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Flagged Littlewood—-Richardson tableaux and
branching rule for orthogonal groups

[1-Seung Jang*! and Jae-Hoon Kwon'!

1Department of Mathematical Sciences, Seoul National University, Seoul, Korea

Abstract. We give a new combinatorial formula for the branching rule from GL, to
Oy, generalizing the Littlewood’s restriction formula. The formula is given in terms of
Littlewood-Richardson tableaux with certain flag conditions which vanish in a stable
range.
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1 Introduction

Let Vé\Ln denote a complex finite-dimensional irreducible representation of the complex
general linear group GL, parametrized by a partition A of length ¢(A) < n. Suppose
that G, is a closed subgroup Sp, or O, where 7 is even for G, = Sp,. Let VV be a
finite-dimensional irreducible G,,-module parametrized by a partition y with ¢(u ) n/2
for G, = Sp,,, and by a partition p with /(u) < n and pj + p5 < n for G, = O,. Here
1 = (4})i=1 is the conjugate partition of p.
Let
VL, : V| = dim Homg, (V& VEy,) (1.1)

denote the multiplicity of Vgn in Vé‘Ln. In [10, 11], Littlewood showed that if /(1) < n/2,
then

[VéLn Spn] D oy [V(/}\Ln ] > C(Sy' (1.2)

5ep(2) ep(2

where cg7 is the Littlewood-Richardson coefficient corresponding to partitions «, 3,7,

and #(?) denotes the set of partition with even parts. There have been numerous works
on extending the Littlewood’s restriction rules (1.2) for arbitrary A with ¢(A) < n (see [1,
3] and also the references therein), but most of which are obtained in an algebraic way
and hence given not in a subtraction-free way.
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In [12], Sundaram gave a beautiful combinatorial formula for (1.1) when G, = Sp,,
as the sum of the numbers of Littlewood—Richardson (LR) tableaux of shape A/u with
content ¢’ satisfying certain constraints on their entries, which vanish in a stable range
¢(A) < n/2. Recently, based on the results in [8, 6], Lecouvey and Lenart obtained another
formula for (1.1) when G, = Sp, in terms of LR tableaux with some flag conditions
on their companion tableaux [9]. On the other hand, no orthogonal analogue of these
formula has been known so far.

The main result in this abstract is to give a combinatorial formula for (1.1) when
G, = O, for arbitrary A and p in terms of LR tableaux with certain flag conditions on
their companion tableaux which vanish in a stable range /(1) < n/2.

For simplicity, let us state our main result when n — 2y > 0. Note that the restriction
on n — 2y} is not significant, since the result for n — 2y} < 0 is almost identical. Let LR()S‘H,,
be the set of LR tableaux of shape A/§ with content y”, where u” is the skew Young
diagram obtained by 180°-rotation of . Then we have the following (Theorem 4.10).

Theorem 1.1. For U € LRgﬂn, let 0; be the row index of the leftmost uy —i+1 in U for
1 <i <y, and 7 the row index of the second leftmost ys —j+1in U for 1 < j < p5. Let
my <o <y be the sequence given by m; = min{n —o; +1,2i — 1}, and let ny < --- < My,
be the sequence such that n; is the j-th smallest number in {j+1,...,n \{mj 1, ..., my }. Let
ggy denote the number of U € LRg‘yn such that

T]'+Tl]'<n+1,

for 1 < j < pb. Then we have

A LyH | A
[VGLn - Von] = ) S
3e 2 ()

The branching multiplicity (1.1) is equal to the one from D, to A, from a viewpoint
of see-saw dual pairs in Howe duality on a Fock space [13]. We use the Kashiwara’s
crystal base theory of quantum groups and the spinor model for crystal graphs of type
Dy [7] to describe the latter multiplicity. Unlike the case of Sp,, [9], we have to develop
in addition a non-trivial combinatorial algorithm on spinor model called separation in
order to have a description of branching multiplicity in terms of LR tableaux satisfying
the condition for gg\y. This is a key ingredient in the proof of Theorem 1.1. We can also
recover the formula (1.2) in a stable range directly from the above formula. A full version
of this paper including detailed proofs has appeared in [5].

2 Notations

Let Z, denote the set of non-negative integers. Let & be the set of partitions or Young
diagrams. We let ) = {A e Z|{(A) < £} for £ > 1, where {(A) is the length of A, let
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P2 = {Ae PN = (A)i=1,Ai € 2Z, (i = 1)}. For a skew Young diagram A/u, we
define SST(A/u) to be the set of semistandard tableaux of shape A/u with entries in IN.
For T € SST(A/u), let w(T) be the word given by reading the entries of T column by
column from right to left and from top to bottom in each column, and let sh(T) denote
the shape of T.

Let A € & be given. For T € SST(A) and a € IN, we denote by a — T the tableau
obtained by the column insertion of a into T (cf. [2]). For a word w = wj...w,, we
define (w —» T) = (w, — (--- — (w; — T))). For a semistandard tableau S, we define
(S—>T)=(w(S)—T).

Let A denote the skew Young diagram obtained from A by 180° rotation. Let H)
and H)r be the tableaux in SST(A) and SST(A™), respectively, where the i-th entry from
the top in each column is filled with 7 for i > 1.

For A, u,ve 2, let LRQU be the set of Littlewood—-Richardson tableaux S of shape A/u
with content v. There is a natural bijection from LRﬁv to the set of T € SST(v) such that
(T — H,) = Hy, where each i in the jth row of S € LRL‘V corresponds to j in the ith row
of T. We call such T a companion tableau of S € LR;}V.

We also define LRL‘V,I to be the set of S € SST(A/u) with content v” such that w(T) =
w1 ... w, is an anti-lattice word, that is, the number of i in wy...w, is greater than or
equal to that of i — 1 for each k > 1 and 1 < i < ¢(v). Let us call S a Littlewood-

Richardson tableaux of shape A/u with content 1. As in case of LR}, the map from

s
S e LRQWT to its companion tableau gives a natural bijection from LRQWT to the set of
T € SST(v™) such that (T — H,) = H,. From now on, all the LR tableaux are assumed
to be the corresponding companion tableaux unless otherwise specified.

Let S € LRI/yv, be given, that is, (S — Hy/) — Hj. Let S!,...,S? denote the columns
of S enumerated from the right. For 1 <i < p, let H' = (S' — H'™!) with H? = Hy so
that H? = H),. Define Q(S — H,/) € SST(A/u) to be the tableau such that the horizontal
strip sh(H)'/sh(H"~!)" is filled with 1 < i < p. On the other hand, let U € LR;}V,T be
given, that is, sh(U — H,) = H,. Let U; denote the i-th row of U from the top, and let
H; = (U; — H;_1) with Hy = H), for 1 < i < p. Define Q(U — H,) to be tableau such
that the horizontal strip sh(H;)/sh(H;_1) is filled with 1 <i < p.

Then we have a bijection

—— LR,

(2.1)

A
W'

where for S € LRI%/,, P(S) = U is given by a unique U € SST(v™) such that (U — H,) =
Hy and Q(U — Hy) = Q(S — Hy).
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3 Spinor model

3.1 Definitions

Let us recall the spinor model of type D, which is a combinatorial model for the crystal
of an integrable irreducible highest weight module over the quantum group of type Dy
(see [7] and [5, Section 2.1] for more details).

Let g be the Kac-Moody Lie algebra of type D,,. We assume that the index set for
simple roots is I = Z., and the weight lattice is P = ZA @ (D=1 Ze;). The associated
Dynkin diagram, set of simple roots Il = {«;|i > 0}, and fundamental weight A; (i > 0)
are given by

L]

O @) O O

a2 a3 Xk—1 Lo% k41

O— ...

&1

_ Ao + €1, ifi=1,
[M={ay=—-€1—€, a;=€—¢€i1(i=1)}, Aiz{ !

2Ag+€1+---+¢€, ifi>1.

Let [ be the subalgebra of g associated to IT\{a}, which is of type A .
Forn > 1, let

POn) ={p= 1, )| i € Zy, 1> ... = pn, Yy +us <nj.

For u € P(Oy), put A(u) = nAg+ pyer + prer + - . Then we have P, = {A(y)|u €
||, P(On)} the set of dominant integral weights for g. We denote by B(A) the crystal
of an integrable irreducible highest weight module over the quantum group U,(g) with
highest weight A € P,.

Let T be a tableau of two-column skew shape (20*¢,1%)/(1%) for a,b,c € Z.. We
denote the left and right columns of T by T" and T® respectively. Suppose that T is
semistandard and we can slide down T® by k positions to have a semistandard tableau
T’ of shape (20*¢,1%7F) /(1°=F). We define t7 to to be the maximal such k.

Let

T(a) = { T|T e SST((20%¢,1%)/(1%)), b,c € 2Z.,, v7 < 1 } (aeZ.),
TO) = || ssT(@"*/a%), TP =[] ssT((1%),

bee2Z, a€Z+
TP+ — {T|TeT®,vr=0}, TP ={T|TeT?®, vr=1},
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where the integer v of T € TP is defined by the residue of ht(T) modulo 2. It is shown

that T(a), T(0) and T*P have g-crystal structure [7, Proposition 4.1] (cf. [5, Section 2.3])
such that

T(a) 2 B(A,) (a>2), T(0)=B(2A), T(0)=B(A;), T(1)=B(Ag+Ay),
TSPH ~ B(Ao) , TP~ ~ B(Al)

Let u € P(O;,) be given. Let g+ and r+ be non-negative integers such that

n—2uy =294+ +ry, ifn—2u) =0,
2uy—n=29_+r_, ifn—2pu) <0,

where r+ = 0,1. Let 7 = (Ji;) € & be such that 71} = n — yj and 7i; = p! for i > 2 and let
M, =y} and M_ = 7i}. Put

(0)0+ x (TSP*)*™+, if n—2p; > 0,

' (0)%4= x (TP~)*"=, if n —2u} <O0.

T(fy) < x T(fy )
We give the g-crystal structure on T( u, n) by the tensor product rule of crystals by iden-

tifying (..., T, T1) e T(,n) with I @ o ® ... .
Let

x T
x T

T,n) ={T=(..,To,T))eT(un)|Tu1<T; (i>1)},

where T;,1 < T; means that the pair (7,1, T;) satisfies the admissible conditions given in
[7, Definition 3.4]. It is shown in [7] that T(y, n) is a connected component in T(y, n)
including the unique highest weight element of weight A(u). Hence we have the follow-
ing.

Theorem 3.1. [7, Theorem 4.3—4.4] For y € P(Oy,), we have
T(u,n) = B(A(p))-
We call T(u, n) the spinor model for B(A(u)).

Example 3.2. Let n = 8 and y = (4,3,3,2) € P(Og). Then A(u) = As+2A3 + Ap. Let
T = (Tu, T3, T, T1) given by

1]
- 2
1 [ [ B
2 2 z| (2[4
.......... I I L
13| 13| 15| 15 ]
14| 14 16]
15|
Ty T3 1> Ty

where the dotted line denotes the common horizontal line L. In this case, Ty < T3 < Tp < T (cf.
[7, Definition 3.4]) and thus T € T(p, 8).
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3.2 Separation lemma

For simplicity, we assume that 7 is even and u € P(O,,) satisfies n — 2y > 0. The same
result (Lemma 3.4) also holds for the other cases (see [5, Section 3.3-3.4] for more details).

Definition 3.3. Let
H(u,n)={T|TeT(un), ¢T=0({=0)},

and call T € H(u,n) an [-highest weight element in T(u, n). In other words, we have T €
H(u,n) if and only if T =( H) for some A € &. Here = means the |-crystal equivalence or
Knuth equivalence.

Let T = (Tj,...Ty) € H(u,n) with sh(T;) = (2%+¢,1%)/(1%) for 1 < i < I. We denote
by TF(k) (resp. Tj(k)) the k-th entry of TF (resp. TF) from the bottom. Let us introduce
an algorithm on (T;,1, T;), which is roughly speaking sliding the tail of T; to the left by
one position.

(81) If T} (1) < T;(a;), then we move the subtableau {T}-(k) : 1 < k < a;} of T} to be

1
located below T} . For example,

i+1°
1] 1]
2 - 2
1[3 1] [1]3
..... 2 2 4 2 2 4
1 3] 1/3
5] 4l5
T T

Here T} (1) = 2 < T (a;) = 3 with a; = 2.

(82) If T}, (1) > T} (a;), then we slide up the subtableau {T}(k) : k > a;} of T} by two po-

sitions and put T} ; (1) below it. Also we slide down the subtableau T}, ,\{T}. ; (1)}
of Tf, ; by two positions and put the subtableau {T}(k) : 1 < k < a; — 1} below it.
For example,

1] 11 11 11

2 2]2 2]2 2]2
(1] [1]3 3 [1] [3]3 3]3
4] [2]4 4] o 4]4 4]4
S e s

— —> —> —

6] 5]6 5]6

8] 6]8 6]8

7] 7]

Timw T

Here T}

t1(1) =4 > Tr(a;) = 3 with a; = 3.
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Note that the single-column tableaux T}, and T} are invariant under the above algo-
rithm.

We identify T with (T, T}, ... Ty, TF). Let T be the sequence of single-column tableaux
obtained from T by applying the above algorithm to each pair (T;;1,T;) from [ —1 to 1,
and then removing TZL. By [5, Lemma 3.10, Corollary 3.11], we have T e H(ji,n—1),
where 7i = (12, 13, ... ) . Hence we can apply the above algorithm to T again, and repeat
this process as far as possible to get a tableau T.

Lemma 3.4 (Separation lemma). Under the above hypothesis, T satisfies the following condi-
tions:

(1) T € SST(n), where 1 is the skew Young diagram given in (3.1),
(2) T is Knuth equivalent to T, that is, T = T,

3) Let T°°Y and T be the subtableaux of T located above and below the horizontal line L,
respectively. Then T % = Hgyx for some 6 € 2@, and T ¢ LRQ,’H, if T = Hy for

some A € .

(0")7
= . (3.1)

Note that T = T = T°%

that the map

QT by (2), and it is not difficult to check that (3) implies

T— T (3.2)
is injective (see [5, Lemma 6.5]). We will describe the image of the injection (3.2) in
Section 4.

Example 3.5. Let n = 8 and u = (4,3,3,2) € P(Og). Let T = (Ty, T3, T2, T1) € H(y,8)
given as in Example 3.2. Then since Tj(1) =2 > 1 = T¥(3), T}(1) =2 > 1 = Ty(3) and
T3(1) = 4 > 3 = Ty(2), we apply the algorithm (S2) to each pair (Tj4, T;) for i = 1,2,3.
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Consequently we have T given by

with the left-most column (in gray) removed. By [5, Lemma 3.10, Corollary 3.11], we
have T € H(j,7) with yi = (3,3,2).
Repeating this process, we have

—_
—

NI I] O]

YLV Y S

= 2]2
T = 1]1]1]1 ’
3[3]5][5
1(4(6
5]
where
1]1 1J1]1]1
=body 212 ~tail  |3|3]|5|5
T — [1]1{3][3]|’ T T l4]4]6
22144 5]

4 Combinatorial formula of branching multiplicities

4.1 Branching from D, to A,

In this section, we assume n € Z,. Let y € P(Oy), A € &, and ¢ € 1@,52) be given.
We denote by 67¢V = (67°%",...,0;°") the reverse sequence of 6 = (61,...,0,), that is,
07V = 6y_jyq, for1 <i<n. Weputp=pj,q=p5 andr = ()] if n — 2 <O.
Let
LRY(0) = {T|Te H(un), T= Hy}, ch(d)=[LR}()].
Note that ¢, (d) is equal to the multiplicity of irreducible highest weight l-module with
highest weight >, Agei in the irreducible highest weight g-module with highest weight

A(p).

Definition 4.1. For S € LRg‘,/y,, let 51 < --- < s, denote the entries in the first row, and
t1 < .-+ < t; the entries in the second row of S. Let 1 < m; < --- < mp < n be the
sequence defined inductively from p to 1 as follows:

m; = max{ k|’ € X;, 6" <s;},
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where
X {{5}% ORI, ifl<i<,
Do, NOEY L e, ifr<i<p,

Here we assume that 7 = p when n — 2} > 0.
Let n; < --- < n, be the sequence such that 7; is the j-th smallest integer in {j +

1,--- ,n}\{mj+1,- o ,mp} for1<j<g.
Then we define ﬁ{y to be a subset of LR} 5, , consisting of S satisfying

rev
f]' > 511]' ,

for 1 <j <g. We put Cfsy = ]LRy /]

The following is the main result in this abstract, which characterizes the image of
injection (3.2).

Theorem 4.2. For y € P(O,) and A € &y, we have a bijection

—\
LRY(0) —— [ IRy, .

oe](t 1
~tai
T— T

Corollary 4.3. Under the above hypothesis, we have

Z c(;y 4.1)

(563”

Let us give the alternative description of ¢, (2) which is simpler than ﬁg,y,

Definition 4.4. For U e LR();H,T, let o7 > --- > 0 denote the entries in the rightmost column
and 71 > --- > T, the second rightmost column of U, respectively. Let m; < --- < m, be
the sequence defined by

min{n —o; +1,2i — 1}, ifl<i<r,
m: =
min{fn —o; +1,n—p+i}, ifr<i<p.

and let n; < --- < n, be the sequence such that 7; is the j-th smallest number in {;j +
1,...,n\{mjyq,...,mp}. Then we define Q{f;y to be the subset of LR?W consisting of U
such that

Ti+nj<n+l, 4.2)

for 1 <j<gq. We put ¢}, = |LR},
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Remark 4.5. Recall that LRS\W is the set of S € SST(A/d) with content u™ such that
w(T) = w ... w, is an anti-lattice word, while in Definition 4.4, LR?W is given by the set
of the companion tableaux U of S.
Theorem 4.6. For y1 € P(O,), A € Py and 6 € 922), the bijection 1 : LRQfV, — LRL‘VH in (2.1)
induces a bijection from L_R();‘//y/ to L_Rfs‘y.
Corollary 4.7. Under the above hypothesis, we have

cﬁ(a) = Z ggy . (4.3)

sep?)

In particular, if £(A) < 7, then we have the Littlewood’s restriction formula (1.2) for G, = Oy
from (4.3).
Example 4.8. Let n = 8, u = (2,2,2,1,1) € P(Og), A = (5,4,4,3,2,2) € Hg, and 6 =

(4,2,2,2,2) e 2.
Let us consider the Littlewood-Richardson tableau U € LRQ‘W given by

(4.4)

<
I
WMo
cr\x-hwlx)lwl
~

where (01,09, 03,04,05) = (6,4,3,2,1) and (13, T, 13) = (6,3,2). Note that the shape of U
is u™ =(1,1,2,2,2) and the content is A/d = (1,2,2,1,0,2). Then the sequences (1;)1<i<5
and (1})1<j<3 (Definition 4.4) are given by (1,3,5,7,8) and (2,4, 6) respectively. It is easy
to check that U satisfies the condition (4.2). Hence U € @;‘ 5

On the other hand, let S be the Littlewood—-Richardson tableau in ﬁglly, (recall Defi-
nition 4.1) with the enumeration of the columns as follows:

5
— 7
5 s+ 8 2 gl

where (51,52, S3,84, 55) = (1,3, 3, 3,5) and (tl,tz, i’3) = (2, 4,4). Then l[J(S) (2.1) is obtained
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by
s1 11 1[1] 1] -
;2 20212 213 1
-3 3[3[3 314 2]
o4 404 4] 203
... 55 , e 34 21[1(5)
ﬂ'”' 616
$(5) = Hs Q(S) — Hy)

Note that 1(S) is same with U (4.4). Under the above correspondence, we observe that
0; (1 <i<5)and 7 (1 <j < 3)record the positions of s; and ¢; in &', respectively, and
vice versa. This implies that S € ﬁ}'ﬂ, if and only if (S) € @f;y.

Remark 4.9. (1) We may have an analogue of Theorem 4.2 for type B and C, that is, a
multiplicity formula with respect to the branching from B, and Cy to A, respectively
(see Remark 4.14 in [5] for more details).

(2) When n is odd, there is a bijection between LRK(D) and a set of LR tableaux with
certain conditions, where A appears as an inner shape of LR tableaux [4]. This alternative
description of LR (?) is used to construct a bijection between the set of pairs of standard
tableau of shape A and T € LR} (?) and the set of vacillating tableaux of shape .

4.2 Branching from GL, to O,

We assume that the base field is C. Let VéLn denote the finite-dimensional irreducible

GL,-module corresponding to A € &, and Vgn the finite-dimensional irreducible mod-
ule O,-module corresponding to y € P(O;,).

Then we have the following new combinatorial description of [VéLn : Vgn].

Theorem 4.10. For A € &, and u € P(Oy,), we have

[V(/}\L]n ] Z C(Sy 2 Céy
56] (56]

Proof. It follows from the branching rule of see-saw pairs (D, A+«) and (GL,, Oy) [8,
Theorem 5.3]

VL, VS| =l
and Corollaries 4.3 and 4.7. O
Remark 4.11. As an application of the branching multiplicity, we obtain a new combi-
natorial realization for the Lusztig t-weight multiplicity K,o(t) of type B, and D, with

highest weight u and weight 0 or generalized exponents (see [5, Section 5]). This gives
an orthogonal analogue of the result for type C, in [9].
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