Flagged Littlewood-Richardson tableaux and branching rule for orthogonal groups

Il-Seung Jang ${ }^{* 1}$ and Jae-Hoon Kwon ${ }^{\dagger 1}$
${ }^{1}$ Department of Mathematical Sciences, Seoul National University, Seoul, Korea

Abstract

We give a new combinatorial formula for the branching rule from GL_{n} to O_{n} generalizing the Littlewood's restriction formula. The formula is given in terms of Littlewood-Richardson tableaux with certain flag conditions which vanish in a stable range.

Keywords: quantum groups, crystal graphs, classical groups, branching rules

1 Introduction

Let $V_{\mathrm{GL}_{n}}^{\lambda}$ denote a complex finite-dimensional irreducible representation of the complex general linear group GL_{n} parametrized by a partition λ of length $\ell(\lambda) \leqslant n$. Suppose that G_{n} is a closed subgroup Sp_{n} or O_{n}, where n is even for $\mathrm{G}_{n}=\operatorname{Sp}_{n}$. Let $V_{\mathrm{G}_{n}}^{\mu}$ be a finite-dimensional irreducible G_{n}-module parametrized by a partition μ with $\ell(\mu) \leqslant n / 2$ for $\mathrm{G}_{n}=\mathrm{Sp}_{n}$, and by a partition μ with $\ell(\mu) \leqslant n$ and $\mu_{1}^{\prime}+\mu_{2}^{\prime} \leqslant n$ for $\mathrm{G}_{n}=\mathrm{O}_{n}$. Here $\mu^{\prime}=\left(\mu_{i}^{\prime}\right)_{i \geqslant 1}$ is the conjugate partition of μ.

Let

$$
\begin{equation*}
\left[V_{\mathrm{GL}_{n}}^{\lambda}: V_{\mathrm{G}_{n}}^{\mu}\right]=\operatorname{dim} \operatorname{Hom}_{\mathrm{G}_{n}}\left(V_{\mathrm{G}_{n}}^{\mu}, V_{\mathrm{GL}_{n}}^{\lambda}\right) \tag{1.1}
\end{equation*}
$$

denote the multiplicity of $V_{\mathrm{G}_{\mathrm{n}}}^{\mu}$ in $V_{\mathrm{GL}_{n}}^{\lambda}$. In [10, 11], Littlewood showed that if $\ell(\lambda) \leqslant n / 2$, then

$$
\begin{equation*}
\left[V_{\mathrm{GL}_{n}}^{\lambda}: V_{\mathrm{Sp}_{n}}^{\mu}\right]=\sum_{\delta \in \mathscr{P}^{(2)}} c_{\delta^{\prime} \mu}^{\lambda}, \quad\left[V_{\mathrm{GL}_{n}}^{\lambda}: V_{\mathrm{O}_{n}}^{\mu}\right]=\sum_{\delta \in \mathscr{P}^{(2)}} c_{\delta \mu}^{\lambda}, \tag{1.2}
\end{equation*}
$$

where $c_{\beta \gamma}^{\alpha}$ is the Littlewood-Richardson coefficient corresponding to partitions α, β, γ, and $\mathscr{P}^{(2)}$ denotes the set of partition with even parts. There have been numerous works on extending the Littlewood's restriction rules (1.2) for arbitrary λ with $\ell(\lambda) \leqslant n$ (see [1, 3] and also the references therein), but most of which are obtained in an algebraic way and hence given not in a subtraction-free way.

[^0]In [12], Sundaram gave a beautiful combinatorial formula for (1.1) when $\mathrm{G}_{n}=\mathrm{Sp}_{n}$, as the sum of the numbers of Littlewood-Richardson (LR) tableaux of shape λ / μ with content δ^{\prime} satisfying certain constraints on their entries, which vanish in a stable range $\ell(\lambda) \leqslant n / 2$. Recently, based on the results in [8, 6], Lecouvey and Lenart obtained another formula for (1.1) when $\mathrm{G}_{n}=\mathrm{Sp}_{n}$ in terms of LR tableaux with some flag conditions on their companion tableaux [9]. On the other hand, no orthogonal analogue of these formula has been known so far.

The main result in this abstract is to give a combinatorial formula for (1.1) when $\mathrm{G}_{n}=\mathrm{O}_{n}$ for arbitrary λ and μ in terms of LR tableaux with certain flag conditions on their companion tableaux which vanish in a stable range $\ell(\lambda) \leqslant n / 2$.

For simplicity, let us state our main result when $n-2 \mu_{1}^{\prime} \geqslant 0$. Note that the restriction on $n-2 \mu_{1}^{\prime}$ is not significant, since the result for $n-2 \mu_{1}^{\prime}<0$ is almost identical. Let $\operatorname{LR}_{\delta \mu^{\pi}}^{\lambda}$ be the set of LR tableaux of shape λ / δ with content μ^{π}, where μ^{π} is the skew Young diagram obtained by 180°-rotation of μ. Then we have the following (Theorem 4.10).
Theorem 1.1. For $U \in \operatorname{LR}_{\delta \mu^{\pi}}^{\lambda}$, let σ_{i} be the row index of the leftmost $\mu_{1}^{\prime}-i+1$ in U for $1 \leqslant i \leqslant \mu_{1}^{\prime}$, and τ_{j} the row index of the second leftmost $\mu_{2}^{\prime}-j+1$ in U for $1 \leqslant j \leqslant \mu_{2}^{\prime}$. Let $m_{1}<\cdots<m_{\mu_{1}^{\prime}}$ be the sequence given by $m_{i}=\min \left\{n-\sigma_{i}+1,2 i-1\right\}$, and let $n_{1} \leqslant \cdots \leqslant n_{\mu_{2}^{\prime}}$ be the sequence such that n_{j} is the j-th smallest number in $\{j+1, \ldots, n\} \backslash\left\{m_{j+1}, \ldots, m_{\mu_{1}^{\prime}}\right\}$. Let $\underline{c}_{\delta \mu}^{\lambda}$ denote the number of $U \in \mathrm{LR}_{\delta \mu}^{\lambda}$ such that

$$
\tau_{j}+n_{j} \leqslant n+1,
$$

for $1 \leqslant j \leqslant \mu_{2}^{\prime}$. Then we have

$$
\left[V_{\mathrm{GL}_{n}}^{\lambda}: V_{\mathrm{O}_{n}}^{\mu}\right]=\sum_{\delta \in \mathscr{P}^{(2)}} c_{\delta \mu}^{\lambda} .
$$

The branching multiplicity (1.1) is equal to the one from D_{∞} to $A_{+\infty}$ from a viewpoint of see-saw dual pairs in Howe duality on a Fock space [13]. We use the Kashiwara's crystal base theory of quantum groups and the spinor model for crystal graphs of type D_{∞} [7] to describe the latter multiplicity. Unlike the case of Sp_{n} [9], we have to develop in addition a non-trivial combinatorial algorithm on spinor model called separation in order to have a description of branching multiplicity in terms of LR tableaux satisfying the condition for $\underline{c}_{\delta \mu}^{\lambda}$. This is a key ingredient in the proof of Theorem 1.1. We can also recover the formula (1.2) in a stable range directly from the above formula. A full version of this paper including detailed proofs has appeared in [5].

2 Notations

Let \mathbb{Z}_{+}denote the set of non-negative integers. Let \mathscr{P} be the set of partitions or Young diagrams. We let $\mathscr{P}_{\ell}=\{\lambda \in \mathscr{P} \mid \ell(\lambda) \leqslant \ell\}$ for $\ell \geqslant 1$, where $\ell(\lambda)$ is the length of λ, let
$\mathscr{P}^{(2)}=\left\{\lambda \in \mathscr{P} \mid \lambda=\left(\lambda_{i}\right)_{i \geqslant 1}, \lambda_{i} \in 2 \mathbb{Z}_{+}(i \geqslant 1)\right\}$. For a skew Young diagram λ / μ, we define $\operatorname{SST}(\lambda / \mu)$ to be the set of semistandard tableaux of shape λ / μ with entries in \mathbb{N}. For $T \in S S T(\lambda / \mu)$, let $w(T)$ be the word given by reading the entries of T column by column from right to left and from top to bottom in each column, and let $\operatorname{sh}(T)$ denote the shape of T.

Let $\lambda \in \mathscr{P}$ be given. For $T \in S S T(\lambda)$ and $a \in \mathbb{N}$, we denote by $a \rightarrow T$ the tableau obtained by the column insertion of a into T (cf. [2]). For a word $w=w_{1} \ldots w_{r}$, we define $(w \rightarrow T)=\left(w_{r} \rightarrow\left(\cdots \rightarrow\left(w_{1} \rightarrow T\right)\right)\right)$. For a semistandard tableau S, we define $(S \rightarrow T)=(w(S) \rightarrow T)$.

Let λ^{π} denote the skew Young diagram obtained from λ by 180° rotation. Let H_{λ} and $H_{\lambda^{\pi}}$ be the tableaux in $S S T(\lambda)$ and $S S T\left(\lambda^{\pi}\right)$, respectively, where the i-th entry from the top in each column is filled with i for $i \geqslant 1$.

For $\lambda, \mu, v \in \mathscr{P}$, let $\mathrm{LR}_{\mu \nu}^{\lambda}$ be the set of Littlewood-Richardson tableaux S of shape λ / μ with content v. There is a natural bijection from $\operatorname{LR}_{\mu \nu}^{\lambda}$ to the set of $T \in \operatorname{SST}(v)$ such that $\left(T \rightarrow H_{\mu}\right)=H_{\lambda}$, where each i in the j th row of $S \in \operatorname{LR}_{\mu \nu}^{\lambda}$ corresponds to j in the i th row of T. We call such T a companion tableau of $S \in \operatorname{LR}_{\mu v}^{\lambda}$.

We also define $\operatorname{LR}_{\mu v^{\pi}}^{\lambda}$ to be the set of $S \in S S T(\lambda / \mu)$ with content v^{π} such that $w(T)=$ $w_{1} \ldots w_{r}$ is an anti-lattice word, that is, the number of i in $w_{k} \ldots w_{r}$ is greater than or equal to that of $i-1$ for each $k \geqslant 1$ and $1<i \leqslant \ell(v)$. Let us call S a LittlewoodRichardson tableaux of shape λ / μ with content v^{π}. As in case of $\operatorname{LR}_{\mu v}^{\lambda}$, the map from $S \in \mathrm{LR}_{\mu \nu^{\pi}}^{\lambda}$ to its companion tableau gives a natural bijection from $\mathrm{LR}_{\mu \nu^{\pi}}^{\lambda}$ to the set of $T \in \operatorname{SST}\left(v^{\pi}\right)$ such that $\left(T \rightarrow H_{\mu}\right)=H_{\lambda}$. From now on, all the LR tableaux are assumed to be the corresponding companion tableaux unless otherwise specified.

Let $S \in \operatorname{LR}_{\mu^{\prime} v^{\prime}}^{\lambda^{\prime}}$ be given, that is, $\left(S \rightarrow H_{\mu^{\prime}}\right)=H_{\lambda^{\prime}}$. Let S^{1}, \ldots, S^{p} denote the columns of S enumerated from the right. For $1 \leqslant i \leqslant p$, let $H^{i}=\left(S^{i} \rightarrow H^{i-1}\right)$ with $H^{0}=H_{\mu^{\prime}}$ so that $H^{p}=H_{\lambda^{\prime}}$. Define $Q\left(S \rightarrow H_{\mu^{\prime}}\right) \in S S T(\lambda / \mu)$ to be the tableau such that the horizontal strip $\operatorname{sh}\left(H^{i}\right)^{\prime} / \operatorname{sh}\left(H^{i-1}\right)^{\prime}$ is filled with $1 \leqslant i \leqslant p$. On the other hand, let $U \in \operatorname{LR}_{\mu \nu^{\pi}}^{\lambda}$ be given, that is, $\operatorname{sh}\left(U \rightarrow H_{\mu}\right)=H_{\lambda}$. Let U_{i} denote the i-th row of U from the top, and let $H_{i}=\left(U_{i} \rightarrow H_{i-1}\right)$ with $H_{0}=H_{\mu}$ for $1 \leqslant i \leqslant p$. Define $Q\left(U \rightarrow H_{\mu}\right)$ to be tableau such that the horizontal strip $\operatorname{sh}\left(H_{i}\right) / \operatorname{sh}\left(H_{i-1}\right)$ is filled with $1 \leqslant i \leqslant p$.

Then we have a bijection

$$
\begin{equation*}
\psi: \mathrm{LR}_{\mu^{\prime} v^{\prime}}^{\lambda^{\prime}} \longrightarrow \mathrm{LR}_{\mu v^{\pi}}^{\lambda} \tag{2.1}
\end{equation*}
$$

where for $S \in \operatorname{LR}_{\mu^{\prime} v^{\prime \prime}}^{\lambda^{\prime}}, \psi(S)=U$ is given by a unique $U \in \operatorname{SST}\left(v^{\pi}\right)$ such that $\left(U \rightarrow H_{\mu}\right)=$ H_{λ} and $Q\left(U \rightarrow H_{\mu}\right)=Q\left(S \rightarrow H_{\mu^{\prime}}\right)$.

3 Spinor model

3.1 Definitions

Let us recall the spinor model of type D_{∞}, which is a combinatorial model for the crystal of an integrable irreducible highest weight module over the quantum group of type D_{∞} (see [7] and [5, Section 2.1] for more details).

Let \mathfrak{g} be the Kac-Moody Lie algebra of type D_{∞}. We assume that the index set for simple roots is $I=\mathbb{Z}_{+}$, and the weight lattice is $P=\mathbb{Z} \Lambda_{0} \oplus\left(\bigoplus_{i \geqslant 1} \mathbb{Z} \epsilon_{i}\right)$. The associated Dynkin diagram, set of simple roots $\Pi=\left\{\alpha_{i} \mid i \geqslant 0\right\}$, and fundamental weight $\Lambda_{i}(i \geqslant 0)$ are given by

$$
\begin{gathered}
\Pi=c_{a_{1}} \\
\Pi=\left\{\alpha_{0}=-\epsilon_{1}-\epsilon_{2}, \alpha_{i}=\epsilon_{i}-\epsilon_{i+1}(i \geqslant 1)\right\}, \quad \Lambda_{i}= \begin{cases}\Lambda_{0}+\epsilon_{1}, & \text { if } i=1, \\
2 \Lambda_{0}+\epsilon_{1}+\cdots+\epsilon_{i}, & \text { if } i>1 .\end{cases}
\end{gathered}
$$

Let \mathfrak{l} be the subalgebra of \mathfrak{g} associated to $\Pi \backslash\left\{\alpha_{0}\right\}$, which is of type $A_{+\infty}$.
For $n \geqslant 1$, let

$$
\mathcal{P}\left(\mathrm{O}_{n}\right)=\left\{\mu=\left(\mu_{1}, \cdots, \mu_{n}\right) \mid \mu_{i} \in \mathbb{Z}_{+}, \mu_{1} \geqslant \ldots \geqslant \mu_{n}, \mu_{1}^{\prime}+\mu_{2}^{\prime} \leqslant n\right\} .
$$

For $\mu \in \mathcal{P}\left(\mathrm{O}_{n}\right)$, put $\Lambda(\mu)=n \Lambda_{0}+\mu_{1}^{\prime} \epsilon_{1}+\mu_{2}^{\prime} \epsilon_{2}+\cdots$. Then we have $P_{+}=\{\Lambda(\mu) \mid \mu \in$ $\left.\bigsqcup_{n} \mathcal{P}\left(\mathrm{O}_{n}\right)\right\}$ the set of dominant integral weights for \mathfrak{g}. We denote by $\mathbf{B}(\Lambda)$ the crystal of an integrable irreducible highest weight module over the quantum group $U_{q}(\mathfrak{g})$ with highest weight $\Lambda \in P_{+}$.

Let T be a tableau of two-column skew shape $\left(2^{b+c}, 1^{a}\right) /\left(1^{b}\right)$ for $a, b, c \in \mathbb{Z}_{+}$. We denote the left and right columns of T by T^{L} and T^{R} respectively. Suppose that T is semistandard and we can slide down T^{R} by k positions to have a semistandard tableau T^{\prime} of shape $\left(2^{b+c}, 1^{a-k}\right) /\left(1^{b-k}\right)$. We define \mathfrak{r}_{T} to to be the maximal such k.

Let

$$
\begin{aligned}
& \mathbf{T}(a)=\left\{T \mid T \in \operatorname{SST}\left(\left(2^{b+c}, 1^{a}\right) /\left(1^{b}\right)\right), b, c \in 2 \mathbb{Z}_{+}, \mathfrak{r}_{T} \leqslant 1\right\} \quad\left(a \in \mathbb{Z}_{+}\right), \\
& \overline{\mathbf{T}}(0)=\bigsqcup_{b, c \in 2 \mathbb{Z}_{+}} \operatorname{SST}\left(\left(2^{b+c+1}\right) /\left(1^{b}\right)\right), \quad \mathbf{T}^{\mathrm{sp}}=\bigsqcup_{a \in \mathbb{Z}_{+}} \operatorname{SST}\left(\left(1^{a}\right)\right), \\
& \mathbf{T}^{\mathrm{sp}+}=\left\{T \mid T \in \mathbf{T}^{\mathrm{sp}}, \mathfrak{r}_{T}=0\right\}, \quad \mathbf{T}^{\mathrm{sp}-}=\left\{T \mid T \in \mathbf{T}^{\mathrm{sp}}, \mathfrak{r}_{T}=1\right\},
\end{aligned}
$$

where the integer \mathfrak{r}_{T} of $T \in \mathrm{~T}^{\mathrm{sp}}$ is defined by the residue of $\mathrm{ht}(T)$ modulo 2. It is shown that $\mathbf{T}(a), \overline{\mathbf{T}}(0)$ and \mathbf{T}^{sp} have \mathfrak{g}-crystal structure [7, Proposition 4.1] (cf. [5, Section 2.3]) such that

$$
\begin{aligned}
& \mathbf{T}(a) \cong \mathbf{B}\left(\Lambda_{a}\right) \quad(a \geqslant 2), \quad \mathbf{T}(0) \cong \mathbf{B}\left(2 \Lambda_{0}\right), \quad \overline{\mathbf{T}}(0) \cong \mathbf{B}\left(2 \Lambda_{1}\right), \quad \mathbf{T}(1) \cong \mathbf{B}\left(\Lambda_{0}+\Lambda_{1}\right), \\
& \mathbf{T}^{\mathrm{sp}+} \cong \mathbf{B}\left(\Lambda_{0}\right), \quad \mathbf{T}^{\mathrm{sp}-} \cong \mathbf{B}\left(\Lambda_{1}\right) .
\end{aligned}
$$

Let $\mu \in \mathcal{P}\left(\mathrm{O}_{n}\right)$ be given. Let $q_{ \pm}$and $r_{ \pm}$be non-negative integers such that

$$
\begin{cases}n-2 \mu_{1}^{\prime}=2 q_{+}+r_{+}, & \text {if } n-2 \mu_{1}^{\prime} \geqslant 0, \\ 2 \mu_{1}^{\prime}-n=2 q_{-}+r_{-}, & \text {if } n-2 \mu_{1}^{\prime}<0,\end{cases}
$$

where $r_{ \pm}=0,1$. Let $\bar{\mu}=\left(\bar{\mu}_{i}\right) \in \mathscr{P}$ be such that $\bar{\mu}_{1}^{\prime}=n-\mu_{1}^{\prime}$ and $\bar{\mu}_{i}^{\prime}=\mu_{i}^{\prime}$ for $i \geqslant 2$ and let $M_{+}=\mu_{1}^{\prime}$ and $M_{-}=\bar{\mu}_{1}^{\prime}$. Put

$$
\widehat{\mathbf{T}}(\mu, n)= \begin{cases}\mathbf{T}\left(\mu_{1}\right) \times \cdots \times \mathbf{T}\left(\mu_{M_{+}}\right) \times \mathbf{T}(0)^{\times q_{+}} \times\left(\mathbf{T}^{\mathrm{sp}+}\right)^{\times r_{+}}, & \text {if } n-2 \mu_{1}^{\prime} \geqslant 0 \\ \mathbf{T}\left(\bar{\mu}_{1}\right) \times \cdots \times \mathbf{T}\left(\bar{\mu}_{M_{-}}\right) \times \overline{\mathbf{T}}(0)^{\times q_{-}} \times\left(\mathbf{T}^{\mathrm{sp}-}\right)^{\times r_{-}}, & \text {if } n-2 \mu_{1}^{\prime}<0\end{cases}
$$

We give the \mathfrak{g}-crystal structure on $\widehat{\mathbf{T}}(\mu, n)$ by the tensor product rule of crystals by identifying $\left(\ldots, T_{2}, T_{1}\right) \in \widehat{\mathbf{T}}(\mu, n)$ with $T_{1} \otimes T_{2} \otimes \ldots$.

Let

$$
\mathbf{T}(\mu, n)=\left\{\mathbf{T}=\left(\ldots, T_{2}, T_{1}\right) \in \widehat{\mathbf{T}}(\mu, n) \mid T_{i+1}<T_{i}(i \geqslant 1)\right\}
$$

where $T_{i+1}<T_{i}$ means that the pair $\left(T_{i+1}, T_{i}\right)$ satisfies the admissible conditions given in [7, Definition 3.4]. It is shown in [7] that $\mathbf{T}(\mu, n)$ is a connected component in $\widehat{\mathbf{T}}(\mu, n)$ including the unique highest weight element of weight $\Lambda(\mu)$. Hence we have the following.
Theorem 3.1. [7, Theorem 4.3-4.4] For $\mu \in \mathcal{P}\left(\mathrm{O}_{n}\right)$, we have

$$
\mathbf{T}(\mu, n) \cong \mathbf{B}(\Lambda(\mu))
$$

We call $\mathbf{T}(\mu, n)$ the spinor model for $\mathbf{B}(\Lambda(\mu))$.
Example 3.2. Let $n=8$ and $\mu=(4,3,3,2) \in \mathcal{P}\left(\mathrm{O}_{8}\right)$. Then $\Lambda(\mu)=\Lambda_{4}+2 \Lambda_{3}+\Lambda_{2}$. Let $\mathbf{T}=\left(T_{4}, T_{3}, T_{2}, T_{1}\right)$ given by

$\begin{array}{llll}T_{4} & T_{3} & T_{2} & T_{1}\end{array}$
where the dotted line denotes the common horizontal line L. In this case, $T_{4}<T_{3}<T_{2}<T_{1}$ (cf. [7, Definition 3.4]) and thus $\mathbf{T} \in \mathbf{T}(\mu, 8)$.

3.2 Separation lemma

For simplicity, we assume that n is even and $\mu \in \mathcal{P}\left(\mathrm{O}_{n}\right)$ satisfies $n-2 \mu_{1}^{\prime} \geqslant 0$. The same result (Lemma 3.4) also holds for the other cases (see [5, Section 3.3-3.4] for more details).

Definition 3.3. Let

$$
\mathbf{H}(\mu, n)=\left\{\mathbf{T} \mid \mathbf{T} \in \mathbf{T}(\mu, n), \widetilde{e}_{i} \mathbf{T}=\mathbf{0}(i \neq 0)\right\}
$$

and call $\mathbf{T} \in \mathbf{H}(\mu, n)$ an l-highest weight element in $\mathbf{T}(\mu, n)$. In other words, we have $\mathbf{T} \in$ $\mathbf{H}(\mu, n)$ if and only if $\mathbf{T} \equiv{ }_{1} H_{\lambda}$ for some $\lambda \in \mathscr{P}$. Here $\equiv_{\mathfrak{r}}$ means the l-crystal equivalence or Knuth equivalence.

Let $\mathbf{T}=\left(T_{l}, \ldots T_{1}\right) \in \mathbf{H}(\mu, n)$ with $\operatorname{sh}\left(T_{i}\right)=\left(2^{b_{i}+c_{i}}, 1^{a_{i}}\right) /\left(1^{b_{i}}\right)$ for $1 \leqslant i \leqslant l$. We denote by $T_{i}^{\mathrm{R}}(k)\left(\operatorname{resp} . T_{i}^{\mathrm{L}}(k)\right)$ the k-th entry of $T_{i}^{\mathrm{R}}\left(\right.$ resp. $\left.T_{i}^{\mathrm{L}}\right)$ from the bottom. Let us introduce an algorithm on $\left(T_{i+1}, T_{i}\right)$, which is roughly speaking sliding the tail of T_{i} to the left by one position.
(S1) If $T_{i+1}^{\mathrm{R}}(1)<T_{i}^{\mathrm{L}}\left(a_{i}\right)$, then we move the subtableau $\left\{T_{i}^{\mathrm{L}}(k): 1 \leqslant k \leqslant a_{i}\right\}$ of T_{i}^{L} to be located below T_{i+1}^{R}. For example,

Here $T_{i+1}^{\mathrm{R}}(1)=2<T_{i}^{\mathrm{L}}\left(a_{i}\right)=3$ with $a_{i}=2$.
(S2) If $T_{i+1}^{\mathrm{R}}(1)>T_{i}^{\mathrm{L}}\left(a_{i}\right)$, then we slide up the subtableau $\left\{T_{i}^{\mathrm{L}}(k): k \geqslant a_{i}\right\}$ of T_{i}^{L} by two positions and put $T_{i+1}^{\mathrm{R}}(1)$ below it. Also we slide down the subtableau $T_{i+1}^{\mathrm{R}} \backslash\left\{T_{i+1}^{\mathrm{R}}(1)\right\}$ of T_{i+1}^{R} by two positions and put the subtableau $\left\{T_{i}^{\mathrm{L}}(k): 1 \leqslant k \leqslant a_{i}-1\right\}$ below it. For example,

$$
\begin{aligned}
& T_{i+1} \quad T_{i}
\end{aligned}
$$

Here $T_{i+1}^{\mathrm{R}}(1)=4>T_{i}^{\mathrm{L}}\left(a_{i}\right)=3$ with $a_{i}=3$.

Note that the single-column tableaux T_{i+1}^{L} and T_{i}^{R} are invariant under the above algorithm.

We identify \mathbf{T} with $\left(T_{l}^{\mathrm{L}}, T_{l}^{\mathrm{R}}, \ldots T_{1}^{\mathrm{L}}, T_{1}^{\mathrm{R}}\right)$. Let $\widetilde{\mathbf{T}}$ be the sequence of single-column tableaux obtained from \mathbf{T} by applying the above algorithm to each pair $\left(T_{i+1}, T_{i}\right)$ from $l-1$ to 1 , and then removing T_{l}^{L}. By [5, Lemma 3.10, Corollary 3.11], we have $\widetilde{\mathbf{T}} \in \mathbf{H}(\tilde{\mu}, n-1)$, where $\tilde{\mu}=\left(\mu_{2}, \mu_{3}, \ldots\right)$. Hence we can apply the above algorithm to $\widetilde{\mathbf{T}}$ again, and repeat this process as far as possible to get a tableau $\overline{\mathbf{T}}$.

Lemma 3.4 (Separation lemma). Under the above hypothesis, $\overline{\mathbf{T}}$ satisfies the following conditions:
(1) $\overline{\mathbf{T}} \in \operatorname{SST}(\eta)$, where η is the skew Young diagram given in (3.1),
(2) $\overline{\mathbf{T}}$ is Knuth equivalent to \mathbf{T}, that is, $\overline{\mathbf{T}} \equiv{ }_{1} \mathbf{T}$,
(3) Let $\overline{\mathbf{T}}^{\text {body }}$ and $\overline{\mathbf{T}}^{\text {tail }}$ be the subtableaux of $\overline{\mathbf{T}}$ located above and below the horizontal line L, respectively. Then $\overline{\mathbf{T}}^{\text {body }}=H_{\left(\delta^{\prime}\right)^{\pi}}$ for some $\delta \in \mathscr{P}^{(2)}$, and $\overline{\mathbf{T}}^{\text {tail }} \in \operatorname{LR}_{\delta^{\prime} \mu^{\prime}}^{\lambda^{\prime}}$ if $\mathbf{T} \equiv_{\mathfrak{l}} H_{\lambda^{\prime}}$ for some $\lambda \in \mathscr{P}$.

Note that $\mathbf{T} \equiv_{\mathfrak{l}} \overline{\mathbf{T}} \equiv \equiv_{\mathfrak{r}} \overline{\mathbf{T}}^{\text {body }} \otimes \overline{\mathbf{T}}^{\text {tail }}$ by (2), and it is not difficult to check that (3) implies that the map

$$
\begin{equation*}
\mathbf{T} \longmapsto \overline{\mathbf{T}}^{\text {tail }} \tag{3.2}
\end{equation*}
$$

is injective (see [5, Lemma 6.5]). We will describe the image of the injection (3.2) in Section 4.

Example 3.5. Let $n=8$ and $\mu=(4,3,3,2) \in \mathcal{P}\left(\mathrm{O}_{8}\right)$. Let $\mathbf{T}=\left(T_{4}, T_{3}, T_{2}, T_{1}\right) \in \mathbf{H}(\mu, 8)$ given as in Example 3.2. Then since $T_{4}^{\mathrm{R}}(1)=2>1=T_{3}^{\mathrm{L}}(3), T_{3}^{\mathrm{R}}(1)=2>1=T_{2}^{\mathrm{L}}(3)$ and $T_{2}^{\mathrm{R}}(1)=4>3=T_{1}^{\mathrm{L}}(2)$, we apply the algorithm (S2) to each pair $\left(T_{i+1}, T_{i}\right)$ for $i=1,2,3$.

Consequently we have $\widetilde{\mathbf{T}}$ given by
with the left-most column (in gray) removed. By [5, Lemma 3.10, Corollary 3.11], we have $\widetilde{\mathbf{T}} \in \mathbf{H}(\tilde{\mu}, 7)$ with $\widetilde{\mu}=(3,3,2)$.

Repeating this process, we have
where

4 Combinatorial formula of branching multiplicities

4.1 Branching from D_{∞} to $A_{+\infty}$

In this section, we assume $n \in \mathbb{Z}_{+}$. Let $\mu \in \mathcal{P}\left(\mathrm{O}_{n}\right), \lambda \in \mathscr{P}_{n}$ and $\delta \in \mathscr{P}_{n}^{(2)}$ be given. We denote by $\delta^{\mathrm{rev}}=\left(\delta_{1}^{\mathrm{rev}}, \ldots, \delta_{n}^{\text {rev }}\right)$ the reverse sequence of $\delta=\left(\delta_{1}, \ldots, \delta_{n}\right)$, that is, $\delta_{i}^{\mathrm{rev}}=\delta_{n-i+1}$, for $1 \leqslant i \leqslant n$. We put $p=\mu_{1}^{\prime}, q=\mu_{2}^{\prime}$, and $r=(\bar{\mu})_{1}^{\prime}$ if $n-2 \mu_{1}^{\prime}<0$.

Let

$$
\operatorname{LR}_{\lambda}^{\mu}(\mathfrak{d})=\left\{\mathbf{T} \mid \mathbf{T} \in \mathbf{H}(\mu, n), \mathbf{T} \equiv_{\mathfrak{l}} H_{\lambda^{\prime}}\right\}, \quad c_{\lambda}^{\mu}(\mathfrak{d})=\left|\operatorname{LR}_{\lambda}^{\mu}(\mathfrak{d})\right| .
$$

Note that $c_{\lambda}^{\mu}(\mathfrak{d})$ is equal to the multiplicity of irreducible highest weight \mathfrak{l}-module with highest weight $\sum_{i \geqslant 1} \lambda_{i}^{\prime} \epsilon_{i}$ in the irreducible highest weight \mathfrak{g}-module with highest weight $\Lambda(\mu)$.
Definition 4.1. For $S \in \operatorname{LR}_{\delta^{\prime} \mu^{\prime}}^{\lambda^{\prime}}$, let $s_{1} \leqslant \cdots \leqslant s_{p}$ denote the entries in the first row, and $t_{1} \leqslant \cdots \leqslant t_{q}$ the entries in the second row of S. Let $1 \leqslant m_{1}<\cdots<m_{p}<n$ be the sequence defined inductively from p to 1 as follows:

$$
m_{i}=\max \left\{k \mid \delta_{k}^{\text {rev }} \in X_{i}, \delta_{k}^{\text {rev }}<s_{i}\right\}
$$

where

$$
X_{i}= \begin{cases}\left\{\delta_{i}^{\mathrm{rev}}, \ldots, \delta_{2 i-1}^{\mathrm{rev}}\right\} \backslash\left\{\delta_{m_{i+1}}^{\mathrm{rev}}, \ldots, \delta_{m_{p}}^{\mathrm{rev}}\right\}, & \text { if } 1 \leqslant i \leqslant r \\ \left\{\delta_{i}^{\mathrm{rev}}, \ldots, \delta_{n-p+i}^{\mathrm{rev}}\right\} \backslash\left\{\delta_{m_{i+1}}^{\mathrm{rev}}, \ldots, \delta_{m_{p}}^{\text {rev }}\right\}, & \text { if } r<i \leqslant p\end{cases}
$$

Here we assume that $r=p$ when $n-2 \mu_{1}^{\prime} \geqslant 0$.
Let $n_{1}<\cdots<n_{q}$ be the sequence such that n_{j} is the j-th smallest integer in $\{j+$ $1, \cdots, n\} \backslash\left\{m_{j+1}, \cdots, m_{p}\right\}$ for $1 \leqslant j \leqslant q$.

Then we define $\overline{\mathrm{LR}}_{\delta^{\prime} \mu^{\prime}}^{\lambda^{\prime}}$ to be a subset of $\mathrm{LR}_{\delta^{\prime} \mu^{\prime}}^{\lambda^{\prime}}$ consisting of S satisfying

$$
t_{j}>\delta_{n_{j}}^{\text {rev }}
$$

for $1 \leqslant j \leqslant q$. We put $\bar{c}_{\delta \mu}^{\lambda}=\left|\overline{\mathrm{LR}}_{\delta^{\prime} \mu^{\prime}}^{\lambda^{\prime}}\right|$.
The following is the main result in this abstract, which characterizes the image of injection (3.2).

Theorem 4.2. For $\mu \in \mathcal{P}\left(\mathrm{O}_{n}\right)$ and $\lambda \in \mathscr{P}_{n}$, we have a bijection

$$
\begin{gathered}
\mathrm{LR}_{\lambda}^{\mu}(\mathfrak{d}) \longrightarrow \bigsqcup_{\delta \in \mathscr{T}_{(1)}^{(2)}} \overline{\mathrm{LR}}_{\delta^{\prime} \mu^{\prime}}^{\lambda^{\prime}} \\
\mathbf{T} \longmapsto \overline{\mathbf{T}}^{\text {tail }}
\end{gathered}
$$

Corollary 4.3. Under the above hypothesis, we have

$$
\begin{equation*}
c_{\lambda}^{\mu}(\mathfrak{d})=\sum_{\delta \in \mathscr{P}_{n}^{(2)}} \bar{c}_{\delta \mu}^{\lambda} \tag{4.1}
\end{equation*}
$$

Let us give the alternative description of $c_{\lambda}^{\mu}(\mathfrak{d})$ which is simpler than $\overline{\mathrm{LR}} \bar{\delta}^{\prime} \mu^{\prime}$.
Definition 4.4. For $U \in \operatorname{LR}_{\delta \mu^{\pi}}^{\lambda}$, let $\sigma_{1}>\cdots>\sigma_{p}$ denote the entries in the rightmost column and $\tau_{1}>\cdots>\tau_{q}$ the second rightmost column of U, respectively. Let $m_{1}<\cdots<m_{p}$ be the sequence defined by

$$
m_{i}= \begin{cases}\min \left\{n-\sigma_{i}+1,2 i-1\right\}, & \text { if } 1 \leqslant i \leqslant r \\ \min \left\{n-\sigma_{i}+1, n-p+i\right\}, & \text { if } r<i \leqslant p\end{cases}
$$

and let $n_{1}<\cdots<n_{q}$ be the sequence such that n_{j} is the j-th smallest number in $\{j+$ $1, \ldots, n\} \backslash\left\{m_{j+1}, \ldots, m_{p}\right\}$. Then we define $\underline{L R}_{\delta \mu}^{\lambda}$ to be the subset of $\mathrm{LR}_{\delta \mu^{\pi}}^{\lambda}$ consisting of U such that

$$
\begin{equation*}
\tau_{j}+n_{j} \leqslant n+1 \tag{4.2}
\end{equation*}
$$

for $1 \leqslant j \leqslant q$. We put ${\underset{c}{\delta}}_{\delta \mu}^{\lambda}=\left|\underline{L R}_{\delta \mu}^{\lambda}\right|$.

Remark 4.5. Recall that $\operatorname{LR}_{\delta \mu^{\pi}}^{\lambda}$ is the set of $S \in S S T(\lambda / \delta)$ with content μ^{π} such that $w(T)=w_{1} \ldots w_{r}$ is an anti-lattice word, while in Definition 4.4, $\mathrm{LR}_{\delta \mu}^{\lambda}$ is given by the set of the companion tableaux U of S.

Theorem 4.6. For $\mu \in \mathcal{P}\left(\mathrm{O}_{n}\right), \lambda \in \mathscr{P}_{n}$ and $\delta \in \mathscr{P}_{n}^{(2)}$, the bijection $\psi: \operatorname{LR}_{\mu^{\prime} v^{\prime}}^{\lambda^{\prime}} \longrightarrow \operatorname{LR}_{\mu v^{\pi}}^{\lambda}$ in (2.1) induces a bijection from $\overline{\mathrm{LR}}_{\delta^{\prime} \mu^{\prime}}^{\lambda^{\prime}}$ to $\mathrm{LR}_{\delta \mu}^{\lambda}$.

Corollary 4.7. Under the above hypothesis, we have

$$
\begin{equation*}
c_{\lambda}^{\mu}(\mathfrak{d})=\sum_{\delta \in \mathscr{P}_{n}^{(2)}} \underline{c}_{\delta \mu}^{\lambda} . \tag{4.3}
\end{equation*}
$$

In particular, if $\ell(\lambda) \leqslant \frac{n}{2}$, then we have the Littlewood's restriction formula (1.2) for $\mathrm{G}_{\mathrm{n}}=\mathrm{O}_{n}$ from (4.3).

Example 4.8. Let $n=8, \mu=(2,2,2,1,1) \in \mathcal{P}\left(\mathrm{O}_{8}\right), \lambda=(5,4,4,3,2,2) \in \mathscr{P}_{8}$, and $\delta=$ $(4,2,2,2,2) \in \mathscr{P}_{8}^{(2)}$.

Let us consider the Littlewood-Richardson tableau $U \in \operatorname{LR}_{\delta \mu^{\pi}}^{\lambda}$ given by

$$
U=\begin{array}{|c|c|}
\begin{array}{l}
1 \\
\hline
\end{array} \tag{4.4}\\
2 \\
\hline & 3 \\
\hline 3 & 4 \\
\hline 6 & 6 \\
\hline
\end{array},
$$

where $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}\right)=(6,4,3,2,1)$ and $\left(\tau_{1}, \tau_{2}, \tau_{3}\right)=(6,3,2)$. Note that the shape of U is $\mu^{\pi}=(1,1,2,2,2)$ and the content is $\lambda / \delta=(1,2,2,1,0,2)$. Then the sequences $\left(m_{i}\right)_{1 \leqslant i \leqslant 5}$ and $\left(n_{j}\right)_{1 \leqslant j \leqslant 3}$ (Definition 4.4) are given by $(1,3,5,7,8)$ and $(2,4,6)$ respectively. It is easy to check that U satisfies the condition (4.2). Hence $U \in \underline{L R}_{\mu \delta}^{\lambda}$.

On the other hand, let S be the Littlewood-Richardson tableau in $\overline{\mathrm{LR}}_{\delta^{\prime} \mu^{\prime}}^{\lambda^{\prime}}$ (recall Definition 4.1) with the enumeration of the columns as follows:

$$
S=\begin{array}{cccccc}
\begin{array}{l}
1 \\
2
\end{array} & \begin{array}{|ccccc}
3 & 4 & \frac{3}{4} & 3 & 5 \\
\hline & & & 5 \\
& s^{5} & s^{4} & s^{3} & s^{2}
\end{array} & s^{1}
\end{array},
$$

where $\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right)=(1,3,3,3,5)$ and $\left(t_{1}, t_{2}, t_{3}\right)=(2,4,4)$. Then $\psi(S)(2.1)$ is obtained
by

Note that $\psi(S)$ is same with $U(4.4)$. Under the above correspondence, we observe that $\sigma_{i}(1 \leqslant i \leqslant 5)$ and $\tau_{j}(1 \leqslant j \leqslant 3)$ record the positions of s_{i} and t_{j} in δ^{\prime}, respectively, and vice versa. This implies that $S \in \overline{\mathrm{LR}}_{\delta^{\prime} \mu^{\prime}}^{\lambda^{\prime}}$ if and only if $\psi(S) \in \mathrm{LR}_{\delta \mu}^{\lambda}$.
Remark 4.9. (1) We may have an analogue of Theorem 4.2 for type B and C, that is, a multiplicity formula with respect to the branching from B_{∞} and C_{∞} to $A_{+\infty}$, respectively (see Remark 4.14 in [5] for more details).
(2) When n is odd, there is a bijection between $\operatorname{LR}_{\lambda}^{\mu}(\mathfrak{d})$ and a set of LR tableaux with certain conditions, where λ appears as an inner shape of LR tableaux [4]. This alternative description of $\operatorname{LR}_{\lambda}^{\mu}(\mathfrak{d})$ is used to construct a bijection between the set of pairs of standard tableau of shape λ and $T \in \operatorname{LR}_{\lambda}^{\mu}(\mathfrak{d})$ and the set of vacillating tableaux of shape μ.

4.2 Branching from GL_{n} to O_{n}

We assume that the base field is \mathbb{C}. Let $V_{\mathrm{GL}_{n}}^{\lambda}$ denote the finite-dimensional irreducible GL_{n}-module corresponding to $\lambda \in \mathscr{P}_{n}$, and $V_{\mathrm{O}_{n}}^{\mu}$ the finite-dimensional irreducible module O_{n}-module corresponding to $\mu \in \mathcal{P}\left(\mathrm{O}_{n}\right)$.

Then we have the following new combinatorial description of $\left[V_{\mathrm{GL}_{n}}^{\lambda}: V_{\mathrm{O}_{n}}^{\mu}\right]$.
Theorem 4.10. For $\lambda \in \mathscr{P}_{n}$ and $\mu \in \mathcal{P}\left(\mathrm{O}_{n}\right)$, we have

$$
\left[V_{\mathrm{GL}_{\mathrm{n}}}^{\lambda}: V_{\mathrm{O}_{\mathrm{n}}}^{\mu}\right]=\sum_{\delta \in \mathscr{P}_{n}^{(2)}} \bar{c}_{\delta \mu}^{\lambda}=\sum_{\delta \in \mathscr{P}_{n}^{(2)}} \underline{c}_{\delta \mu}^{\lambda} .
$$

Proof. It follows from the branching rule of see-saw pairs $\left(D_{\infty}, A_{+\infty}\right)$ and $\left(\mathrm{GL}_{n}, \mathrm{O}_{n}\right)[8$, Theorem 5.3]

$$
\left[V_{\mathrm{GL}_{\mathrm{n}}}^{\lambda}: V_{\mathrm{O}_{\mathrm{n}}}^{\mu}\right]=c_{\lambda}^{\mu}(\mathfrak{d}),
$$

and Corollaries 4.3 and 4.7.
Remark 4.11. As an application of the branching multiplicity, we obtain a new combinatorial realization for the Lusztig t-weight multiplicity $K_{\mu 0}(t)$ of type B_{n} and D_{n} with highest weight μ and weight 0 or generalized exponents (see [5, Section 5]). This gives an orthogonal analogue of the result for type C_{n} in [9].

Acknowledgements

This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1501-01.

References

[1] T. Enright and J. Willenbring. "Hilbert series, Howe duality and branching for classical groups". Ann. of Math. 159 (2004), pp. 337-375. Link.
[2] W. Fulton. Young tableaux, with Application to Representation theory and Geometry. 1997. Link.
[3] R. Howe, E.-C. Tan, and J. Willenbring. "Stable branching rules for classical symmetric pairs". Trans. Amer. Math. Soc. 357 (2005), pp. 1601-1626. Link.
[4] J. Jagenteufel. "A Sundaram type bijection for $\mathrm{SO}(2 k+1)$ ". 2018. arXiv:1902.03843.
[5] I.-S. Jang and J.-H. Kwon. "Flagged Littlewood-Richardson tableaux and branching rule for classical groups" (Aug. 2019). arXiv:1908.11041.
[6] J.-H. Kwon. "Super duality and crystal bases for quantum ortho-symplectic superalgebras". Int. Math. Res. Not. (2015), pp. 12620-12677. Link.
[7] J.-H. Kwon. "Super duality and crystal bases for quantum ortho-symplectic superalgebras II". J. Algebr. Comb. 43 (2016), pp. 553-588. Link.
[8] J.-H. Kwon. "Combinatorial extension of stable branching rules for classical groups". Trans. Amer. Math. Soc. 370 (2018), pp. 6125-6152. Link.
[9] C. Lecouvey and C. Lenart. "Combinatorics of generalized exponents". Int. Math. Res. Not. (2018). Link.
[10] D. Littlewood. "On invariant theory under restricted groups". Philosophical Transactions of The Royal Society A 239 (1944), 387-417. Link.
[11] D. Littlewood. The theory of group characters and matrix representations of groups. 1950.
[12] S. Sundaram. "On the combinatorics of representations of the symplectic group". 1986. Link.
[13] W. Wang. "Duality in infinite dimensional Fock representations". Commun. Contemp. Math. 1 (1999), pp. 155-199. Link.

[^0]: *is_jang@snu.ac.kr.
 †jaehoonkw@snu.ac.kr.

