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Flagged Littlewood–Richardson tableaux and
branching rule for orthogonal groups
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Abstract. We give a new combinatorial formula for the branching rule from GLn to
On generalizing the Littlewood’s restriction formula. The formula is given in terms of
Littlewood–Richardson tableaux with certain flag conditions which vanish in a stable
range.

Keywords: quantum groups, crystal graphs, classical groups, branching rules

1 Introduction

Let Vλ
GLn

denote a complex finite-dimensional irreducible representation of the complex
general linear group GLn parametrized by a partition λ of length `pλq ď n. Suppose
that Gn is a closed subgroup Spn or On, where n is even for Gn “ Spn. Let Vµ

Gn
be a

finite-dimensional irreducible Gn-module parametrized by a partition µ with `pµq ď n{2
for Gn “ Spn, and by a partition µ with `pµq ď n and µ11 ` µ12 ď n for Gn “ On. Here
µ1 “ pµ1iqiě1 is the conjugate partition of µ.

Let
”

Vλ
GLn

: Vµ
Gn

ı

“ dim HomGn

´

Vµ
Gn

, Vλ
GLn

¯

(1.1)

denote the multiplicity of Vµ
Gn

in Vλ
GLn

. In [10, 11], Littlewood showed that if `pλq ď n{2,
then

”

Vλ
GLn

: Vµ
Spn

ı

“
ÿ

δPPp2q

cλ
δ1µ ,

”

Vλ
GLn

: Vµ
On

ı

“
ÿ

δPPp2q

cλ
δ µ , (1.2)

where cα
βγ is the Littlewood–Richardson coefficient corresponding to partitions α, β, γ,

and Pp2q denotes the set of partition with even parts. There have been numerous works
on extending the Littlewood’s restriction rules (1.2) for arbitrary λ with `pλq ď n (see [1,
3] and also the references therein), but most of which are obtained in an algebraic way
and hence given not in a subtraction-free way.
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In [12], Sundaram gave a beautiful combinatorial formula for (1.1) when Gn “ Spn,
as the sum of the numbers of Littlewood–Richardson (LR) tableaux of shape λ{µ with
content δ1 satisfying certain constraints on their entries, which vanish in a stable range
`pλq ď n{2. Recently, based on the results in [8, 6], Lecouvey and Lenart obtained another
formula for (1.1) when Gn “ Spn in terms of LR tableaux with some flag conditions
on their companion tableaux [9]. On the other hand, no orthogonal analogue of these
formula has been known so far.

The main result in this abstract is to give a combinatorial formula for (1.1) when
Gn “ On for arbitrary λ and µ in terms of LR tableaux with certain flag conditions on
their companion tableaux which vanish in a stable range `pλq ď n{2.

For simplicity, let us state our main result when n´ 2µ11 ě 0. Note that the restriction
on n´ 2µ11 is not significant, since the result for n´ 2µ11 ă 0 is almost identical. Let LRλ

δµπ

be the set of LR tableaux of shape λ{δ with content µπ, where µπ is the skew Young
diagram obtained by 180˝-rotation of µ. Then we have the following (Theorem 4.10).

Theorem 1.1. For U P LRλ
δµπ , let σi be the row index of the leftmost µ11 ´ i ` 1 in U for

1 ď i ď µ11, and τj the row index of the second leftmost µ12 ´ j ` 1 in U for 1 ď j ď µ12. Let
m1 ă ¨ ¨ ¨ ă mµ11

be the sequence given by mi “ mintn´ σi ` 1, 2i´ 1u, and let n1 ď ¨ ¨ ¨ ď nµ12
be the sequence such that nj is the j-th smallest number in t j` 1, . . . , n uztmj`1, . . . , mµ11

u. Let
cλ

δµ denote the number of U P LRλ
δµπ such that

τj ` nj ď n` 1,

for 1 ď j ď µ12. Then we have
”

Vλ
GLn

: Vµ
On

ı

“
ÿ

δPPp2q

cλ
δµ .

The branching multiplicity (1.1) is equal to the one from D8 to A`8 from a viewpoint
of see-saw dual pairs in Howe duality on a Fock space [13]. We use the Kashiwara’s
crystal base theory of quantum groups and the spinor model for crystal graphs of type
D8 [7] to describe the latter multiplicity. Unlike the case of Spn [9], we have to develop
in addition a non-trivial combinatorial algorithm on spinor model called separation in
order to have a description of branching multiplicity in terms of LR tableaux satisfying
the condition for cλ

δµ. This is a key ingredient in the proof of Theorem 1.1. We can also
recover the formula (1.2) in a stable range directly from the above formula. A full version
of this paper including detailed proofs has appeared in [5].

2 Notations

Let Z` denote the set of non-negative integers. Let P be the set of partitions or Young
diagrams. We let P` “ tλ P P | `pλq ď ` u for ` ě 1, where `pλq is the length of λ, let



Flagged Littlewood–Richardson tableaux and branching rule for orthogonal groups 3

Pp2q “ tλ P P |λ “ pλiqiě1, λi P 2Z` pi ě 1q u. For a skew Young diagram λ{µ, we
define SSTpλ{µq to be the set of semistandard tableaux of shape λ{µ with entries in N.
For T P SSTpλ{µq, let wpTq be the word given by reading the entries of T column by
column from right to left and from top to bottom in each column, and let shpTq denote
the shape of T.

Let λ P P be given. For T P SSTpλq and a P N, we denote by a Ñ T the tableau
obtained by the column insertion of a into T (cf. [2]). For a word w “ w1 . . . wr, we
define pw Ñ Tq “ pwr Ñ p¨ ¨ ¨ Ñ pw1 Ñ Tqqq. For a semistandard tableau S, we define
pS Ñ Tq “ pwpSq Ñ Tq.

Let λπ denote the skew Young diagram obtained from λ by 180˝ rotation. Let Hλ

and Hλπ be the tableaux in SSTpλq and SSTpλπq, respectively, where the i-th entry from
the top in each column is filled with i for i ě 1.

For λ, µ, ν P P , let LRλ
µν be the set of Littlewood–Richardson tableaux S of shape λ{µ

with content ν. There is a natural bijection from LRλ
µν to the set of T P SSTpνq such that

pT Ñ Hµq “ Hλ, where each i in the jth row of S P LRλ
µν corresponds to j in the ith row

of T. We call such T a companion tableau of S P LRλ
µν.

We also define LRλ
µνπ to be the set of S P SSTpλ{µq with content νπ such that wpTq “

w1 . . . wr is an anti-lattice word, that is, the number of i in wk . . . wr is greater than or
equal to that of i ´ 1 for each k ě 1 and 1 ă i ď `pνq. Let us call S a Littlewood–
Richardson tableaux of shape λ{µ with content νπ. As in case of LRλ

µν, the map from
S P LRλ

µνπ to its companion tableau gives a natural bijection from LRλ
µνπ to the set of

T P SSTpνπq such that pT Ñ Hµq “ Hλ. From now on, all the LR tableaux are assumed
to be the corresponding companion tableaux unless otherwise specified.

Let S P LRλ1

µ1ν1 be given, that is, pS Ñ Hµ1q “ Hλ1 . Let S1, . . . , Sp denote the columns

of S enumerated from the right. For 1 ď i ď p, let Hi “ pSi Ñ Hi´1q with H0 “ Hµ1 so
that Hp “ Hλ1 . Define QpS Ñ Hµ1q P SSTpλ{µq to be the tableau such that the horizontal
strip shpHiq1{shpHi´1q1 is filled with 1 ď i ď p. On the other hand, let U P LRλ

µνπ be
given, that is, shpU Ñ Hµq “ Hλ. Let Ui denote the i-th row of U from the top, and let
Hi “ pUi Ñ Hi´1q with H0 “ Hµ for 1 ď i ď p. Define QpU Ñ Hµq to be tableau such
that the horizontal strip shpHiq{shpHi´1q is filled with 1 ď i ď p.

Then we have a bijection

ψ : LRλ1

µ1ν1
// LRλ

µνπ , (2.1)

where for S P LRλ1

µ1ν1 , ψpSq “ U is given by a unique U P SSTpνπq such that pU Ñ Hµq “

Hλ and QpU Ñ Hµq “ QpS Ñ Hµ1q.
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3 Spinor model

3.1 Definitions

Let us recall the spinor model of type D8, which is a combinatorial model for the crystal
of an integrable irreducible highest weight module over the quantum group of type D8
(see [7] and [5, Section 2.1] for more details).

Let g be the Kac-Moody Lie algebra of type D8. We assume that the index set for
simple roots is I “ Z`, and the weight lattice is P “ ZΛ0 ‘

`
À

iě1 Zεi
˘

. The associated
Dynkin diagram, set of simple roots Π “ t αi | i ě 0 u, and fundamental weight Λi pi ě 0q
are given by

˝

˝

˝ ˝ ˝ ˝ ˝

�
�

@
@

¨ ¨ ¨ ¨ ¨ ¨

α0

α1

α2 α3 αk´1 αk αk`1

Π “ t α0 “ ´ε1 ´ ε2, αi “ εi ´ εi`1 pi ě 1q u, Λi “

#

Λ0 ` ε1, if i “ 1,
2Λ0 ` ε1 ` ¨ ¨ ¨ ` εi, if i ą 1.

Let l be the subalgebra of g associated to Πztα0u, which is of type A`8.
For n ě 1, let

PpOnq “ t µ “ pµ1, ¨ ¨ ¨ , µnq | µi P Z`, µ1 ě . . . ě µn, µ11 ` µ12 ď n u .

For µ P PpOnq, put Λpµq “ nΛ0 ` µ11ε1 ` µ12ε2 ` ¨ ¨ ¨ . Then we have P` “ tΛpµq | µ P
Ů

n PpOnq u the set of dominant integral weights for g. We denote by BpΛq the crystal
of an integrable irreducible highest weight module over the quantum group Uqpgq with
highest weight Λ P P`.

Let T be a tableau of two-column skew shape p2b`c, 1aq{p1bq for a, b, c P Z`. We
denote the left and right columns of T by TL and TR respectively. Suppose that T is
semistandard and we can slide down TR by k positions to have a semistandard tableau
T1 of shape p2b`c, 1a´kq{p1b´kq. We define rT to to be the maximal such k.

Let

Tpaq “
!

T | T P SST
`

p2b`c, 1a
q{p1b

q
˘

, b, c P 2Z`, rT ď 1
)

pa P Z`q,

Tp0q “
ğ

b,c P2Z`

SST
`

p2b`c`1
q{p1b

q
˘

, Tsp
“

ğ

aPZ`

SSTpp1a
qq,

Tsp`
“ t T | T P Tsp, rT “ 0 u, Tsp´

“ t T | T P Tsp, rT “ 1 u,
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where the integer rT of T P Tsp is defined by the residue of htpTq modulo 2. It is shown
that Tpaq, Tp0q and Tsp have g-crystal structure [7, Proposition 4.1] (cf. [5, Section 2.3])
such that

Tpaq – BpΛaq pa ě 2q, Tp0q – Bp2Λ0q, Tp0q – Bp2Λ1q, Tp1q – BpΛ0 `Λ1q,
Tsp`

– BpΛ0q , Tsp´
– BpΛ1q.

Let µ P PpOnq be given. Let q˘ and r˘ be non-negative integers such that
#

n´ 2µ11 “ 2q` ` r`, if n´ 2µ11 ě 0,
2µ11 ´ n “ 2q´ ` r´, if n´ 2µ11 ă 0,

where r˘ “ 0, 1. Let µ “ pµiq P P be such that µ11 “ n´ µ11 and µ1i “ µ1i for i ě 2 and let
M` “ µ11 and M´ “ µ11. Put

pTpµ, nq “

#

Tpµ1q ˆ ¨ ¨ ¨ ˆ TpµM`
q ˆ Tp0qˆq` ˆ pTsp+qˆr` , if n´ 2µ11 ě 0,

Tpµ1q ˆ ¨ ¨ ¨ ˆ TpµM´
q ˆ Tp0qˆq´ ˆ pTsp´qˆr´ , if n´ 2µ11 ă 0.

We give the g-crystal structure on pTpµ, nq by the tensor product rule of crystals by iden-
tifying p. . . , T2, T1q P pTpµ, nq with T1 b T2 b . . . .

Let
Tpµ, nq “ tT “ p. . . , T2, T1q P pTpµ, nq | Ti`1 ă Ti pi ě 1q u,

where Ti`1 ă Ti means that the pair pTi`1, Tiq satisfies the admissible conditions given in
[7, Definition 3.4]. It is shown in [7] that Tpµ, nq is a connected component in pTpµ, nq
including the unique highest weight element of weight Λpµq. Hence we have the follow-
ing.

Theorem 3.1. [7, Theorem 4.3–4.4] For µ P PpOnq, we have

Tpµ, nq – BpΛpµqq.

We call Tpµ, nq the spinor model for BpΛpµqq.

Example 3.2. Let n “ 8 and µ “ p4, 3, 3, 2q P PpO8q. Then Λpµq “ Λ4 ` 2Λ3 ` Λ2. Let
T “ pT4, T3, T2, T1q given by

1
2

1 1 1 1 3

. . . . . . . . . . . .
2

. . . . . .
2

. . . . . .
4

. . . . . .
2 4

. . . . . . . . . . . . L1 1 1 3
3 3 5 5
4 4 6
5

T4 T3 T2 T1

where the dotted line denotes the common horizontal line L. In this case, T4 ă T3 ă T2 ă T1 (cf.
[7, Definition 3.4]) and thus T P Tpµ, 8q.
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3.2 Separation lemma

For simplicity, we assume that n is even and µ P PpOnq satisfies n´ 2µ11 ě 0. The same
result (Lemma 3.4) also holds for the other cases (see [5, Section 3.3–3.4] for more details).

Definition 3.3. Let

Hpµ, nq “ tT |T P Tpµ, nq, reiT “ 0 pi ‰ 0q u ,

and call T P Hpµ, nq an l-highest weight element in Tpµ, nq. In other words, we have T P

Hpµ, nq if and only if T ”l Hλ for some λ P P . Here ”l means the l-crystal equivalence or
Knuth equivalence.

Let T “ pTl, . . . T1q P Hpµ, nq with shpTiq “ p2bi`ci , 1aiq{p1biq for 1 ď i ď l. We denote
by TR

i pkq (resp. TL
i pkq) the k-th entry of TR

i (resp. TL
i ) from the bottom. Let us introduce

an algorithm on pTi`1, Tiq, which is roughly speaking sliding the tail of Ti to the left by
one position.

(S1) If TR
i`1p1q ă TL

i paiq, then we move the subtableau tTL
i pkq : 1 ď k ď aiu of TL

i to be
located below TR

i`1. For example,

1
2

1 1 3

. . . . . .
2

. . . . . . 2 4 . . . . . .
1 3
4 5

Ti`1 Ti

ÞÝÝÝÝÝÝÑ

1
2

1 1 3

. . . . . . 2 . . . . . . 2 4 . . . . . .
1 3
4 5

Here TR
i`1p1q “ 2 ă TL

i paiq “ 3 with ai “ 2.

(S2) If TR
i`1p1q ą TL

i paiq, then we slide up the subtableau tTL
i pkq : k ě aiu of TL

i by two po-
sitions and put TR

i`1p1q below it. Also we slide down the subtableau TR
i`1ztT

R
i`1p1qu

of TR
i`1 by two positions and put the subtableau tTL

i pkq : 1 ď k ď ai ´ 1u below it.
For example,

1
2

1 1 3
4

. . . . . . 2 4
1 3
5 6
6 8
7

Ti`1 Ti

ÞÝÑ

1 1
2 2

1 3 3
4

. . . . . .. . . . . .
4

1
5 6
6 8
7

ÞÝÑ

1 1
2 2

1 3 3

. . . . . .. . . . . .
4 4

1
5 6
6 8
7

ÞÝÑ

1 1
2 2
3 3

. . . . . . 4 4
1 1
5 6
6 8
7

Here TR
i`1p1q “ 4 ą TL

i paiq “ 3 with ai “ 3.
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Note that the single-column tableaux TL
i`1 and TR

i are invariant under the above algo-
rithm.

We identify T with pTL
l , TR

l , . . . TL
1 , TR

1 q. Let rT be the sequence of single-column tableaux
obtained from T by applying the above algorithm to each pair pTi`1, Tiq from l ´ 1 to 1,
and then removing TL

l . By [5, Lemma 3.10, Corollary 3.11], we have rT P Hprµ, n ´ 1q,
where rµ “ pµ2, µ3, . . . q . Hence we can apply the above algorithm to rT again, and repeat
this process as far as possible to get a tableau T.

Lemma 3.4 (Separation lemma). Under the above hypothesis, T satisfies the following condi-
tions:

(1) T P SSTpηq, where η is the skew Young diagram given in (3.1),

(2) T is Knuth equivalent to T, that is, T ”l T,

(3) Let Tbody and Ttail be the subtableaux of T located above and below the horizontal line L,
respectively. Then Tbody

“ Hpδ1qπ for some δ P Pp2q, and Ttail
P LRλ1

δ1µ1 if T ”l Hλ1 for
some λ P P .

η “

pδ1qπ

µ1

L (3.1)

Note that T ”l T ”l Tbody
bTtail by (2), and it is not difficult to check that (3) implies

that the map

T � // Ttail (3.2)

is injective (see [5, Lemma 6.5]). We will describe the image of the injection (3.2) in
Section 4.

Example 3.5. Let n “ 8 and µ “ p4, 3, 3, 2q P PpO8q. Let T “ pT4, T3, T2, T1q P Hpµ, 8q
given as in Example 3.2. Then since TR

4 p1q “ 2 ą 1 “ TL
3 p3q, TR

3 p1q “ 2 ą 1 “ TL
2 p3q and

TR
2 p1q “ 4 ą 3 “ TL

1 p2q, we apply the algorithm (S2) to each pair pTi`1, Tiq for i “ 1, 2, 3.
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Consequently we have rT given by

1 1
2 2

1 1 3 3

. . . . . . . . . . . .
2

. . . . . . . . . . . .
2

. . . . . . . . . . . .
4

. . . . . .
4

1 1 1 1
3 3 5 5
4 4 6
5

with the left-most column (in gray) removed. By [5, Lemma 3.10, Corollary 3.11], we
have rT P Hprµ, 7q with rµ “ p3, 3, 2q.

Repeating this process, we have

T “

1 1
2 2

1 1 3 3
2 2 4 4

1 1 1 1
3 3 5 5
4 4 6
5

,

where

Tbody
“

1 1
2 2

1 1 3 3
2 2 4 4

, Ttail
“

1 1 1 1
3 3 5 5
4 4 6
5

4 Combinatorial formula of branching multiplicities

4.1 Branching from D8 to A`8

In this section, we assume n P Z`. Let µ P PpOnq, λ P Pn and δ P P
p2q
n be given.

We denote by δrev “ pδrev1 , . . . , δrevn q the reverse sequence of δ “ pδ1, . . . , δnq, that is,
δrevi “ δn´i`1, for 1 ď i ď n. We put p “ µ11, q “ µ12, and r “ pµq11 if n´ 2µ11 ă 0.

Let
LRµ

λpdq “ tT |T P Hpµ, nq, T ”l Hλ1 u , cµ
λpdq “ |LR

µ
λpdq| .

Note that cµ
λpdq is equal to the multiplicity of irreducible highest weight l-module with

highest weight
ř

iě1 λ
1

iεi in the irreducible highest weight g-module with highest weight
Λpµq.

Definition 4.1. For S P LRλ1

δ1µ1 , let s1 ď ¨ ¨ ¨ ď sp denote the entries in the first row, and
t1 ď ¨ ¨ ¨ ď tq the entries in the second row of S. Let 1 ď m1 ă ¨ ¨ ¨ ă mp ă n be the
sequence defined inductively from p to 1 as follows:

mi “ maxt k | δrevk P Xi, δrevk ă si u,
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where

Xi “

#

t δrevi , . . . , δrev2i´1 uztδ
rev
mi`1

, . . . , δrevmp u, if 1 ď i ď r,

t δrevi , . . . , δrevn´p`i uztδ
rev
mi`1

, . . . , δrevmp u, if r ă i ď p,

Here we assume that r “ p when n´ 2µ11 ě 0.
Let n1 ă ¨ ¨ ¨ ă nq be the sequence such that nj is the j-th smallest integer in tj `

1, ¨ ¨ ¨ , nuztmj`1, ¨ ¨ ¨ , mpu for 1 ď j ď q.

Then we define LRλ1

δ1µ1 to be a subset of LRλ1

δ1µ1 consisting of S satisfying

tj ą δrevnj
,

for 1 ď j ď q. We put cλ
δµ “ |LR

λ1

δ1µ1 |.

The following is the main result in this abstract, which characterizes the image of
injection (3.2).

Theorem 4.2. For µ P PpOnq and λ P Pn, we have a bijection

LRµ
λpdq

//
Ů

δ P P
p2q
n

LRλ1

δ1µ1

T � // Ttail

.

Corollary 4.3. Under the above hypothesis, we have

cµ
λpdq “

ÿ

δPP
p2q
n

cλ
δµ . (4.1)

Let us give the alternative description of cµ
λpdq which is simpler than LRλ1

δ1µ1 .

Definition 4.4. For U P LRλ
δµπ , let σ1 ą ¨ ¨ ¨ ą σp denote the entries in the rightmost column

and τ1 ą ¨ ¨ ¨ ą τq the second rightmost column of U, respectively. Let m1 ă ¨ ¨ ¨ ă mp be
the sequence defined by

mi “

#

mintn´ σi ` 1, 2i´ 1u, if 1 ď i ď r,
mintn´ σi ` 1, n´ p` iu, if r ă i ď p.

and let n1 ă ¨ ¨ ¨ ă nq be the sequence such that nj is the j-th smallest number in t j `
1, . . . , n uztmj`1, . . . , mp u. Then we define LRλ

δµ to be the subset of LRλ
δµπ consisting of U

such that
τj ` nj ď n` 1, (4.2)

for 1 ď j ď q. We put cλ
δµ “ |LR

λ
δµ|.
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Remark 4.5. Recall that LRλ
δµπ is the set of S P SSTpλ{δq with content µπ such that

wpTq “ w1 . . . wr is an anti-lattice word, while in Definition 4.4, LRλ
δµπ is given by the set

of the companion tableaux U of S.

Theorem 4.6. For µ P PpOnq, λ P Pn and δ P P
p2q
n , the bijection ψ : LRλ1

µ1ν1 ÝÑ LRλ
µνπ in (2.1)

induces a bijection from LRλ1

δ1µ1 to LRλ
δµ.

Corollary 4.7. Under the above hypothesis, we have

cµ
λpdq “

ÿ

δPP
p2q
n

cλ
δµ . (4.3)

In particular, if `pλq ď n
2 , then we have the Littlewood’s restriction formula (1.2) for Gn “ On

from (4.3).

Example 4.8. Let n “ 8, µ “ p2, 2, 2, 1, 1q P PpO8q, λ “ p5, 4, 4, 3, 2, 2q P P8, and δ “

p4, 2, 2, 2, 2q P P
p2q
8 .

Let us consider the Littlewood–Richardson tableau U P LRλ
δµπ given by

U “

1
2

2 3
3 4
6 6

, (4.4)

where pσ1, σ2, σ3, σ4, σ5q “ p6, 4, 3, 2, 1q and pτ1, τ2, τ3q “ p6, 3, 2q. Note that the shape of U
is µπ “ p1, 1, 2, 2, 2q and the content is λ{δ “ p1, 2, 2, 1, 0, 2q. Then the sequences pmiq1ďiď5
and pnjq1ďjď3 (Definition 4.4) are given by p1, 3, 5, 7, 8q and p2, 4, 6q respectively. It is easy
to check that U satisfies the condition (4.2). Hence U P LRλ

µδ.

On the other hand, let S be the Littlewood–Richardson tableau in LRλ1

δ1µ1 (recall Defi-
nition 4.1) with the enumeration of the columns as follows:

S “
1 3 3 3 5
2 4 4

S5 S4 S3 S2 S1

,

where ps1, s2, s3, s4, s5q “ p1, 3, 3, 3, 5q and pt1, t2, t3q “ p2, 4, 4q. Then ψpSq (2.1) is obtained
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by
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

8 ¨ ¨ ¨ 1 1 1 1 1
7 ¨ ¨ ¨ 2 2 2 2
6 ¨ ¨ ¨ 3 3 3 3
5 ¨ ¨ ¨ 4 4 4
4 ¨ ¨ ¨ 5 5
3 ¨ ¨ ¨ 6 6
2 ¨ ¨ ¨

1 ¨ ¨ ¨

ψpSq Ñ Hδ

,

1
2 3
3 4
4

5 5

QpψpSq Ñ Hδq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

//

1
2

2 3
3 4
6 6

“ ψpSq.

Note that ψpSq is same with U (4.4). Under the above correspondence, we observe that
σi p1 ď i ď 5q and τj p1 ď j ď 3q record the positions of si and tj in δ1, respectively, and

vice versa. This implies that S P LRλ1

δ1µ1 if and only if ψpSq P LRλ
δµ.

Remark 4.9. (1) We may have an analogue of Theorem 4.2 for type B and C, that is, a
multiplicity formula with respect to the branching from B8 and C8 to A`8, respectively
(see Remark 4.14 in [5] for more details).

(2) When n is odd, there is a bijection between LRµ
λpdq and a set of LR tableaux with

certain conditions, where λ appears as an inner shape of LR tableaux [4]. This alternative
description of LRµ

λpdq is used to construct a bijection between the set of pairs of standard
tableau of shape λ and T P LRµ

λpdq and the set of vacillating tableaux of shape µ.

4.2 Branching from GLn to On

We assume that the base field is C. Let Vλ
GLn

denote the finite-dimensional irreducible
GLn-module corresponding to λ P Pn, and Vµ

On
the finite-dimensional irreducible mod-

ule On-module corresponding to µ P PpOnq.
Then we have the following new combinatorial description of

”

Vλ
GLn

: Vµ
On

ı

.

Theorem 4.10. For λ P Pn and µ P PpOnq, we have
”

Vλ
GLn

: Vµ
On

ı

“
ÿ

δPP
p2q
n

cλ
δµ “

ÿ

δPP
p2q
n

cλ
δµ.

Proof. It follows from the branching rule of see-saw pairs pD8, A`8q and pGLn, Onq [8,
Theorem 5.3]

”

Vλ
GLn

: Vµ
On

ı

“ cµ
λpdq ,

and Corollaries 4.3 and 4.7.

Remark 4.11. As an application of the branching multiplicity, we obtain a new combi-
natorial realization for the Lusztig t-weight multiplicity Kµ0ptq of type Bn and Dn with
highest weight µ and weight 0 or generalized exponents (see [5, Section 5]). This gives
an orthogonal analogue of the result for type Cn in [9].
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