Séminaire Lotharingien de Combinatoire **84B** (2020) Article #16, 12 pp.

Flagged Littlewood–Richardson tableaux and branching rule for orthogonal groups

Il-Seung Jang*1 and Jae-Hoon Kwon^{†1}

¹Department of Mathematical Sciences, Seoul National University, Seoul, Korea

Abstract. We give a new combinatorial formula for the branching rule from GL_n to O_n generalizing the Littlewood's restriction formula. The formula is given in terms of Littlewood–Richardson tableaux with certain flag conditions which vanish in a stable range.

Keywords: quantum groups, crystal graphs, classical groups, branching rules

1 Introduction

Let $V_{GL_n}^{\lambda}$ denote a complex finite-dimensional irreducible representation of the complex general linear group GL_n parametrized by a partition λ of length $\ell(\lambda) \leq n$. Suppose that G_n is a closed subgroup Sp_n or O_n , where n is even for $G_n = Sp_n$. Let $V_{G_n}^{\mu}$ be a finite-dimensional irreducible G_n -module parametrized by a partition μ with $\ell(\mu) \leq n/2$ for $G_n = Sp_n$, and by a partition μ with $\ell(\mu) \leq n$ and $\mu'_1 + \mu'_2 \leq n$ for $G_n = O_n$. Here $\mu' = (\mu'_i)_{i \geq 1}$ is the conjugate partition of μ .

Let

$$\left[V_{\mathrm{GL}_{n}}^{\lambda}:V_{\mathrm{G}_{n}}^{\mu}\right] = \dim \operatorname{Hom}_{\mathrm{G}_{n}}\left(V_{\mathrm{G}_{n}}^{\mu},V_{\mathrm{GL}_{n}}^{\lambda}\right)$$
(1.1)

denote the multiplicity of $V_{G_n}^{\mu}$ in $V_{GL_n}^{\lambda}$. In [10, 11], Littlewood showed that if $\ell(\lambda) \leq n/2$, then

$$\left[V_{\mathrm{GL}_n}^{\lambda}:V_{\mathrm{Sp}_n}^{\mu}\right] = \sum_{\delta \in \mathscr{P}^{(2)}} c_{\delta'\mu}^{\lambda} \quad , \quad \left[V_{\mathrm{GL}_n}^{\lambda}:V_{\mathrm{O}_n}^{\mu}\right] = \sum_{\delta \in \mathscr{P}^{(2)}} c_{\delta\mu}^{\lambda} \quad , \tag{1.2}$$

where $c^{\alpha}_{\beta\gamma}$ is the Littlewood–Richardson coefficient corresponding to partitions α , β , γ , and $\mathscr{P}^{(2)}$ denotes the set of partition with even parts. There have been numerous works on extending the Littlewood's restriction rules (1.2) for arbitrary λ with $\ell(\lambda) \leq n$ (see [1, 3] and also the references therein), but most of which are obtained in an algebraic way and hence given not in a subtraction-free way.

^{*}is_jang@snu.ac.kr.

[†]jaehoonkw@snu.ac.kr.

In [12], Sundaram gave a beautiful combinatorial formula for (1.1) when $G_n = Sp_n$, as the sum of the numbers of Littlewood–Richardson (LR) tableaux of shape λ/μ with content δ' satisfying certain constraints on their entries, which vanish in a stable range $\ell(\lambda) \leq n/2$. Recently, based on the results in [8, 6], Lecouvey and Lenart obtained another formula for (1.1) when $G_n = Sp_n$ in terms of LR tableaux with some flag conditions on their companion tableaux [9]. On the other hand, no orthogonal analogue of these formula has been known so far.

The main result in this abstract is to give a combinatorial formula for (1.1) when $G_n = O_n$ for arbitrary λ and μ in terms of LR tableaux with certain flag conditions on their companion tableaux which vanish in a stable range $\ell(\lambda) \leq n/2$.

For simplicity, let us state our main result when $n - 2\mu'_1 \ge 0$. Note that the restriction on $n - 2\mu'_1$ is not significant, since the result for $n - 2\mu'_1 < 0$ is almost identical. Let $LR^{\lambda}_{\delta\mu\pi}$ be the set of LR tableaux of shape λ/δ with content μ^{π} , where μ^{π} is the skew Young diagram obtained by 180°-rotation of μ . Then we have the following (Theorem 4.10).

Theorem 1.1. For $U \in LR^{\lambda}_{\delta\mu^{\pi}}$, let σ_i be the row index of the leftmost $\mu'_1 - i + 1$ in U for $1 \leq i \leq \mu'_1$, and τ_j the row index of the second leftmost $\mu'_2 - j + 1$ in U for $1 \leq j \leq \mu'_2$. Let $m_1 < \cdots < m_{\mu'_1}$ be the sequence given by $m_i = \min\{n - \sigma_i + 1, 2i - 1\}$, and let $n_1 \leq \cdots \leq n_{\mu'_2}$ be the sequence such that n_j is the *j*-th smallest number in $\{j + 1, \ldots, n\} \setminus \{m_{j+1}, \ldots, m_{\mu'_1}\}$. Let $\underline{c}^{\lambda}_{\delta\mu}$ denote the number of $U \in LR^{\lambda}_{\delta\mu^{\pi}}$ such that

$$\tau_i + n_i \leqslant n + 1$$
,

for $1 \leq j \leq \mu'_2$. Then we have

$$\left[V_{\mathrm{GL}_n}^{\lambda}:V_{\mathrm{O}_n}^{\mu}\right] = \sum_{\delta \in \mathscr{P}^{(2)}} \underline{c}_{\delta \mu}^{\lambda}.$$

The branching multiplicity (1.1) is equal to the one from D_{∞} to $A_{+\infty}$ from a viewpoint of see-saw dual pairs in Howe duality on a Fock space [13]. We use the Kashiwara's crystal base theory of quantum groups and the *spinor model* for crystal graphs of type D_{∞} [7] to describe the latter multiplicity. Unlike the case of Sp_n [9], we have to develop in addition a non-trivial combinatorial algorithm on spinor model called *separation* in order to have a description of branching multiplicity in terms of LR tableaux satisfying the condition for $c_{\delta\mu}^{\lambda}$. This is a key ingredient in the proof of Theorem 1.1. We can also recover the formula (1.2) in a stable range directly from the above formula. A full version of this paper including detailed proofs has appeared in [5].

2 Notations

Let \mathbb{Z}_+ denote the set of non-negative integers. Let \mathscr{P} be the set of partitions or Young diagrams. We let $\mathscr{P}_{\ell} = \{ \lambda \in \mathscr{P} \mid \ell(\lambda) \leq \ell \}$ for $\ell \geq 1$, where $\ell(\lambda)$ is the length of λ , let

 $\mathscr{P}^{(2)} = \{\lambda \in \mathscr{P} | \lambda = (\lambda_i)_{i \ge 1}, \lambda_i \in 2\mathbb{Z}_+ (i \ge 1)\}$. For a skew Young diagram λ/μ , we define $SST(\lambda/\mu)$ to be the set of semistandard tableaux of shape λ/μ with entries in \mathbb{N} . For $T \in SST(\lambda/\mu)$, let w(T) be the word given by reading the entries of T column by column from right to left and from top to bottom in each column, and let sh(T) denote the shape of T.

Let $\lambda \in \mathscr{P}$ be given. For $T \in SST(\lambda)$ and $a \in \mathbb{N}$, we denote by $a \to T$ the tableau obtained by the column insertion of a into T (cf. [2]). For a word $w = w_1 \dots w_r$, we define $(w \to T) = (w_r \to (\dots \to (w_1 \to T)))$. For a semistandard tableau S, we define $(S \to T) = (w(S) \to T)$.

Let λ^{π} denote the skew Young diagram obtained from λ by 180° rotation. Let H_{λ} and $H_{\lambda^{\pi}}$ be the tableaux in $SST(\lambda)$ and $SST(\lambda^{\pi})$, respectively, where the *i*-th entry from the top in each column is filled with *i* for $i \ge 1$.

For $\lambda, \mu, \nu \in \mathscr{P}$, let $LR_{\mu\nu}^{\lambda}$ be the set of Littlewood–Richardson tableaux *S* of shape λ/μ with content ν . There is a natural bijection from $LR_{\mu\nu}^{\lambda}$ to the set of $T \in SST(\nu)$ such that $(T \rightarrow H_{\mu}) = H_{\lambda}$, where each *i* in the *j*th row of $S \in LR_{\mu\nu}^{\lambda}$ corresponds to *j* in the *i*th row of *T*. We call such *T* a companion tableau of $S \in LR_{\mu\nu}^{\lambda}$.

We also define $LR_{\mu\nu\pi}^{\lambda}$ to be the set of $S \in SST(\lambda/\mu)$ with content ν^{π} such that $w(T) = w_1 \dots w_r$ is an anti-lattice word, that is, the number of i in $w_k \dots w_r$ is greater than or equal to that of i-1 for each $k \ge 1$ and $1 < i \le \ell(\nu)$. Let us call S a Littlewood–Richardson tableaux of shape λ/μ with content ν^{π} . As in case of $LR_{\mu\nu}^{\lambda}$, the map from $S \in LR_{\mu\nu\pi}^{\lambda}$ to its companion tableau gives a natural bijection from $LR_{\mu\nu\pi}^{\lambda}$ to the set of $T \in SST(\nu^{\pi})$ such that $(T \to H_{\mu}) = H_{\lambda}$. From now on, all the LR tableaux are assumed to be the corresponding companion tableaux unless otherwise specified.

Let $S \in LR_{\mu'\nu'}^{\lambda'}$ be given, that is, $(S \to H_{\mu'}) = H_{\lambda'}$. Let S^1, \ldots, S^p denote the columns of S enumerated from the right. For $1 \le i \le p$, let $H^i = (S^i \to H^{i-1})$ with $H^0 = H_{\mu'}$ so that $H^p = H_{\lambda'}$. Define $Q(S \to H_{\mu'}) \in SST(\lambda/\mu)$ to be the tableau such that the horizontal strip $sh(H^i)'/sh(H^{i-1})'$ is filled with $1 \le i \le p$. On the other hand, let $U \in LR_{\mu\nu\pi}^{\lambda}$ be given, that is, $sh(U \to H_{\mu}) = H_{\lambda}$. Let U_i denote the *i*-th row of U from the top, and let $H_i = (U_i \to H_{i-1})$ with $H_0 = H_{\mu}$ for $1 \le i \le p$. Define $Q(U \to H_{\mu})$ to be tableau such that the horizontal strip $sh(H_i)/sh(H_{i-1})$ is filled with $1 \le i \le p$.

Then we have a bijection

$$\psi: LR^{\lambda'}_{\mu'\nu'} \longrightarrow LR^{\lambda}_{\mu\nu\pi} , \qquad (2.1)$$

where for $S \in LR^{\lambda'}_{\mu'\nu'}$, $\psi(S) = U$ is given by a unique $U \in SST(\nu^{\pi})$ such that $(U \to H_{\mu}) = H_{\lambda}$ and $Q(U \to H_{\mu}) = Q(S \to H_{\mu'})$.

3 Spinor model

3.1 Definitions

Let us recall the spinor model of type D_{∞} , which is a combinatorial model for the crystal of an integrable irreducible highest weight module over the quantum group of type D_{∞} (see [7] and [5, Section 2.1] for more details).

Let \mathfrak{g} be the Kac-Moody Lie algebra of type D_{∞} . We assume that the index set for simple roots is $I = \mathbb{Z}_+$, and the weight lattice is $P = \mathbb{Z}\Lambda_0 \oplus (\bigoplus_{i \ge 1} \mathbb{Z}\epsilon_i)$. The associated Dynkin diagram, set of simple roots $\Pi = \{\alpha_i | i \ge 0\}$, and fundamental weight Λ_i ($i \ge 0$) are given by

$$\Pi = \{ \alpha_0 = -\epsilon_1 - \epsilon_2, \ \alpha_i = \epsilon_i - \epsilon_{i+1} \ (i \ge 1) \}, \quad \Lambda_i = \begin{cases} \Lambda_0 + \epsilon_1, & \text{if } i = 1, \\ 2\Lambda_0 + \epsilon_1 + \dots + \epsilon_i, & \text{if } i > 1. \end{cases}$$

Let \mathfrak{l} be the subalgebra of \mathfrak{g} associated to $\Pi \setminus \{\alpha_0\}$, which is of type $A_{+\infty}$.

For $n \ge 1$, let

$$\mathcal{P}(\mathcal{O}_n) = \{ \mu = (\mu_1, \cdots, \mu_n) \mid \mu_i \in \mathbb{Z}_+, \ \mu_1 \ge \ldots \ge \mu_n, \ \mu'_1 + \mu'_2 \le n \}.$$

For $\mu \in \mathcal{P}(O_n)$, put $\Lambda(\mu) = n\Lambda_0 + \mu'_1\epsilon_1 + \mu'_2\epsilon_2 + \cdots$. Then we have $P_+ = \{\Lambda(\mu) | \mu \in \bigcup_n \mathcal{P}(O_n)\}$ the set of dominant integral weights for \mathfrak{g} . We denote by $\mathbf{B}(\Lambda)$ the crystal of an integrable irreducible highest weight module over the quantum group $U_q(\mathfrak{g})$ with highest weight $\Lambda \in P_+$.

Let *T* be a tableau of two-column skew shape $(2^{b+c}, 1^a)/(1^b)$ for $a, b, c \in \mathbb{Z}_+$. We denote the left and right columns of *T* by T^L and T^R respectively. Suppose that *T* is semistandard and we can slide down T^R by *k* positions to have a semistandard tableau *T'* of shape $(2^{b+c}, 1^{a-k})/(1^{b-k})$. We define \mathfrak{r}_T to to be the maximal such *k*.

Let

$$\begin{split} \mathbf{T}(a) &= \left\{ T \mid T \in SST\left((2^{b+c}, 1^{a})/(1^{b})\right), \ b, c \in 2\mathbb{Z}_{+}, \ \mathfrak{r}_{T} \leqslant 1 \right\} \quad (a \in \mathbb{Z}_{+}), \\ \overline{\mathbf{T}}(0) &= \bigsqcup_{b,c \in 2\mathbb{Z}_{+}} SST\left((2^{b+c+1})/(1^{b})\right), \quad \mathbf{T}^{\mathrm{sp}} = \bigsqcup_{a \in \mathbb{Z}_{+}} SST((1^{a})), \\ \mathbf{T}^{\mathrm{sp}+} &= \left\{ T \mid T \in \mathbf{T}^{\mathrm{sp}}, \ \mathfrak{r}_{T} = 0 \right\}, \quad \mathbf{T}^{\mathrm{sp}-} = \left\{ T \mid T \in \mathbf{T}^{\mathrm{sp}}, \ \mathfrak{r}_{T} = 1 \right\}, \end{split}$$

where the integer \mathfrak{r}_T of $T \in \mathbf{T}^{sp}$ is defined by the residue of ht(T) modulo 2. It is shown that $\mathbf{T}(a)$, $\overline{\mathbf{T}}(0)$ and \mathbf{T}^{sp} have \mathfrak{g} -crystal structure [7, Proposition 4.1] (cf. [5, Section 2.3]) such that

$$\begin{split} \mathbf{T}(a) &\cong \mathbf{B}(\Lambda_a) \ (a \geq 2), \quad \mathbf{T}(0) \cong \mathbf{B}(2\Lambda_0), \quad \overline{\mathbf{T}}(0) \cong \mathbf{B}(2\Lambda_1), \quad \mathbf{T}(1) \cong \mathbf{B}(\Lambda_0 + \Lambda_1), \\ \mathbf{T}^{\mathrm{sp}+} &\cong \mathbf{B}(\Lambda_0), \quad \mathbf{T}^{\mathrm{sp}-} \cong \mathbf{B}(\Lambda_1). \end{split}$$

Let $\mu \in \mathcal{P}(O_n)$ be given. Let q_{\pm} and r_{\pm} be non-negative integers such that

$$\begin{cases} n - 2\mu'_1 = 2q_+ + r_+, & \text{if } n - 2\mu'_1 \ge 0, \\ 2\mu'_1 - n = 2q_- + r_-, & \text{if } n - 2\mu'_1 < 0, \end{cases}$$

where $r_{\pm} = 0, 1$. Let $\overline{\mu} = (\overline{\mu}_i) \in \mathscr{P}$ be such that $\overline{\mu}'_1 = n - \mu'_1$ and $\overline{\mu}'_i = \mu'_i$ for $i \ge 2$ and let $M_+ = \mu'_1$ and $M_- = \overline{\mu}'_1$. Put

$$\widehat{\mathbf{T}}(\mu, n) = \begin{cases} \mathbf{T}(\mu_1) \times \cdots \times \mathbf{T}(\mu_{M_+}) \times \mathbf{T}(0)^{\times q_+} \times (\mathbf{T}^{\mathrm{sp}+})^{\times r_+}, & \text{if } n - 2\mu_1' \ge 0, \\ \mathbf{T}(\overline{\mu}_1) \times \cdots \times \mathbf{T}(\overline{\mu}_{M_-}) \times \overline{\mathbf{T}}(0)^{\times q_-} \times (\mathbf{T}^{\mathrm{sp}-})^{\times r_-}, & \text{if } n - 2\mu_1' < 0. \end{cases}$$

We give the g-crystal structure on $\widehat{\mathbf{T}}(\mu, n)$ by the tensor product rule of crystals by identifying $(\dots, T_2, T_1) \in \widehat{\mathbf{T}}(\mu, n)$ with $T_1 \otimes T_2 \otimes \dots$.

Let

$$\mathbf{T}(\mu, n) = \{ \mathbf{T} = (\dots, T_2, T_1) \in \mathbf{T}(\mu, n) \mid T_{i+1} < T_i \ (i \ge 1) \},\$$

where $T_{i+1} < T_i$ means that the pair (T_{i+1}, T_i) satisfies the *admissible conditions* given in [7, Definition 3.4]. It is shown in [7] that $\mathbf{T}(\mu, n)$ is a connected component in $\hat{\mathbf{T}}(\mu, n)$ including the unique highest weight element of weight $\Lambda(\mu)$. Hence we have the following.

Theorem 3.1. [7, *Theorem* 4.3–4.4] For $\mu \in \mathcal{P}(O_n)$, we have

$$\mathbf{T}(\mu, n) \cong \mathbf{B}(\Lambda(\mu)).$$

We call $\mathbf{T}(\mu, n)$ the spinor model for $\mathbf{B}(\Lambda(\mu))$.

Example 3.2. Let n = 8 and $\mu = (4, 3, 3, 2) \in \mathcal{P}(O_8)$. Then $\Lambda(\mu) = \Lambda_4 + 2\Lambda_3 + \Lambda_2$. Let $\mathbf{T} = (T_4, T_3, T_2, T_1)$ given by

where the dotted line denotes the common horizontal line L. In this case, $T_4 < T_3 < T_2 < T_1$ (cf. [7, Definition 3.4]) and thus $\mathbf{T} \in \mathbf{T}(\mu, 8)$.

3.2 Separation lemma

For simplicity, we assume that *n* is even and $\mu \in \mathcal{P}(O_n)$ satisfies $n - 2\mu'_1 \ge 0$. The same result (Lemma 3.4) also holds for the other cases (see [5, Section 3.3–3.4] for more details).

Definition 3.3. Let

$$\mathbf{H}(\mu, n) = \{ \mathbf{T} \mid \mathbf{T} \in \mathbf{T}(\mu, n), \ \widetilde{e}_i \mathbf{T} = \mathbf{0} \ (i \neq 0) \},\$$

and call $\mathbf{T} \in \mathbf{H}(\mu, n)$ an \mathfrak{l} -highest weight element in $\mathbf{T}(\mu, n)$. In other words, we have $\mathbf{T} \in \mathbf{H}(\mu, n)$ if and only if $\mathbf{T} \equiv_{\mathfrak{l}} H_{\lambda}$ for some $\lambda \in \mathscr{P}$. Here $\equiv_{\mathfrak{l}}$ means the \mathfrak{l} -crystal equivalence or Knuth equivalence.

Let $\mathbf{T} = (T_l, \ldots, T_1) \in \mathbf{H}(\mu, n)$ with $\operatorname{sh}(T_i) = (2^{b_i+c_i}, 1^{a_i})/(1^{b_i})$ for $1 \leq i \leq l$. We denote by $T_i^{\mathbb{R}}(k)$ (resp. $T_i^{\mathbb{L}}(k)$) the *k*-th entry of $T_i^{\mathbb{R}}$ (resp. $T_i^{\mathbb{L}}$) from the bottom. Let us introduce an algorithm on (T_{i+1}, T_i) , which is roughly speaking sliding the *tail* of T_i to the left by one position.

(S1) If $T_{i+1}^{\mathbb{R}}(1) < T_i^{\mathbb{L}}(a_i)$, then we move the subtableau $\{T_i^{\mathbb{L}}(k) : 1 \leq k \leq a_i\}$ of $T_i^{\mathbb{L}}$ to be located below $T_{i+1}^{\mathbb{R}}$. For example,

Here $T_{i+1}^{R}(1) = 2 < T_{i}^{L}(a_{i}) = 3$ with $a_{i} = 2$.

(S2) If $T_{i+1}^{\mathbb{R}}(1) > T_i^{\mathbb{L}}(a_i)$, then we slide up the subtableau $\{T_i^{\mathbb{L}}(k) : k \ge a_i\}$ of $T_i^{\mathbb{L}}$ by two positions and put $T_{i+1}^{\mathbb{R}}(1)$ below it. Also we slide down the subtableau $T_{i+1}^{\mathbb{R}} \setminus \{T_{i+1}^{\mathbb{R}}(1)\}$ of $T_{i+1}^{\mathbb{R}}$ by two positions and put the subtableau $\{T_i^{\mathbb{L}}(k) : 1 \le k \le a_i - 1\}$ below it. For example,

Here $T_{i+1}^{R}(1) = 4 > T_{i}^{L}(a_{i}) = 3$ with $a_{i} = 3$.

Note that the single-column tableaux T_{i+1}^{L} and T_{i}^{R} are invariant under the above algorithm.

We identify **T** with $(T_l^{L}, T_l^{R}, ..., T_1^{L}, T_1^{R})$. Let $\widetilde{\mathbf{T}}$ be the sequence of single-column tableaux obtained from **T** by applying the above algorithm to each pair (T_{i+1}, T_i) from l - 1 to 1, and then removing T_l^{L} . By [5, Lemma 3.10, Corollary 3.11], we have $\widetilde{\mathbf{T}} \in \mathbf{H}(\widetilde{\mu}, n - 1)$, where $\widetilde{\mu} = (\mu_2, \mu_3, ...)$. Hence we can apply the above algorithm to $\widetilde{\mathbf{T}}$ again, and repeat this process as far as possible to get a tableau $\overline{\mathbf{T}}$.

Lemma 3.4 (Separation lemma). Under the above hypothesis, $\overline{\mathbf{T}}$ satisfies the following conditions:

- (1) $\overline{\mathbf{T}} \in SST(\eta)$, where η is the skew Young diagram given in (3.1),
- (2) $\overline{\mathbf{T}}$ is Knuth equivalent to \mathbf{T} , that is, $\overline{\mathbf{T}} \equiv_{\mathfrak{l}} \mathbf{T}$,
- (3) Let $\overline{\mathbf{T}}^{\text{body}}$ and $\overline{\mathbf{T}}^{\text{tail}}$ be the subtableaux of $\overline{\mathbf{T}}$ located above and below the horizontal line L, respectively. Then $\overline{\mathbf{T}}^{\text{body}} = H_{(\delta')^{\pi}}$ for some $\delta \in \mathscr{P}^{(2)}$, and $\overline{\mathbf{T}}^{\text{tail}} \in LR_{\delta'\mu'}^{\lambda'}$ if $\mathbf{T} \equiv_{\mathfrak{l}} H_{\lambda'}$ for some $\lambda \in \mathscr{P}$.

Note that $T \equiv_{\mathfrak{l}} \overline{T} \equiv_{\mathfrak{l}} \overline{T}^{\text{body}} \otimes \overline{T}^{\text{tail}}$ by (2), and it is not difficult to check that (3) implies that the map

$$T \longmapsto \overline{T}^{\text{tail}}$$
 (3.2)

is injective (see [5, Lemma 6.5]). We will describe the image of the injection (3.2) in Section 4.

Example 3.5. Let n = 8 and $\mu = (4, 3, 3, 2) \in \mathcal{P}(O_8)$. Let $\mathbf{T} = (T_4, T_3, T_2, T_1) \in \mathbf{H}(\mu, 8)$ given as in Example 3.2. Then since $T_4^{\mathsf{R}}(1) = 2 > 1 = T_3^{\mathsf{L}}(3)$, $T_3^{\mathsf{R}}(1) = 2 > 1 = T_2^{\mathsf{L}}(3)$ and $T_2^{\mathsf{R}}(1) = 4 > 3 = T_1^{\mathsf{L}}(2)$, we apply the algorithm (S2) to each pair (T_{i+1}, T_i) for i = 1, 2, 3.

Consequently we have \widetilde{T} given by

with the left-most column (in gray) removed. By [5, Lemma 3.10, Corollary 3.11], we have $\tilde{\mathbf{T}} \in \mathbf{H}(\tilde{\mu}, 7)$ with $\tilde{\mu} = (3, 3, 2)$.

Repeating this process, we have

where

4 Combinatorial formula of branching multiplicities

4.1 Branching from D_{∞} to $A_{+\infty}$

In this section, we assume $n \in \mathbb{Z}_+$. Let $\mu \in \mathcal{P}(\mathcal{O}_n)$, $\lambda \in \mathscr{P}_n$ and $\delta \in \mathscr{P}_n^{(2)}$ be given. We denote by $\delta^{\text{rev}} = (\delta_1^{\text{rev}}, \dots, \delta_n^{\text{rev}})$ the reverse sequence of $\delta = (\delta_1, \dots, \delta_n)$, that is, $\delta_i^{\text{rev}} = \delta_{n-i+1}$, for $1 \leq i \leq n$. We put $p = \mu'_1$, $q = \mu'_2$, and $r = (\overline{\mu})'_1$ if $n - 2\mu'_1 < 0$. Let

$$LR^{\mu}_{\lambda}(\mathfrak{d}) = \{ \mathbf{T} \mid \mathbf{T} \in \mathbf{H}(\mu, n), \ \mathbf{T} \equiv_{\mathfrak{l}} H_{\lambda'} \}, \quad c^{\mu}_{\lambda}(\mathfrak{d}) = |LR^{\mu}_{\lambda}(\mathfrak{d})|.$$

Note that $c_{\lambda}^{\mu}(\mathfrak{d})$ is equal to the multiplicity of irreducible highest weight \mathfrak{l} -module with highest weight $\sum_{i \ge 1} \lambda'_i \epsilon_i$ in the irreducible highest weight \mathfrak{g} -module with highest weight $\Lambda(\mu)$.

Definition 4.1. For $S \in LR^{\lambda'}_{\delta'\mu'}$, let $s_1 \leq \cdots \leq s_p$ denote the entries in the first row, and $t_1 \leq \cdots \leq t_q$ the entries in the second row of *S*. Let $1 \leq m_1 < \cdots < m_p < n$ be the sequence defined inductively from *p* to 1 as follows:

$$m_i = \max\{k \mid \delta_k^{\texttt{rev}} \in X_i, \ \delta_k^{\texttt{rev}} < s_i\},\$$

where

$$X_i = \begin{cases} \{\delta_i^{\texttt{rev}}, \dots, \delta_{2i-1}^{\texttt{rev}}\} \setminus \{\delta_{m_{i+1}}^{\texttt{rev}}, \dots, \delta_{m_p}^{\texttt{rev}}\}, & \text{if } 1 \leqslant i \leqslant r, \\ \{\delta_i^{\texttt{rev}}, \dots, \delta_{n-p+i}^{\texttt{rev}}\} \setminus \{\delta_{m_{i+1}}^{\texttt{rev}}, \dots, \delta_{m_p}^{\texttt{rev}}\}, & \text{if } r < i \leqslant p, \end{cases}$$

Here we assume that r = p when $n - 2\mu'_1 \ge 0$.

Let $n_1 < \cdots < n_q$ be the sequence such that n_j is the *j*-th smallest integer in $\{j + 1, \cdots, n\} \setminus \{m_{j+1}, \cdots, m_p\}$ for $1 \le j \le q$.

Then we define $\overline{LR}_{\delta'\mu'}^{\lambda'}$ to be a subset of $LR_{\delta'\mu'}^{\lambda'}$ consisting of *S* satisfying

$$t_j > \delta_{n_j}^{\texttt{rev}}$$
,

for $1 \leq j \leq q$. We put $\overline{c}_{\delta\mu}^{\lambda} = |\overline{LR}_{\delta'\mu'}^{\lambda'}|$.

The following is the main result in this abstract, which characterizes the image of injection (3.2).

Theorem 4.2. For $\mu \in \mathcal{P}(O_n)$ and $\lambda \in \mathscr{P}_n$, we have a bijection

$$\begin{array}{c} \operatorname{LR}^{\mu}_{\lambda}(\mathfrak{d}) \longrightarrow \bigsqcup_{\delta \in \mathscr{P}^{(2)}_{n}} \overline{\operatorname{LR}}^{\lambda'}_{\delta'\mu'} \\ \mathbf{T} \longmapsto \overline{\mathbf{T}}^{\operatorname{tail}} \end{array}$$

Corollary 4.3. Under the above hypothesis, we have

$$c_{\lambda}^{\mu}(\mathfrak{d}) = \sum_{\delta \in \mathscr{P}_{n}^{(2)}} \bar{c}_{\delta\mu}^{\lambda} \,. \tag{4.1}$$

Let us give the alternative description of $c_{\lambda}^{\mu}(\mathfrak{d})$ which is simpler than $\overline{LR}_{\delta'\mu'}^{\lambda'}$.

Definition 4.4. For $U \in LR^{\lambda}_{\delta\mu^{\pi}}$, let $\sigma_1 > \cdots > \sigma_p$ denote the entries in the rightmost column and $\tau_1 > \cdots > \tau_q$ the second rightmost column of U, respectively. Let $m_1 < \cdots < m_p$ be the sequence defined by

$$m_{i} = \begin{cases} \min\{n - \sigma_{i} + 1, 2i - 1\}, & \text{if } 1 \leq i \leq r, \\ \min\{n - \sigma_{i} + 1, n - p + i\}, & \text{if } r < i \leq p. \end{cases}$$

and let $n_1 < \cdots < n_q$ be the sequence such that n_j is the *j*-th smallest number in $\{j + 1, \ldots, n\} \setminus \{m_{j+1}, \ldots, m_p\}$. Then we define $\underline{LR}^{\lambda}_{\delta\mu}$ to be the subset of $LR^{\lambda}_{\delta\mu}$ consisting of *U* such that

$$\tau_j + n_j \leqslant n + 1, \tag{4.2}$$

for $1 \leq j \leq q$. We put $\underline{c}_{\delta\mu}^{\lambda} = |\underline{\mathtt{LR}}_{\delta\mu}^{\lambda}|$.

Remark 4.5. Recall that $LR^{\lambda}_{\delta\mu\pi}$ is the set of $S \in SST(\lambda/\delta)$ with content μ^{π} such that $w(T) = w_1 \dots w_r$ is an anti-lattice word, while in Definition 4.4, $LR^{\lambda}_{\delta\mu\pi}$ is given by the set of the companion tableaux U of S.

Theorem 4.6. For $\mu \in \mathcal{P}(\mathcal{O}_n)$, $\lambda \in \mathscr{P}_n$ and $\delta \in \mathscr{P}_n^{(2)}$, the bijection $\psi : LR_{\mu'\nu'}^{\lambda'} \longrightarrow LR_{\mu\nu\pi}^{\lambda}$ in (2.1) induces a bijection from $\overline{LR}_{\delta'\mu'}^{\lambda'}$ to $\underline{LR}_{\delta\mu}^{\lambda}$.

Corollary 4.7. Under the above hypothesis, we have

$$c_{\lambda}^{\mu}(\mathfrak{d}) = \sum_{\delta \in \mathscr{P}_{n}^{(2)}} \underline{c}_{\delta\mu}^{\lambda} \,. \tag{4.3}$$

In particular, if $\ell(\lambda) \leq \frac{n}{2}$, then we have the Littlewood's restriction formula (1.2) for $G_n = O_n$ from (4.3).

Example 4.8. Let n = 8, $\mu = (2, 2, 2, 1, 1) \in \mathcal{P}(O_8)$, $\lambda = (5, 4, 4, 3, 2, 2) \in \mathscr{P}_8$, and $\delta = (4, 2, 2, 2, 2) \in \mathscr{P}_8^{(2)}$.

Let us consider the Littlewood–Richardson tableau $U \in LR^{\lambda}_{\delta\mu^{\pi}}$ given by

$$U = \begin{bmatrix} \frac{1}{2} \\ \frac{2}{3} \\ \frac{3}{4} \\ 6 \\ 6 \end{bmatrix},$$
(4.4)

where $(\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5) = (6, 4, 3, 2, 1)$ and $(\tau_1, \tau_2, \tau_3) = (6, 3, 2)$. Note that the shape of U is $\mu^{\pi} = (1, 1, 2, 2, 2)$ and the content is $\lambda/\delta = (1, 2, 2, 1, 0, 2)$. Then the sequences $(m_i)_{1 \le i \le 5}$ and $(n_j)_{1 \le j \le 3}$ (Definition 4.4) are given by (1, 3, 5, 7, 8) and (2, 4, 6) respectively. It is easy to check that U satisfies the condition (4.2). Hence $U \in \underline{LR}^{\lambda}_{u\delta}$.

On the other hand, let *S* be the Littlewood–Richardson tableau in $\overline{LR}^{\lambda'}_{\delta'\mu'}$ (recall Definition 4.1) with the enumeration of the columns as follows:

S =	1 2	3 4	3 4	3	5
	S^5	S^4	S^3	S^2	S^1

where $(s_1, s_2, s_3, s_4, s_5) = (1, 3, 3, 3, 5)$ and $(t_1, t_2, t_3) = (2, 4, 4)$. Then $\psi(S)$ (2.1) is obtained

Note that $\psi(S)$ is same with U (4.4). Under the above correspondence, we observe that σ_i ($1 \le i \le 5$) and τ_j ($1 \le j \le 3$) record the positions of s_i and t_j in δ' , respectively, and vice versa. This implies that $S \in \overline{LR}^{\lambda'}_{\delta'\mu'}$ if and only if $\psi(S) \in \underline{LR}^{\lambda}_{\delta\mu}$.

Remark 4.9. (1) We may have an analogue of Theorem 4.2 for type *B* and *C*, that is, a multiplicity formula with respect to the branching from B_{∞} and C_{∞} to $A_{+\infty}$, respectively (see Remark 4.14 in [5] for more details).

(2) When *n* is odd, there is a bijection between $LR^{\mu}_{\lambda}(\mathfrak{d})$ and a set of LR tableaux with certain conditions, where λ appears as an inner shape of LR tableaux [4]. This alternative description of $LR^{\mu}_{\lambda}(\mathfrak{d})$ is used to construct a bijection between the set of pairs of standard tableau of shape λ and $\mathbf{T} \in LR^{\mu}_{\lambda}(\mathfrak{d})$ and the set of vacillating tableaux of shape μ .

4.2 Branching from GL_n to O_n

We assume that the base field is C. Let $V_{GL_n}^{\lambda}$ denote the finite-dimensional irreducible GL_n -module corresponding to $\lambda \in \mathscr{P}_n$, and $V_{O_n}^{\mu}$ the finite-dimensional irreducible module O_n -module corresponding to $\mu \in \mathcal{P}(O_n)$.

Then we have the following new combinatorial description of $\left[V_{\text{GL}_n}^{\lambda}:V_{\text{O}_n}^{\mu}\right]$.

Theorem 4.10. For $\lambda \in \mathscr{P}_n$ and $\mu \in \mathcal{P}(O_n)$, we have

$$\left[V_{\mathrm{GL}_{n}}^{\lambda}:V_{\mathrm{O}_{n}}^{\mu}\right] = \sum_{\delta\in\mathscr{P}_{n}^{(2)}} \overline{c}_{\delta\mu}^{\lambda} = \sum_{\delta\in\mathscr{P}_{n}^{(2)}} \underline{c}_{\delta\mu}^{\lambda}$$

Proof. It follows from the branching rule of see-saw pairs $(D_{\infty}, A_{+\infty})$ and (GL_n, O_n) [8, Theorem 5.3]

$$\left[V_{\mathrm{GL}_{\mathrm{n}}}^{\lambda}:V_{\mathrm{O}_{\mathrm{n}}}^{\mu}\right]=c_{\lambda}^{\mu}(\mathfrak{d}),$$

and Corollaries 4.3 and 4.7.

Remark 4.11. As an application of the branching multiplicity, we obtain a new combinatorial realization for the Lusztig *t*-weight multiplicity $K_{\mu0}(t)$ of type B_n and D_n with highest weight μ and weight 0 or generalized exponents (see [5, Section 5]). This gives an orthogonal analogue of the result for type C_n in [9].

Acknowledgements

This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1501-01.

References

- [1] T. Enright and J. Willenbring. "Hilbert series, Howe duality and branching for classical groups". *Ann. of Math.* **159** (2004), pp. 337–375. Link.
- [2] W. Fulton. Young tableaux, with Application to Representation theory and Geometry. 1997. Link.
- [3] R. Howe, E.-C. Tan, and J. Willenbring. "Stable branching rules for classical symmetric pairs". *Trans. Amer. Math. Soc.* **357** (2005), pp. 1601–1626. Link.
- [4] J. Jagenteufel. "A Sundaram type bijection for SO(2k + 1)". 2018. arXiv:1902.03843.
- [5] I.-S. Jang and J.-H. Kwon. "Flagged Littlewood-Richardson tableaux and branching rule for classical groups" (Aug. 2019). arXiv:1908.11041.
- [6] J.-H. Kwon. "Super duality and crystal bases for quantum ortho-symplectic superalgebras". *Int. Math. Res. Not.* (2015), pp. 12620–12677. Link.
- [7] J.-H. Kwon. "Super duality and crystal bases for quantum ortho-symplectic superalgebras II". *J. Algebr. Comb.* **43** (2016), pp. 553–588. Link.
- [8] J.-H. Kwon. "Combinatorial extension of stable branching rules for classical groups". *Trans. Amer. Math. Soc.* **370** (2018), pp. 6125–6152. Link.
- [9] C. Lecouvey and C. Lenart. "Combinatorics of generalized exponents". *Int. Math. Res. Not.* (2018). Link.
- [10] D. Littlewood. "On invariant theory under restricted groups". Philosophical Transactions of The Royal Society A 239 (1944), 387—417. Link.
- [11] D. Littlewood. The theory of group characters and matrix representations of groups. 1950.
- [12] S. Sundaram. "On the combinatorics of representations of the symplectic group". 1986. Link.
- [13] W. Wang. "Duality in infinite dimensional Fock representations". Commun. Contemp. Math. 1 (1999), pp. 155–199. Link.