
i ∑

d|i
µ(d)ki/d and gi,k :=

1
2i ∑

d|i
i odd

µ(d)(2k)i/d.

We can specialize Theorem 3.9 at y = 0 to recover the formula

1
1− t

+
∞

∑
n=1

Fdes
n (t, z1, z2, . . . )
(1− t)n+1 xn =

∞

∑
k=0

tk
∞

∏
i=1

(
1

1− zixi

) fi,k

,

which was originally proved by Fulman [3]. Specializing at y = 1 recovers the formula

1
1− t

+
1
2

∞

∑
n=1

(
1 + t
1− t

)n+1

Fpk
n

(
4t

(1 + t)2 , z1, z2, . . .
)

xn =
∞

∑
k=0

tk
∞

∏
i=1

(
1 + zixi

1− zixi

)gi,k

,

originally due to Diaconis, Fulman, and Holmes [2]; see also [4].

4 Other descent statistics

Let us call i ∈ [n− 1] a left peak of π if i is a peak or if i = 1 and π(1) > π(2). A birun of
π is a maximal monotone consecutive subsequence, and an up-down run of π is a birun of
π or the letter π(1) if π(1) > π(2). Let lpk(π) the number of left peaks of π, and udr(π)
the number of up-down runs of π.

Define
Plpk(Π; t) := ∑

π∈Π
tlpk(π) and Pudr(Π; t) := ∑

π∈Π
tudr(π).

The theorem below is an analogue of Theorem 3.1 for the lpk and udr statistics; we omit
the proof.

Theorem 4.1. Let Π ⊆ Sn and suppose that its quasisymmetric generating function Q(Π) is a
symmetric function with power sum expansion Q(Π) = ∑λ`n cλ pλ. Then

(1 + t)n

(1− t)n+1 Plpk
(

Π;
4t

(1 + t)2

)
=

∞

∑
k=0

Θ1,k(Q(Π)[X + 1])tk = ∑
λ`n

cλ

Bo(λ)(t)

(1− t)o(λ)+1

and
(1 + t2)n

2(1− t)2(1− t2)n−1 Pudr
(

Π;
2t

1 + t2

)
=

∞

∑
k=0

Θ1,k(Q(Π))t2k +
∞

∑
k=0

Θ1,k(Q(Π)[X + 1])t2k+1

= ∑
λ`n

all parts odd

cλ2l(λ) Al(λ)(t2)

(1− t2)l(λ)+1
+ t ∑

λ`n
cλ

Bo(λ)(t2)

(1− t2)o(λ)+1
,
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where o(λ) is the number of odd parts of λ and Bn(t) is the nth type B Eulerian polynomial
(defined, e.g., in [11, Section 2.3]).

In [7], we use Theorem 4.1 to obtain formulas for the distributions of lpk and udr over
cyclic permutations, derangements, and involutions, and for counting permutations by
these statistics jointly with cycle type.
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