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Abstract. Directed acyclic graphs (DAGs) can be characterized as directed graphs
whose strongly connected components are isolated vertices. Using this restriction on
the strongly connected components, we discover that when m = cn, where m is the
number of directed edges, n is the number of vertices, and c < 1, the asymptotic prob-
ability that a random digraph is acyclic is an explicit function p(c) = e−c(1− c). When
m = n(1 + µn−1/3), the asymptotic behaviour changes, and the probability that a di-
graph is acyclic becomes n−1/3C(µ), where C(µ) is an explicit function of µ. In 2009,
Łuczak and Seierstad showed that, as µ → −∞, the strongly connected components
of a random digraph with n vertices and m = n(1 + µn−1/3) directed edges are, with
high probability, only isolated vertices and cycles. We call such digraphs elementary
digraphs. We express the probability that a random digraph is elementary as a func-
tion of µ. Those results are obtained using techniques from analytic combinatorics,
developed in particular to study random graphs.

1 Introduction

Directed Acyclic Graphs (DAGs) appear naturally in the study of compacted trees, au-
tomaton for finite languages and partial orders. Until now, their asymptotics was known
only for n vertices and m = Θ(n2) edges (dense case). In this paper, we give a solution
to the sparse case m = n(1 + µn−1/3) with µ bounded or going to −∞ (Theorem 3.3).
The first case exhibits a phase transition reminiscent of directed graphs (see [12]). In the
second case, when 0 < lim m

n < 1, we have P(digraph is acyclic) = e−m/n(1− m
n ).

ew exact enumeration results for

Exact and asymptotic enumeration. In 1973, Robinson [18] obtained his beautiful for-
mula for the number DAGn,m of labeled DAGs with n vertices and m edges

DAGn,m = n![znwm]
(1 + w)(

n
2)

∑n>0(1 + w)−(
n
2)

(−z)n

n!

,
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and developed a framework for the enumeration of digraphs whose strongly connected
components (called strong components in the following) belong to a given family of al-
lowed strongly connected digraphs. This yielded the asymptotics of dense DAGs in [2].
The structure of random DAGs has been studied in [10, 13, 6].

We say that a digraph is elementary if all its strong components are either isolated
vertices or cycles. In [11] and [12] it was shown that if the parameter c = m

n is less than
one, then a digraph is elementary asymptotically almost surely. More precisely, this
happens when a digraph has n vertices and m = n(1 + µn−1/3) edges, as µ→ −∞ with
n. Other interesting structural results around the phase transition point are available
in [16, 7]. The authors of [7] show that the strong components have asymptotically
almost surely cubic kernels, i.e. the sum of the degrees of each of its nodes is at most
three with high probability. This means that these cubic kernels play an analogous role
as the classical cubic kernels in a random graphs, see [9].

A forthcoming independent approach of [17] in the analysis of asymptotics of DAGs
(manuscript to appear), is similar in spirit to the tools used in [4] and relies on a bivariate
singularity analysis of the generating function of DAGs. Their technique promises to un-
veil sparse DAGs asymptotics, covering as well the case where the ratio of the numbers
of edges and vertices is bounded, but greater than 1 (the supercritical case).

Our contribution. Typically, the analysis of graphs is technically easier when loops
and multiple edges are allowed, [9]: an adaptation of the symbolic techniques to the
case of simple graphs becomes rather a technical, but not a conceptual obstacle. In [14]
and [3] the dedicated patchwork concept is introduced allowing to handle this difficulty.
The same principle concerns directed graphs. Nevertheless, in the current paper we
consider the case of simple digraphs where loops and multiple edges are forbidden. In
our model, however, the cycles of size 2 are allowed, because it is natural to suppose that
for each two vertices i and j both directions are allowed. The analysis of simple digraphs
is technically heavier than the analysis of multidigraphs, but we prefer to demonstrate
explicitly that such an application is indeed possible.

Firstly, we transform the generating function of DAGs so that it can be decomposed
into an infinite sum. Each of its summands is analyzed using a new bivariate semi-large
powers lemma which is a generalization of [1]. We discover (in the above notations)
that the first term of this infinite expansion is dominating in the subcritical case, i.e.
when µ → −∞; in the case when µ is bounded (the critical case), all the terms give
contributions of the same order. Next, using the symbolic tools for directed graphs
from [15], we express the generating function of elementary digraphs and apply similar
tools to obtain explicitly the phase transition curve in digraphs, that is, the probability
that a digraph is elementary, as a function of µ.
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Related studies. Analytic techniques, largely covered in [5], are efficient for asymp-
totic analysis, because the coefficient extraction operation is naturally expressed through
Cauchy formula. A recent study [8] is dealing with bivariate algebraic functions. In their
case, a combination of two Hankel contours, necessary for careful analysis, can have a
complicated mutual configuration in two-dimensional complex space, so a lot of details
needs to be accounted for. Our approach is close to theirs, while we try to avoid the
mentioned difficulty in our study. The principle idea behind our bivariate semi-large
powers lemma is splitting a double complex integral into a product of two univariate
ones.

Structure of the paper. In Section 2 we present new exact reformulations of the num-
bers of DAGs and elementary digraphs, which are later used in Section 3 to ease the
asymptotic analysis.

2 Exact expressions using generating functions

Consider the following model of graphs and directed graphs. A graph G is characterized
by its set V(G) of labeled vertices and its set E(G) of unoriented unlabeled edges. Loops
and multiple edges are forbidden. The numbers of its vertices and edges are denoted
by n(G) and m(G). An (n, m)-graph (or digraph) is a graph (or digraph) with n vertices
and m edges.

We consider digraph without loops, such that from any vertex i to any vertex j there
can be at most one directed edge. Therefore, two edges can link the same pair of vertices
only if their orientations are different.

2.1 Exponential and graphic generating functions

Two helpful tools in the study of graphs and directed graphs are the exponential generat-
ing function (EGF) and graphic generating function (GGF). The EGF F(z, w) and the GGF
F(z, w) associated to a graph or digraph family F are defined as

F(z, w) = ∑
G∈F

wm(G) zn(G)

n(G)!
, F(z, w) = ∑

G∈F
wm(G) zn(G)

n(G)!(1 + w)(
m(G)

2 )
.

The total numbers of (n, m)-graphs and (n, m)-digraphs are (n(n−1)/2
m ) and (n(n−1)

m ). The
classical counting expression for directed acyclic graphs is attributed to Robinson [18].
The EGF G(z, w) of all graphs and GGF of directed acyclic graphs DAG(z, w) are given
by

G(z, w) = ∑
n>0

(1 + w)(
n
2)

zn

n!
, DAG(z, w) =

1

∑
n>0

(1 + w)−(
n
2)

(−z)n

n!

. (2.1)
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We can reuse the EGF of graphs (2.1) to obtain an alternative expression for the
number of (n, m)-DAGs DAGn,m:

DAGn,m = n![znwm]
(1 + w)(

n
2)

G
(
−z,− w

1+w
) . (2.2)

Before considering various digraph families, we need to recall the classical generating
functions of simple graph families, namely the rooted and unrooted labeled trees and
unicycles. A unicycle is a connected graph that has the same numbers of vertices and
edges. Hence, it contains exactly one cycle.

Proposition 2.1 ([9]). The EGFs T(z) of rooted trees, U(z) of trees and V(z) of unicycles are
characterized by the relations

T(z) = zeT(z), U(z) = T(z)− T(z)2

2
, V(z) =

1
2

log
(

1
1− T(z)

)
− T(z)

2
− T(z)2

4
.

The excess of a graph (not necessarily connected) is defined as the difference between
its numbers of edges and vertices. For example, trees have excess −1, while unicycles
have excess 0. The bivariate EGFs of graphs of excess k can be obtained from their
univariate EGFs by substituting z 7→ zw and multiplying by wk. In particular, T(z, w) =
T(zw)/w, U(z, w) = U(zw)/w, V(z, w) = V(zw).

We say that a graph is complex if all its connected components have a positive excess.
The EGF of complex graphs of excess k is

Complexk(z) = [yk]Complex(z/y, y).

It is known (see [9]) that a complex graph of excess r is reducible to a kernel (multigraph
of minimal degree at least 3) of same excess, by recursively removing vertices of degree
0 and 1 and fusioning edges sharing a degree 2 vertex. The total weight of cubic kernels
(all degrees equal to 3) of excess r is given by (2.3). They are central in the study of large
critical graphs, because non-cubic kernels do not typically occur.

Proposition 2.2 ([9, Section 6]). For each r > 0 there is a polynomial Pr(T) such that

Complexr(z) = er
T(z)5r

(1− T(z))3r +
Pr(T(z))

(1− T(z))3r−1 , where er =
(6r)!

25r32r(2r)!(3r)!
. (2.3)

Since any graph can be represented as a set of unrooted trees, unicycles and a com-
plex component (whose excess is denoted by k below) the EGF of graphs is equal to

G(z, w) = eU(zw)/weV(zw) ∑
k>0

Complexk(zw)wk. (2.4)
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2.2 Exact expression for directed acyclic graphs

In order to obtain the asymptotic number of DAGs, we need a decomposition different
from (2.1). For comparison, in the expression (2.4) the first summand is asymptotically
dominating in the case of subcritical graphs. Inside the critical window, all the sum-
mands of (2.4) give a contribution of the same asymptotic order.

Lemma 2.3. The number DAGn,m of (n, m)-DAGs is equal to

n!2 ∑
t>0

[zn
0 zn

1 ]
(U(z0) + U(z1))

2n−m+t

(2n−m + t)!
eU(z1)+V(z0)

eV(z1)
[yt]

∑j>0 Complexj(z0)yj

∑
k>0

Complexk(z1)
(
− y

1+y

)k
1

(1 + y)n .

Proof. Since (1+w)(
n
2) is the generating function of graphs with n vertices, we can replace

(1 + w)(
n
2) with n![zn]G(z, w) in (2.2). Injecting the expression of G(z, w) from (2.4) in

the resulting formula with z 7→ −z1 and w 7→ − w
1+w , we obtain (see also Remark 2.4 for

more intuitions)

DAGn,m = n!2[zn
0 zn

1 wm]
eU(z0w)/w+V(z0w) ∑j>0 Complexj(z0w)wj

e−U(
z1w
1+w ) 1+w

w +V(
z1w
w+1 ) ∑k>0 Complexk

( z1w
1+w

) (
− w

1+w
)k

.

The change of variables (z0, z1, w) 7→
(

z0
y , 1+y

y z1, y
)

are applied, which results in

DAGn,m = n!2[zn
0 zn

1 ym−2n]e(U(z0)+U(z1))/yeU(z1)
∑j>0 Complexj(z0)yj

∑k>0 Complexk(z1)
(
− y

1+y

)k
eV(z0)−V(z1)

(1 + y)n .

We finish the proof by extracting the coefficient [ym−2n].

Remark 2.4. The number of pairs (G0, G1) of graphs, each on n vertices, having a total
of m0 + m1 = m edges, is n!2[zn

0 zn
1 wm]G(z0, w)G(z1, w). Working as in the previous proof

leads to

n!2 ∑
t>0

[zn
0 zn

1 wm]
(U(z0) + U(z1))

2n−m+t

(2n−m + t)!
eV(z0)+V(z1) ∑

j>0
Complexj(z0)yj ∑

k>0
Complexk(z1)yk.

which looks and behaves (when m/n stays smaller than or close to 1) like the expression
for DAGn,m from the last lemma. This motivates the following intuition. Typically, those
two graphs should share the m edges more or less equally. Thus, when m/n is close to 1,
m0/n and m1/n should be close to 1/2, so G0 and G1 will exhibit critical graph structure.
For a smaller ratio m/n, G0 and G1 will behave like subcritical graphs, containing only
trees and unicycles. This heuristic explanation for the critical density for dags guides
our analysis in the rest of the paper.
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2.3 Exact expression for elementary digraphs

As we discovered in our previous paper [15], and which was also pointed in a different
form in [18], the graphic generating function of the family of digraphs whose connected
components belong to a given set S with the EGF S(z, w), is given by

E(z, w) =
1

e− S(z,w) �z Set(z, w)
, where Set(z, w) = ∑

n>0

zn

n!(1 + w)(
n
2)

, (2.5)

and �z is the exponential Hadamard product, characterized by ∑n an
zn

n! �z ∑n bn
zn

n! =

∑n anbn
zn

n! . Set(z, w) is the GGF of sets of isolated vertices. In particular, for the case of
elementary digraphs, i.e. the digraphs whose strong components are isolated vertices or
cycles of length > 2 only, the EGF of S is given by

S(z, w) = z + ln
1

1− zw
− zw.

In order to expand the Hadamard product, we develop the exponent e− S(z,w) and apply
the simplification rule azeaz �z F(z) = z d

dz F(z)
∣∣∣
z 7→az

. After developing the exponent and
expanding the Hadamard product we obtain a very simple expression, namely

E(z, w) =
1

(1− zw)e−z(1−w) �z Set(z, w)
=

1
Set(−z, w) + z w

1−w
d
dzSet(−z, w)

∣∣∣∣∣
z 7→(1−w)z

.

(2.6)
The following lemma is a heavier version of this expression. One of the reasons be-

hind its visual complexity is the choice of the simple digraphs instead of multidigraphs;
however, during the asymptotic analysis, most of the decorations corresponding to sim-
ple digraphs are going to disappear.

Lemma 2.5. The number EDn,m of (n, m) elementary digraphs is equal to

EDn,m = n!2 ∑
t>0

[zn
0 zn

1 ]
(U(z0) + U(z1))

2n−m+t

(2n−m + t)!
[yt]e

2
1−y U(z1)+V(z0)−V(z1)

(
1− y
1 + y

)n

×
∑j>0 Complexj(z0)yj

∑
k>0

[
Complexk(z1)

(
1− 1+y

1−y (T(z1)−V•(z1))
)
+ 1+y

1−y Complex•k(z1)
] (
−y 1−y

1+y

)k ,

where Complex•r (z) = z d
dz Complex•r (z) and V•(z) = z d

dz V(z).

Proof. Let us denote v = w
1+w . Using the already mentioned representation

Set(−z, w) = G
(
−z,− w

1 + w

)
= e−U(zv)/v+V(zv) ∑

r>0
Complexr(zv) (−v)r ,
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and by replacing (1 + w)(
n
2) with the generating function of graphs with n vertices as

in the proof of Lemma 2.3, we can write the denominator of (2.6) prior to substitution
z 7→ (1− w)z as

Set(−z, w) + z
w

1− w
d
dz

Set(−z, w) = e−U(zv)/v+V(zv)

[
∑
r>0

Complexr(zv)(−v)r

−1 + w
1− w

(
[T(zv)−V•(zv)] ∑

r>0
Complexr(zv)(−v)r + ∑

r>0
Complex•r (zv)(−v)r

)]
,

Next, the change of variables (z0, z1, w) 7→
(

z0

y
,

1 + y
1− y

z1

y
, y
)

yields

EDn,m = n!2[zn
0 zn

1 ym−2n]e(U(z0)+U(z1))/ye
2

1−y U(z1)+V(z0)−V(z1)
(

1− y
1 + y

)n

×
∑j>0 Complexj(z0)yj

∑
k>0

[
Complexk(z1)

(
1− 1+y

1−y (T(z1)−V•(z1))
)
+ 1+y

1−y Complex•k(z1)
] (
−y 1−y

1+y

)k .

The proof is finished by extracting the coefficient [ym−2n].

3 Asymptotic analysis

3.1 Bivariate semi-large powers lemma

The typical structure of critical random graphs can be obtained by application of the semi-
large powers theorem [5, Theorem IX.16, Case (ii)]. Since DAGs behave like a superposition
of two graphs (see Remark 2.4), we design a bivariate variant of this theorem.

Lemma 3.1. Consider two integers n and m going to infinity, such that m = n(1 + µn−1/3)
with µ either staying in a bounded real interval, or µ → −∞ while lim inf

n→∞
m/n > 0; let the

function F(z0, z1) be analytic on the open torus of radii (1, 1) {z0, z1 ∈ C : |z0| < 1, |z1| < 1}
and continuous on its closure, and let r0 and r1 be two real values, then the following asymptotics
holds as n→ ∞

[zn
0 zn

1 ] (U(z0) + U(z1))
2n−m F(T(z0), T(z1))

(1− T(z0))r0(1− T(z1))r1

∼ e2n

4

(
3
n

)(4−r0−r1)/3

F
(m

n
,

m
n

)
H

(
3
2

,
r0

2
,−32/3

2
µ

)
H

(
3
2

,
r1

2
,−32/3

2
µ

)
, (3.1)

where the function H(λ, r, x) is defined as 1
λ ∑k>0 Γ

(
λ+r−k−1

λ

)−1 (−x)k

k! .



8 Élie de Panafieu and Sergey Dovgal

Remark 3.2. A direct computation shows that H(·, ·, ·) from (3.1) can be expressed as

H

(
3
2

, r,−32/3

2
µ

)
=

2
3

eµ3/63(2r+1)/3A(2r, µ),

where the function A(y, µ) is defined in [9] as

A(y, µ) =
e−µ3/6

3(y+1)/3 ∑
k>0

(1
232/3µ

)k

k!Γ
( y+1−2k

3

) and satisfies lim
µ→−∞

A(y, µ)|µ|y−1/2 =
1√
2π

.

We provide only the proof of the harder case when µ is bounded. In order to adapt the
proof of Lemma 3.1 to the case µ→ −∞, a simpler saddle-point bound can be used.

Proof of Lemma 3.1. The first step is to represent the coefficient extraction operation from (3.1)
as a double complex integral, using Cauchy formula, and to approximate this double in-
tegral with a product of two complex integrals. We start with the Puiseux expansion of

the EGF of rooted labeled trees T(z) and unrooted labeled trees U(z) = T(z)− T2(z)
2 :

T(z) = 1−
√

2
√

1− ez +
2
3
(1− ez) +O(1− ez)3/2, (3.2)

U(z) =
1
2
− (1− ez) +

23/2

3
(1− ez)3/2 +O(1− ez)2. (3.3)

Applying Cauchy’s integral theorem, we rewrite the coefficient extraction (3.1) in the
form

1
(2iπ)2

∮ ∮
(U(z0) + U(z1))

2n−m F(T(z0), T(z1))

(1− T(z0))r0(1− T(z1))r1

dz0

zn+1
0

dz1

zn+1
1

.

In order to accomplish the separation of the integrals,
we represent the term (U(z0) + U(z1))

2n−m as the expo-
nent of the logarithm, and evaluate the leading terms in
Newton–Puiseux expansion of the logarithm

(U(z0) + U(z1))
2n−m = e(2n−m) log(U(z0)+U(z1)).

By plugging the leading terms of U(z0) and U(z1)
from (3.3) into the previous expression and developing
the logarithm around z0 = z1 = e−1, we notice that the
leading powers of (1− ez0) and (1− ez1) contain only the
exponents {0, 1, 3

2}, and thus, asymptotically, no products
need to be taken into account, see Table 1.

0 1 3
2

0 X X X

1 X – –
3
2 X – –

Table 1: Contributing
exponents of (1 − ez0)

and (1− ez1) for bivari-
ate semi-large powers
lemma



Counting directed acyclic and elementary digraphs 9

A further step is to inject m = n + µn2/3, 1− ez0 = α0n−2/3, and 1− ez1 = α1n−2/3,
where α0, α1 ∈ C. By using expansion (3.2) in order to approximate the terms (1− T(z0))
and (1− T(z1)), we rewrite the answer in the form( n

23/2

)(r0+r1−4)/3 e2n

4(2iπ)2 F (1, 1)×∮ ∮
eµ(α0+α1)+

23/2
3 (α3/2

0 +α3/2
1 )+O(n−1/3)

(
1 +O(n−1/3)

) dα0

αr0/2
0

dα1

αr1/2
1

.

After removal of the negligible terms, a product of integrals is obtained

F(1, 1)
( n

23/2

)(r0+r1−4)/3 e2n

4
1

2iπ

∮
eµα0+

23/2
3 α3/2

0
dα0

αr0/2
0

× 1
2iπ

∮
eµα1+

23/2
3 α3/2

1
dα1

αr1/2
1

.

Each of the integrals can be evaluated similarly as in [5, Theorem IX.16, Case (ii)]: in
order to evaluate such integral, a variable change u = −23/2

3 α3/2 is applied, and the
integral is expressed as an infinite sum using a Hankel contour formula for the Gamma
function:

1
2iπ

∮
e

32/3
2 µu2/3

e−u

(
32/3u2/3

2

)− 1+r
2 du√

2
=

2r/2

3(1+r)/3 ∑
k>0

(
32/3µ

2

)k

k!
1

2iπ

∮
u

2k−1−r
3 e−udu.

3.2 Asymptotic analysis of directed acyclic graphs

Since we are going to apply Lemma 3.1 to each of the terms of the infinite sum of Lemma 2.3,
it is useful to introduce the following notation

s+r (µ) = H

(
3
2

,
3r
2
+

1
4

,−32/3

2
µ

)
, s−r (µ) = H

(
3
2

,
3r
2
− 1

4
,−32/3

2
µ

)
;

S+(y; µ) = ∑
r>0

s+r (µ)y
r, S−(y; µ) = ∑

r>0
s−r (µ)y

r, E(y) = ∑
r>0

eryr, e(−1)
r = [yr]

1
E(−y)

,

where er is given by Proposition 2.2. This notation will be used throughout the next two
sections.

Theorem 3.3. When m = n(1 + µn−1/3) and µ either stays in a bounded real interval, or
µ→ −∞ while lim inf m/n > 0 as n→ ∞,

P((n, m)-digraph is acyclic) ∼ 35/6

2
e

m
n−

µ3
6
√

2π

n1/3 ∑
q>0

3−qe(−1)
q s−q (µ).
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In particular, for the sparse case where µ→ −∞ (which covers lim sup m/n < 1),

P((n, m)-digraph is acyclic) ∼ em/n(1−m/n).

Proof. In order to apply Lemma 3.1 (bivariate semi-large powers), we develop the coeffi-
cient operator [yt] in Lemma 2.3 using the approximation of Complexk(T) from Propo-
sition 2.2 and drop the terms that give negligible contribution:

[yt]
∑j>0 Complexj(z0)yj

∑
k>0

Complexk(z1)
(
− y

1+y

)k
1

(1 + y)n

= ∑
p+q+r=t

epT(z0)
2p

(1− T(z0))3p

e(−1)
q T(z1)

2q

(1− T(z1))3q [y
r]

1
(1 + y)n (1+O(1− T(z0)))(1+O(1− T(z1))).

Then we apply Lemma 3.1 and the approximation (2n−m + t)! ∼ (2n−m)!nt to obtain

DAGn,m = n!2 ∑
t>0

[zn
0 zn

1 ] ∑
p+q+r=t

(U(z0) + U(z1))
2n−m+t

(2n−m + t)!
eU(z1)

epT(z0)
2p

(1− T(z0))3p+1/2

×
e(−1)

q T(z1)
2q

(1− T(z1))3q−1/2 [y
r]

1
(1 + y)n (1 +O(1− T(z0)))(1 +O(1− T(z1)))

=
n!2

(2n−m)! ∑
t>0

∑
p+q+t=t

em/2n

nt epe(−1)
q

e2n

4

(
3
n

)(4−(3p+1/2)−(3q−1/2))/3

× s+p (µ)s
−
q (µ)[y

r]
1

(1 + y)n .

The power of n in the sum is n−4/3−r, and the sum over r of n−r[yr](1 + y)−n is equal to
(1 + 1/n)−n and converges to e−m/n. Finally, the sums over p and q are decoupled and
we obtain

DAGn,m ∼
n!2

(2n−m)!
e2n−m/2n

n4/3
34/3

4 ∑
p>0

3−peps+p (µ) ∑
q>0

3−qe(−1)
q s−q (µ).

The sum over p admits a closed expression

√
2

3π
eµ3/6 (see Remark 3.2 and [9, Section

14]). Applying Stirling’s formula, we can rescale the asymptotic number of DAGs by the
total number of digraphs:

DAGn,m ∼
(

n(n− 1)
m

)
35/6

2
e

m
n−

µ3
6
√

2π

n1/3 ∑
q>0

3−qe(−1)
q s−q (µ).

This gives the main statement. To obtain the sparse case, we need to use the fact that
when µ → −∞, the first summand of the sum over q is dominating, and therefore, this

sum is asymptotically equivalent to
√

2
π

eµ3/6

|µ|−1 3−5/6 (see [9, Equation (10.3)]).
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3.3 Asymptotic analysis of elementary digraphs

Theorem 3.4. When m = n(1 + µn−1/3) and µ either stays in a bounded real interval, or
µ→ −∞ while lim inf m/n > 0 as n→ ∞,

P((n, m)-digraph is elementary) ∼ e−µ3/6

√
3π

2 ∑
q>0

3−q ê (−1)
q s+q (µ),

where the coefficients ê (−1)
q are given by

∑
q>0

ê (−1)
q yq :=

1
y
2 + E(y) + 3y2E′(y)

.

In particular, when µ→ −∞, |µ| � n−1/3,

P((n, m)-digraph is elementary) ∼ 1− 1
2|µ|3 .

Proof. The key ingredient is the exact expression from Lemma 2.5. As in the proof
of Theorem 3.3, we can drop the terms that give negligible contributions and develop
the coefficient operator [yt] accordingly. The key difference between the proofs is the
form of the denominator: after taking out a common multiple (1 − T(z1)) (ignoring
higher powers in variable y), the denominator can be again regarded as a formal power
series in y

(1−T(z1))3 . In order to obtain the asymptotics, the transformed expression should
be developed, then Lemma 3.1 (bivariate semi-large powers) is applied, and finally the
sums are decoupled. For the sum corresponding to variable z0, we apply again the
hypergeometric summationformula from [9]. In order to settle the subcritical case µ →
−∞, we apply the asymptotic approximation of s+q (µ) from Remark 3.2.

Remark 3.5. Curiously enough, the coefficient 1/2 in the subcritical probability can be
given the same interpretation as a similar coefficient 5/24 arising in the probability that a
random graph does not contain a complex component: namely the compensation factor
of the simplest cubic forbidden multigraph.
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