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Abstract. We study the type cone (i.e. the space of all polytopal realizations) of
g-vector fans of finite type cluster-like complexes (finite type cluster complexes, non-
kissing complexes of gentle algebra, and graphical nested complexes). We show that
this cone is often simplicial, which explains an elegant “kinematic” construction of
the associahedron as a section of a high dimensional positive orthant by certain affine
subspaces parametrized by a low dimensional positive orthant.

Résumé. Nous étudions le type cone (i.e. l’espace de toutes les réalisations poly-
topales) des éventails de g-vecteurs de complexes de type amassés (complexes amassés
de type fini, complexes platoniques d’algèbres aimables, et complexes emboités graphi-
ques). Nous montrons que ce cone est souvent simplicial, ce qui explique une élégante
construction “cinématique” de l’associaèdre comme section d’un orthant positif de
haute dimension par certains sous-espaces affines paramètrés par un orthant positif de
basse dimension.
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1 Introduction

This paper focuses on a surprising construction of the associahedron that recently ap-
peared in mathematical physics. Motivated by the prediction of the behavior of scat-
tering particles, N. Arkani-Hamed, Y. Bai, S. He, and G. Yan recently described in [1,
Section 3.2] the kinematic associahedron. It is a class of polytopal realizations of the
classical associahedron obtained as sections of a high-dimensional positive orthant with
well-chosen affine subspaces. This construction provides a large degree of freedom in
the choice of the parameters defining these affine subspaces, and actually produces all
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polytopes whose normal fan is affinely equivalent to that of J.-L. Loday’s associahe-
dron [12] (see Section 3.1). These realizations were then extended by V. Bazier-Matte,
G. Douville, K. Mousavand, H. Thomas and E. Yıldırım [2] in the context of finite type
cluster algebras (see Section 3.2) using tools from quiver representation theory.

We revisit, extend and explore further this construction using a reversed approach.
Given a complete simplicial fan F , we consider the space TC(F ) of all its polytopal
realizations. This space was called type cone in [13] and deformation cone in [16], who
studied the case when F is the braid arrangement leading to the rich theory of gen-
eralized permutahedra. The type cone is known to be a polyhedral cone defined by a
collection of inequalities corresponding to the linear dependences among the rays of F
contained in pairs of adjacent maximal cones of F (see Definition 2). Our approach is
based on an elementary but powerful observation: for any fan F , all polytopal realiza-
tions of F can be described as sections of a high dimensional positive orthant with a
collection of affine subspaces parametrized by the type cone TC(F ) (see Proposition 6);
if moreover the type cone TC(F ) is a simplicial cone, it leads to a simple parametriza-
tion of all polytopal realizations of F by a positive orthant corresponding to the facets
of the type cone TC(F ) (see Corollary 7). To prove that the type cone TC(F ) is sim-
plicial, we just need to identify which pairs of adjacent maximal cones of F correspond
to the facets of TC(F ) and to show that the corresponding linear dependences among
their rays positively span the linear dependence among the rays of any pair of adjacent
maximal cones of F . When applied to cluster algebras (see Section 3.2), this yields all
polytopal realizations of the g-vector fans, revisiting and extending results of [2].

This new perspective has several advantages, as our proof uniformly applies to any
initial seed (acyclic or not), any finite type cluster algebra (simply-laced or not), and any pos-
itive real-valued parameters (rational or not). In contrast, note that the result of [2] is first
proved for acyclic initial seeds in simply-laced cluster algebras for integer parameters,
and then extended by a technical folding argument to all finite types and by an approx-
imation argument to arbitrary real-valued parameters. These advantages of the type
cone approach all follow from one essential feature: it enables to completely separate
the algebraic aspects from the geometric aspects of the problem.

Besides revisiting the construction of [1, 2] and extending it to any initial seed, our
type cone approach is also successful when applied to the g-vector fans of other families
of generalizations of the associahedron. In the present paper, we explore specifically
the non-kissing complexes of gentle algebras introduced in [15] (see Section 3.3) and the
graphical nested complexes studied in [3, 6, 16, 17] (see Section 3.4).

Many details and all proofs are omitted in this extended abstract for space reason,
but a complete treatment can be found in [14]. In particular, the quiver representation
theory is an iceberg in this abstract: while useful for intuition and essential for certain
proofs (e.g. Theorem 15), it is mostly hidden and only appears in the Auslander–Reiten
quivers used to represent the inequalities of the type cones (in Figures 3, 4 and 6).
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2 Type cone of a fan

Fix an essential complete simplicial fan1 F in Rn. Let G be the N × n-matrix whose
rows are (representative vectors of) the rays of F . For any height vector h ∈ RN, we
define the polytope2 Ph := {x ∈ Rn | Gx ≤ h} . Unfortunately, the normal fan3 of this
polytope Ph does not always coincide with the fan F we started from. The following
statement gives a simple characterization of the height vectors h for which it is the case.
It is a reformulation of regularity of triangulations of vector configurations, introduced
in the theory of secondary polytopes [10]. We present here a convenient formulation
from [4].

Proposition 1. Let F be an essential complete simplicial fan in Rn. Then the following are
equivalent for any height vector h ∈ RN:

1. The fan F is the normal fan of the polytope Ph := {x ∈ Rn | Gx ≤ h}.
2. For any two adjacent maximal cones R≥0R and R≥0R′ of F with R r {r} = R′ r {r′},

we have ∑s∈R∪R′αR,R′(s) hs > 0, where ∑s∈R∪R′αR,R′(s) s = 0 is the unique linear
dependence among the rays of R ∪ R′ such that αR,R′(r) + αR,R′(r

′) = 2.

Definition 2 ([13]). The type cone of F is the cone TC(F ) of all polytopal realizations
of F :

TC(F ) :=
{

h ∈ RN
∣∣∣ F is the normal fan of Ph

}
=
{

h ∈ RN
∣∣∣ ∑

s∈R∪R′
αR,R′(s) hs > 0

for any adjacent maximal
cones R≥0R and R≥0R′ of F

}
.

Note that the type cone is an open cone and contains a lineality subspace of dimen-
sion n (it is invariant by translation in GRn). Therefore, we say that the type cone is
simplicial when it has precisely N − n facets.

Definition 3. An extremal adjacent pair of F is a pair of adjacent maximal cones R≥0R,
R≥0R′ of F such that the corresponding inequality ∑s∈R∪R′αR,R′(s) hs > 0 in the defini-
tion of the type cone TC(F ) actually defines a facet of TC(F ). In other words, extremal
adjacent pairs define the extremal rays of the polar of the closed type cone TC(F ).

1A polyhedral cone is the positive span of finitely many vectors or equivalently, the intersection of finitely
many closed linear half-spaces. The faces of a cone are its intersections with its supporting hyperplanes.
A fan F is a set of polyhedral cones such that any face of a cone of F belongs to F , and any two cones
of F intersect along a face of both. A fan is essential if the intersection of its cones is the origin, complete if
the union of its cones covers Rn, and simplicial if all its cones are generated by dimension many rays.

2A polytope is the convex hull of finitely many points or equivalently, a bounded intersection of finitely
many closed affine half-spaces.

3The normal cone of a face F of a polytope P is the cone generated by the normal vectors of the facets
of P containing F. The normal fan of P is the set of normal cones of all its faces.
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Figure 1: A 2-dimensional fan F with five rays 1, . . . , 5 and five maximal cones a, . . . , e
(left), its polytopal realization corresponding to the height vector (1/2, 3/4, 1, 1, 5/4)

(middle), and a 2-dimensional slice of the type cone TC(F ) (right).

Example 4. Consider the 2-dimensional fan F depicted in Figure 1 (left). It has five rays
labeled 1, . . . , 5 and five maximal cones labeled a, . . . , e. Its type cone TC(F ) lies in R5,
but has a 2-dimensional lineality space, and is defined by the following five inequalities:

H>
ab : h1 + h3 − h2 > 0 H>

bc : h2 + h4 − h3 > 0 H>
cd : h3 + h5 − h4 > 0

H>
de : h1 + h4 > 0 H>

ae : h2 + h5 > 0,

where H>
xy denotes the halfspace defined by the inequality corresponding to the two ad-

jacent maximal cones x and y. For example, the height vector (1/2, 3/4, 5/4, 1, 5/4) belongs
to TC(F ), and the corresponding polytope is represented in Figure 1 (middle). To rep-
resent TC(F ), we slice it with a transversal 2-dimensional affine space, and obtain the
red triangle in Figure 1 (right).

Remark 5. All fans considered in Section 3 have the unique exchange relation property: the
linear dependence ∑s∈R∪R′αR,R′(s) s = 0 only depends on the exchanged rays r and r′,
not on the maximal adjacent cones R and R′. We then write αr,r′(s) instead of αR,R′(s)
and we call extremal exchangeable pairs of F the pairs of exchangeable rays r, r′ of F such
that the corresponding inequality ∑s∈R∪R′αr,r′(s) hs > 0 defines a facet of TC(F ).

To conclude this section, we consider alternative polytopal realizations of the fan F
and discuss their behavior in the situation when the type cone TC(F ) is simplicial. Fix
a (N − n)× N-matrix K that spans the left kernel of the N × n-matrix G (i.e. KG = 0).

Proposition 6. The map x ∈ Rn 7→ h − Gx ∈ RN is an affine transformation of the poly-
tope Ph := {x ∈ Rn | Gx ≤ h} to the polytope Qh :=

{
z ∈ RN

∣∣ Kz = Kh and z ≥ 0
}

.

Corollary 7. Assume that the type cone TC(F ) is simplicial and consider inner normal vectors
to its N − n facets. Since all these vectors belong to the left kernel of G by Proposition 1, we
can assume that they are the rows of the (N − n)× N-matrix K. Then, for any positive vec-
tor ` ∈ RN−n

>0 , the polytope R` :=
{

z ∈ RN
∣∣ Kz = ` and z ≥ 0

}
is a realization of the fan F .

Moreover, the polytopes R` for ` ∈ RN−n
>0 describe all polytopal realizations of F .
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3 Applications to g-vector fans

We now study the type cones of the normal fans of three families generalizing the as-
sociahedron constructed in [12]: the generalized associahedra of finite type cluster alge-
bras [7, 8, 9, 11, 5], the gentle associahedra [15], and the graph associahedra [3, 6, 16, 17].

3.1 Classical associahedra

An n-dimensional associahedron is a polytope whose face lattice is the reverse inclusion
lattice of dissections (i.e. sets of pairwise non-crossing diagonals) of a convex (n+ 3)-gon.
In particular, its vertices correspond to triangulations of the (n+ 3)-gon and its facets cor-
respond to internal diagonals of the (n+ 3)-gon. Let X(n) := {(a, b) | 0 ≤ a < b ≤ n + 2}
denote all diagonals of the (n + 3)-gon and Y(n) := {(a, b) | 0 ≤ a < b− 2 ≤ n} ⊂ X(n).
The g-vector of a diagonal (a, b) ∈ X(n) is g(a, b) :=∑ a<`<be` − b−a−1

n+1 ∑ 1≤`≤n+1e`. We
set g(D) := {g(a, b) | (a, b) ∈ D} for a dissection D. Recall that:
• the set of cones F (n) :=

{
R≥0 g(D) | D dissection of the (n + 3)-gon

}
forms a

complete simplicial fan. See Figure 2 (left and middle).
• the fan F (n) is the normal fan of the associahedron Asso(n) constructed e.g. in [12].
• for any two adjacent triangulations T and T′ with T r {(a, b)} = T′ r {(a′, b′)}

such that 0 ≤ a < a′ < b < b′ ≤ n + 2, the linear dependence among the g-vectors
of T ∪ T′ is given by g(a, b) + g(a′, b′) = g(a, b′) + g(a′, b).

This provides a redundant description of the type cone of the fan F (n).
Corollary 8. For any n ∈N, the type cone of the fan F (n) is given by

TC
(
F (n)

)
=

{
h ∈ RX(n)

∣∣∣∣ h(0,n+2) = 0, and h(a,a+1) = 0 for all 0 ≤ a ≤ n + 1
h(a,b)+h(a′,b′)>h(a,b′)+h(a′,b) for all 0≤ a< a′<b<b′≤n + 2

}
.

The next statement, illustrated in Figure 3, gives the facets of the type cone of F (n).
Proposition 9. Two internal diagonals (a, b) and (a′, b′) of the (n + 3)-gon form an extremal
exchangeable pair for the fan F (n) if and only if a = a′ + 1 and b = b′ + 1, or the opposite.

Corollary 10. The type cone TC
(
F (n)

)
is simplicial.

Combining Corollaries 7 and 10 and Proposition 9, we derive the following descrip-
tion of all polytopal realizations of F (n), recovering all associahedra of [1, Section 3.2].

Corollary 11 ([1, Section 3.2]). For any n ∈N and any ` ∈ R
Y(n)
>0 , the polytope

R`(n) :=

{
z ∈ RX(n)

∣∣∣∣ z ≥ 0, z(0,n+2) = 0 and z(a,a+1) = 0 for all 0 ≤ a ≤ n + 1
z(a,b−1) + z(a+1,b) − z(a,b) − z(a+1,b−1) = `(a,b) for all (a, b) ∈ Y(n)

}
is an n-dimensional associahedron, whose normal fan is F (n). Moreover, the polytopes R`(n)
for ` ∈ R

Y(n)
>0 describe all polytopal realizations of the fan F (n).
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n = 2 n = 3 B◦=
[

0−1 1
1 0−1
−1 1 0

]
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Figure 2: The fans F (2), F (3) and F (B◦). The two right 3-dimensional fans are inter-
sected with the sphere and stereographically projected from the direction (−1,−1,−1).

n = 2

B

A C

n = 3 C

B E

A D F

Figure 3: Facet-defining inequalities of the type cone TC
(
F (n)

)
. See Proposition 9.

Each circled red letter gives an inequality with left (resp. right) hand side given by the
incoming (resp. outgoing) arrows. For instance, the inequality A© is h + h > h .

3.2 Cluster fan and generalized associahedra

We now consider finite type cluster algebras, defined by S. Fomin and A. Zelevinsky
in [7, 8]. We skip the technical definitions and refer to the original papers for details.
We fix an initial exchange matrix B◦ (acyclic or not) of finite type and denote by A(B◦)
the corresponding cluster algebra with principal coefficients, and by V(B◦) its cluster
variables. We denote by g(B◦, x) the g-vector of a cluster variable x ∈ V(B◦) as defined
in [9], and we set g(B◦, X) := {g(B◦, x) | x ∈ X} for a cluster X of A(B◦). Recall that:

1. The set of cones
{

R≥0 g(B◦, X) | X cluster of A(B◦)
}

, together with all their faces,
forms a complete simplicial fan F (B◦), called the cluster fan of B◦. See Figure 2.

2. The cluster fan F (B◦) is the normal fan of the generalized associahedron Asso(B◦),
constructed for bipartite (resp. acyclic, resp. arbitrary) initial exchange matrices
in [4] (resp. [11], resp. [5]).

3. For any two adjacent seeds (B, X) and (B′, X′) in A(B◦) with X r {x} = X′r {x′},
the g-vectors of X ∪X′ with respect to B◦ satisfy one of the two linear dependences
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g(B◦, x) + g(B◦, x′) = ∑
y∈X∩X′

bxy<0

−bxy g(B◦, y) or g(B◦, x) + g(B◦, x′) = ∑
y∈X∩X′

bxy>0

bxy g(B◦, y).

This provides a redundant description of the type cone of the cluster fan F (B◦).
Denoting by n(B◦, x, x′) the vector whose coefficients are given by the appropriate linear
dependence above, we obtain the following statement.

Corollary 12. For any finite type exchange matrix B◦, the type cone of F (B◦) is given by

TC
(
F (B◦)

)
=
{

h ∈ RV(B◦) | 〈 n(B◦, x, x′) | h 〉 > 0 for any exchangeable variables x, x′
}

.

To describe the facets of this type cone, we need the following special mutations.

Definition 13. The mutation of a seed (B, X) in the direction of a cluster variable x ∈ X
is a mesh mutation that starts (resp. ends) at x if the entries bxy for y ∈ X are all non-
negative (resp. all non-positive). A mesh mutation is initial if it ends at a cluster variable
of an initial seed. We denote byM(B◦) the set of all pairs {x, x′} where x and x′ are two
cluster variables of A(B◦) which are exchangeable via a non-initial mesh mutation.

Lemma 14. Consider two adjacent seeds (B, X) and (B′, X′) with X r {x} = X′ r {x′} con-
nected by a non-initial mesh mutation. Then, the g-vectors of X ∪ X′ with respect to B◦ satisfy
the linear dependence g(B◦, x) + g(B◦, x′) = ∑y∈X∩X′ |bxy| g(B◦, y).

For {x, x′} ∈ M(B◦) and y ∈ V(B◦), we denote by αx,x′(y) the coefficient of g(B◦, y)
in the linear dependence of Lemma 14. The next statement is proved in [14, Section 3]
using techniques from quiver representation theory.

Theorem 15. For any finite type exchange matrix B◦ (acyclic or not, simply-laced or not), the
linear dependence among the g-vectors of any mutation decomposes into positive combinations of
linear dependences among g-vectors of non-initial mesh mutations.

Using Theorem 15 as a blackbox, we describe the facets of the type cone. See Figure 4.

E
x1+x2+x3

x2x3
x3 C

x1+x2+x3
x1x3

x1 A

x1+x2
x3

F
x1+x3

x2
B

x2+x3
x1

D
x1+x2

x3
F

x1+x3
x2

x1 A
x1+x2+x3

x1x2
x2 E

x1+x2+x3
x2x3

Figure 4: The facet-defining inequalities of the type cone TC
(
F (B◦)

)
for the cluster

fan of Figure 2 (right). See Theorem 16. The conventions are similar to Figure 3.
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Theorem 16. For any finite type exchange matrix B◦, the type cone TC
(
F (B◦)

)
is simplicial

and the non-initial mesh mutations are the extremal exchangeable pairs of the cluster fan F (B◦).

Combining Corollary 7 and Theorem 16, we derive the following description of all
polytopal realizations of the cluster fan F (B◦). This result was stated in [2] in the special
situation of acyclic seeds in simply-laced types, with a very different proof.

Theorem 17. For any finite type exchange matrix B◦, and for any ` ∈ R
M(B◦)
>0 , the polytope

R`(B◦) :=
{

z ∈ RV(B◦)
∣∣∣ z ≥ 0 and zx + zx′ −∑

y∈V(B◦)
αx,x′(y) zy = `{x,x′} for {x, x′} ∈ M(B◦)

}
is a generalized associahedron, whose normal fan is the cluster fan F (B◦). Moreover, the poly-
topes R`(B◦) for ` ∈ R

M(B◦)
>0 describe all polytopal realizations of F (B◦).

3.3 Non-kissing fans and gentle associahedra

We now consider non-kissing complexes of gentle algebras studied in [15]. We briefly
recall all definitions needed here as they are purely combinatorial.

Fix a gentle bound quiver Q̄ = (Q, I), i.e. a finite quiver Q (with vertices Q0, arrows Q1,
and source and target maps s and t) and an ideal I of the path algebra kQ such that

(i) each vertex a ∈ Q0 has at most two incoming and two outgoing arrows,
(ii) the ideal I is generated by paths of length exactly two,

(iii) for any β ∈ Q1, there is at most one α ∈ Q1 such that t(α) = s(β) and αβ /∈ I
(resp. αβ ∈ I) and at most one γ ∈ Q1 such that t(β)= s(γ) and βγ /∈ I (resp. βγ ∈ I).

The blossoming quiver Q̄` of a gentle quiver Q̄ is the gentle quiver obtained by com-
pleting all vertices of Q̄ with additional incoming or outgoing blossoms such that all
vertices of Q̄ become 4-valent. Blossom vertices appear in white in all pictures.

A string in Q̄ is a word ρ = αε1
1 αε2

2 · · · α
ε`
` with αi ∈ Q1 and εi ∈ {−1, 1} such that

t(αεi
i ) = s(αεi+1

i+1 ) and containing no factor π or π−1 for π ∈ I ∪ {αα−1 | α ∈ Q1}. We
implicitly identify the two inverse strings ρ and ρ−1. A walk of Q̄ is a maximal string of
its blossoming quiver Q̄` (meaning that each endpoint is a blossom).

A substring of a walk ω = αε1
1 · · · α

ε`
` of Q̄ is a string σ = α

εi+1
i+1 · · · α

ε j−1
j−1 of Q̄ for some

indices 1 ≤ i < j ≤ `. The substring σ = α
εi+1
i+1 · · · α

ε j−1
j−1 is at the bottom (resp. on top) of the

walk ω = αε1
1 · · · α

ε`
` if εi = 1 and ε j = −1 (resp. if εi = −1 and ε j = 1). In other words the

two arrows of ω incident to the endpoints of σ point towards σ (resp. outwards from σ).
We denote by Σbot(ω) and Σtop(ω) the sets of bottom and top substrings of ω.

For a walk ω, we denote by peaks(ω) (resp. deeps(ω)) the multiset of peaks (resp. deeps)
of ω, i.e. vertices which are substrings on the top (resp. at the bottom) of ω. A walk is
straight if it has no peak nor deep.
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Figure 5: Two non-kissing fans. As the fans are 3-dimensional, we intersect them with
the sphere and stereographically project them from the direction (−1,−1,−1).

Two walks ω, ω′ are kissing if Σtop(ω) ∩ Σbot(ω
′) 6= ∅ (as

illustrated on the right) or the opposite. A walk is proper if it is
not straight nor self-kissing. The non-kissing complex of Q̄ is the
simplicial complex NK(Q̄) whose faces are the sets of pairwise
non-kissing proper walks of Q̄.

For a multiset V = {{v1, . . . , vk}} of Q0, we denote by mV := ∑i∈[k] evi , where (ev)v∈Q0

is the canonical basis of RQ0 . The g-vector of a walk ω is g(ω) :=mpeaks(ω) −mdeeps(ω).
We set g(F) := {g(ω) | ω ∈ F} for a non-kissing face F ∈ NK(Q̄). Recall that:

1. the set of cones F (Q̄) :=
{

R≥0 g(F) | F non-kissing facet of NK(Q̄)
}

forms a com-
plete simplicial fan, called the non-kissing fan of Q̄. See Figure 5.

2. the non-kissing fan F (Q̄) is the normal fan of the gentle associahedron Asso(Q̄),
constructed in [15].

3. for any two adjacent non-kissing facets F and F′ ofNK(Q̄)
with Fr{ω}=F′r{ω′}, the linear dependence among the
g-vectors of F∪ F′ is given by g(ω) + g(ω′)= g(µ) + g(ν),
where µ := ρ′στ and ν := ρστ′ if the walks ω = ρστ and
ω′ = ρ′στ′ kiss along σ (as illustrated on the right).

This provides a redundant description of the type cone of the non-kissing fan F (Q̄).
See Figure 6 for examples of facet descriptions of these type cones.

Corollary 18. The type cone of the non-kissing fan F (Q̄) is given by

TC
(
F (Q̄)

)
=

{
h ∈ RW(Q̄)

∣∣∣∣ hω = 0 for any improper walk ω

hω + hω′ > hµ + hν for any exchangeable walks ω, ω′

}
,

where µ := ρ′στ and ν := ρστ′ if the walks ω = ρστ and ω′ = ρ′στ′ kiss along σ.
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D

A C E

B

B F

A
D E

H

K C G K

Figure 6: The facet-defining inequalities of the type cone TC
(
F (Q̄)

)
for the non-

kissing fan of Figure 5 (right). The conventions are similar to Figure 3.

As illustrated by the second non-kissing fan of Figure 6 (which lives in R11, has a
3-dimensional lineality space, and has 9 facets), the type cone TC(F (Q̄)) is not always
simplicial. However, it turns out to be for the following family of quivers.

Definition 19. A gentle quiver Q̄ is called:
• brick if any (non necessarily oriented) cycle of Q̄ contains at least two relations in I,
• 2-acyclic if it contains no cycle of length 2.

For a string σ of Q̄, we denote by σ
�

(resp. σ�) the unique string of the blossom-
ing quiver Q̄` of the form σ

�
= σα−1

1 α2 . . . α` (resp. σ� = σα1α−1
2 . . . α−1

` ) with ` ≥ 1
and α1, . . . , α` ∈ Q1 and such that t(α`) (resp. s(α`)) is a blossom of Q̄`. The terminol-
ogy usually says that σ

�
(resp. σ�) is obtained by adding a hook (resp. a cohook) to σ.

We define similarly

�

σ (resp. �σ). The walk

�

(σ
�
) = (

�

σ)
�

of Q̄ is simply denoted
by

�

σ
�

, and we define similarly �σ�,

�

σ� and �σ
�

.

Proposition 20. For any brick and 2-acyclic gentle quiver Q̄ and any string σ ∈ S(Q̄), the
walks �σ� and

�

σ
�

are exchangeable with distinguished substring σ.

Proposition 21. For any brick and 2-acyclic gentle quiver Q̄, the extremal exchangeable pairs
for the non-kissing fan of Q̄ are precisely the pairs { �σ�,

�

σ
�} for all strings σ ∈ S(Q̄).

Corollary 22. For any brick and 2-acyclic gentle quiver Q̄, the type cone TC
(
F (Q̄)

)
of the

non-kissing fan F (Q̄) is simplicial.

Theorem 23. For any brick and 2-acyclic gentle quiver Q̄ and any ` ∈ R
S(Q̄)
>0 , the polytope

R`(Q̄) :=

{
z ∈ RW(Q̄)

∣∣∣∣ z ≥ 0 and zω = 0 for any improper walk ω

z �σ� + z �

σ
� − z �

σ� − z �σ
� = `σ for all σ ∈ S(Q̄)

}
is a realization of the non-kissing fan F (Q̄). Moreover, the polytopes R`(Q̄) for ` ∈ R

S(Q̄)
>0

describe all polytopal realizations of F (Q̄).
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3.4 Nested fans and graph associahedra

We finally consider the graph associahedra studied in [3, 6, 16, 17]. Again, we briefly
recall all definitions needed here as they are purely combinatorial.

Let G be a graph with vertex set V. A tube of G is a connected induced subgraph
of G. Let T (G) denote the set of tubes of G. The inclusion maximal tubes of G are its
connected components κ(G). The tubes which are neither empty nor maximal are called
proper. Two tubes t, t′ of G are compatible if they are either nested (i.e. t ⊆ t′ or t′ ⊆ t), or
disjoint and non-adjacent (i.e. t∪ t′ is not a tube of G). A tubing on G is a set T of pairwise
compatible proper tubes of G. The nested complex of G is the simplicial complex N (G)
of all tubings on G.

The g-vector of a tube t of G is the projection g(t) of the characteristic vector ∑v∈t ev
of t orthogonally to ∑v∈V ev. We set g(T) := {g(t) | t ∈ T} for a tubing T. Recall that:

1. the set of cones F (G) :=
{

R≥0 g(T) | T tubing on G
}

forms a complete simplicial
fan, called the nested fan of G.

2. the nested fan F (G) is the normal fan of the graph associahedron Asso(G), con-
structed in [3, 6, 16, 17]. For instance, the permutahedra, associahedra and cyclo-
hedra are graph associahedra of complete graphs, paths, and cycles respectively.

3. for any maximal tubings T, T′ on G with Tr {t} = T′r {t′}, the linear dependence
among the g-vectors of T ∪ T′ is given by g(t) + g(t′) = g(t ∪ t′) + ∑s∈κ(t∩t′) g(s),
where κ(t ∩ t′) denote the set of connected components of t ∩ t′.

This provides a redundant description of the type cone of the nested fan F (n).

Corollary 24. For any graph G, the type cone of the nested fan F (G) is given by

TC
(
F (G)

)
=

{
h ∈ RT (G)

∣∣∣∣ ht = 0 for any improper tube t
ht + ht′ > h t∪t′ + ∑

s∈κ(t∩t′)
hs for any exchangeable tubes t, t′

}
.

The next statement gives the facets of the type cone of the nested fan F (G).

Proposition 25. Two tubes t and t′ of G form an extremal exchangeable pair for the nested fan
of G if and only if t r {v} = t′ r {v′} for some neighbor v of t′ and some neighbor v′ of t.

Corollary 26. For a graph G on V with tubes T (G) and a height vector h ∈ RT (G), the nested
fan F (G) is the normal fan of the polytope

{
x ∈ RV

∣∣ 〈 g(t) | x 〉 ≤ ht for any tube t ∈ T (G)
}

if and only if h∅ = hG = 0 and hsr{v′} + hsr{v} > hs + hsr{v,v′} for any tube s ∈ T (G) and
distinct non-disconnecting vertices v, v′ of s.

Corollary 27. The nested fan F (G) has ∑ s∈T (G)
(nd(s)

2 ) extremal exchangeable pairs, where
nd(s) is the number of non-disconnecting vertices of s.

For instance, the number of extremal exchangeable pairs is 2n−2(n
2) for the permuta-

hedron, (n
2) for the associahedron, and 3(n

2)− n for the cyclohedron. In fact, it turns out
that the type cone TC

(
F (G)

)
is simplicial if and only if G is a path.
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