The minimal excludant and colored partitions

Cristina Ballantine* ${ }^{* 1}$ and Mircea Merca ${ }^{\dagger 2}$
${ }^{1}$ Department of Mathematics, College of The Holy Cross, Worcester, MA, USA
${ }^{2}$ Department of Mathematics, University of Craiova, Craiova, Romania and Academy of Romanian Scientists, Bucharest, Romania

Abstract

The minimal excludant of a partition $\lambda, \operatorname{mex}(\lambda)$, is the smallest positive integer that is not a part of λ. For a positive integer $n, \sigma \operatorname{mex}(n)$ denotes the sum of the minimal excludants of all partitions of n. Recently, Andrews and Newman obtained a new combinatorial interpretation for $\sigma \operatorname{mex}(n)$. They showed, using generating functions, that $\sigma \operatorname{mex}(n)$ equals the number of partitions of n into distinct parts using two colors. We give a purely combinatorial proof of this result and derive its generalization to the sum of least r-gaps. We introduce several new identities connecting the function $\sigma \operatorname{mex}(n)$ to the number of partitions with colored parts satisfying certain congruences.

Keywords: Partitions, minimal excludant, least gap in partitions, colored partitions.

1 Introduction

The minimal excludant or mex-function of a set S of positive integers is the least positive integer not in S. The history of this notion goes back to at least the 1930s when it was applied to combinatorial game theory $[9,8]$.

Recently, Andrews and Newman [3] considered the mex-function applied to integer partitions. They defined the minimal excludant of a partition λ, $\operatorname{mex}(\lambda)$, as the smallest positive integer that is not a part of λ. Then, for each positive integer n, they defined

$$
\sigma \operatorname{mex}(n):=\sum_{\lambda \in \mathcal{P}(n)} \operatorname{mex}(\lambda)
$$

where $\mathcal{P}(n)$ is the set of all partitions of n. Elsewhere in the literature, the minimal excludant of a partition λ is referred to as the least gap or smallest gap of λ. An exact and asymptotic formula for $\sigma \operatorname{mex}(n)$, as well as its generating function, is given in [7]. In [5] we studied a generalization of $\sigma \operatorname{mex}(n)$ and its connection to polygonal numbers.

Let $\mathcal{D}_{2}(n)$ be the set of partitions of n into distinct parts using two colors and let $D_{2}(n)=\left|\mathcal{D}_{2}(n)\right|$. We denote the colors of the parts of partitions in $\mathcal{D}_{2}(n)$ by 0 and 1 . For example, $\mathcal{D}_{2}(4)=\left\{4_{0}, 4_{1}, 3_{0}+1_{0}, 3_{0}+1_{1}, 3_{1}+1_{0}, 3_{1}+1_{1}, 2_{1}+2_{0}, 2_{1}+1_{1}+1_{0}, 2_{0}+1_{1}+\right.$ $\left.1_{0}\right\}$, and thus $D_{2}(4)=9$. In [3], the authors give two proofs of the following theorem.

[^0]Theorem 1.1. Given an integer $n \geqslant 0$, we have $\sigma \operatorname{mex}(n)=D_{2}(n)$.
In Section 2, we provide a bijective proof of Theorem 1.1. We make use of the fact that

$$
\begin{equation*}
\sigma \operatorname{mex}(n)=\sum_{j \geqslant 0} p(n-j(j+1) / 2) \tag{1.1}
\end{equation*}
$$

where, as usual, $p(n)$ denotes the number of partitions of n. A combinatorial proof of (1.1) is given in [5, Theorem 1.1]. The same argument is also described in the second proof of [3, Theorem 1.1]. In fact, the result proven in [5] is a generalization of (1.1) to $\sigma_{r} \operatorname{mex}(n)$, the sum of r-gaps in all partitions of n. The r-gap of a partition λ is the least positive integer that does not appear r times as a part of λ. In Section 3, we give two generalizations of Theorem 1.1 to $\sigma_{r} \operatorname{mex}(n)$.

In [1], the authors considered a restricted mex function. They defined $M_{k}(n)$ to be the number of partitions λ of n with $\operatorname{mex}(\lambda)=k$ and more parts $>k$ than parts $<k$. When $k=1, M_{1}(n)$ is the number of partitions of n with smallest part greater than 1 . Thus, if $n>0$, we have $M_{1}(n)=p(n)-p(n-1)$, and from (1.1), we obtain

$$
\begin{equation*}
\sigma \operatorname{mex}(n)-\sigma \operatorname{mex}(n-1)-\delta(n)=\sum_{j=0}^{\infty} M_{1}(n-j(j+1) / 2) \tag{1.2}
\end{equation*}
$$

where δ is the characteristic function of the set of triangular numbers.
We generalize (1.2) in Section 4 where we give further connections between $\sigma \operatorname{mex}(n)$ and restricted mex functions or partitions and overpartitions. In Section 5 we present connections with partitions with colored odd parts.

2 Combinatorial Proof of Theorem 1.1

To prove the theorem, we adapt Sylvester's bijective proof of Jacobi's triple product identity [10]. Given $\lambda \in \mathcal{D}_{2}(n)$, let $\lambda^{(i)}, i=0,1$, be the (uncolored) partition whose parts are the parts of color i in λ. Then, $\lambda^{(1)}$ and $\lambda^{(2)}$ are partitions with distinct parts.

Example 2.1. If $\lambda=4_{1}+3_{0}+3_{1}+2_{0}+1_{0} \in \mathcal{D}_{2}(13)$, then $\lambda^{(0)}=3+2+1$ and $\lambda^{(1)}=$ $4+3$.

Denote by $\eta(j)$ the staircase partition $\eta(j)=j+(j-1)+\cdots+2+1$, with $\eta(0)=\varnothing$. We write $\ell(\lambda)$ for the number of parts in partition λ. The conjugate of a Ferrers diagram v (not necessarily the diagram of a partition) is obtained by reflecting v across the main diagonal. The sum, $\alpha+\beta$, of two composition $\alpha=\left(a_{1}, a_{2}, \ldots\right)$ and $\beta=\left(b_{1}, b_{2}, \ldots\right)$, is the composition whose parts are $a_{i}+b_{i}$ (appropriately using 0 as parts at the end of the shorter composition).

Definition 2.2. Given a diagram of left justified rows of boxes (not necessarily the Ferrers diagram of a partition), the staircase profile of the diagram is a zig-zag line starting in the upper left corner of the diagram with a right step and continuing in alternating down and right steps until the end of a row of the diagram is reached.

Example 2.3. Let α be the composition $\alpha=(1,2,3,7,7,6,6,4,2)$.

Figure 1: Staircase profile for α and the conjugate of α.

The shifted Ferrers diagram of a partition λ with distinct parts is the Ferrers diagram (with boxes of unit length) of λ with row i shifted $i-1$ units to the right.

We create a map

$$
\varphi: \bigcup_{j \geqslant 0} \mathcal{P}(n-j(j+1) / 2) \rightarrow \mathcal{D}_{2}(n)
$$

as follows. Start with $\lambda \in \mathcal{P}(n-j(j+1) / 2)$ for some $j \geqslant 0$. Append a diagram with rows of lengths $1,2, \ldots j$ (i.e., the diagram of $\eta(j)$ rotated by 90° counterclockwise) at the top of the diagram of λ. We obtain a diagram with n boxes. Draw the staircase profile of the new diagram. Let α be the partition whose parts are the length of the columns to the left of the staircase profile and β be the partition whose parts are the length of the rows to the right of the staircase profile. Then α and β are partitions with distinct parts. Moreover, $j \leqslant \ell(\alpha)-\ell(\beta) \leqslant j+1$. Color the parts of α with color $j(\bmod 2)$ and the parts of β with color $j+1(\bmod 2)$. Then $\varphi(\lambda)$ is defined as the 2 -color partition of n whose parts are the colored parts of α and β.

Conversely, start with $\mu \in \mathcal{D}_{2}(n)$. Let $\ell_{i}(\mu), i=0,1$, be the number of parts of color i in μ and set $r=\ell_{0}(\mu)-\ell_{1}(\mu)$. Let

$$
\varepsilon=\left\{\begin{array}{ll}
0 & \text { if } r \geq 0 \\
1 & \text { if } r<0,
\end{array} \text { and } \quad j=|r|+\frac{(-1)^{|r|+\varepsilon}-1}{2}\right.
$$

Remove the top j rows (i.e., the rotated diagram of $\eta(j))$ from the conjugate of the shifted diagram of $\mu^{(\varepsilon)}$ to obtain a composition γ. Define $\varphi^{-1}(\mu)=\gamma+\mu^{(s)}$ where $s \neq \varepsilon$. Then, $\varphi^{-1}(\mu) \in \mathcal{P}(n-j(j+1) / 2)$.

Example 2.4. Let $n=38, j=3$, and let $\lambda=7+7+6+6+4+2$ be a partition of $n-j(j+1) / 2=32$. We add the rotated diagram of $\eta(3)$ to the top of the diagram of λ and draw the staircase profile (see Figure 1). Then $\alpha=9+8+6+5+3+2$ and $\beta=3+2$. Since j is odd, we have $\varphi(\lambda)=9_{1}+8_{1}+6_{1}+5_{1}+3_{1}+3_{0}+2_{1}+2_{0}$.

Conversely, suppose $\mu=9_{1}+8_{1}+6_{1}+5_{1}+3_{1}+3_{0}+2_{1}+2_{0} \in \mathcal{D}(38)$. Then $\ell_{0}(\mu)=2$ and $\ell_{1}(\mu)=6$. We have $r=\ell_{0}(\mu)-\ell_{1}(\mu)=-4$ and $j=3$. We remove the first 3 rows from the conjugate of the shifted diagram of $\mu^{(1)}$ (which is precisely the diagram below the staircase profile in Figure 1) and add the resulting composition γ to $\mu^{(0)}=(3,2)$. We obtain $\varphi^{-1}(\mu)=7+7+6+6+4+2 \in \mathcal{P}(32)$.

3 Generalizations of Theorem 1.1 to r-gaps

Recall that the r-gap of a partition λ is the least positive integer that does not appear r times as a part of λ. In [5], we proved combinatorially that

$$
\begin{equation*}
\sigma_{r} \operatorname{mex}(n)=\sum_{j \geqslant 0} p(n-r j(j+1) / 2) . \tag{3.1}
\end{equation*}
$$

We can employ a transformation similar to that in the combinatorial proof of Theorem 1.1 to prove its generalization to sums of r-gaps.

Let $\widetilde{D}_{3}^{(r)}(n)$ be the number of partitions λ of n into distinct parts using three colors, 0,1 , and 2 , such that:
(i) The set of parts of color 2 is either empty or $\{t(r-1) \mid 1 \leqslant t \leqslant j\}$ for some $j \geqslant 1$.
(ii) $\ell_{j(\bmod 2)}(\lambda)-\ell_{j+1(\bmod 2)}(\lambda) \in\{j, j+1\}$, where $j=0$ if $\lambda^{(2)}=\varnothing$.

Theorem 3.1. Let n, r be integers with $r>0$ and $n \geqslant 0$. Then $\sigma_{r} \operatorname{mex}(n)=\widetilde{D}_{3}^{(r)}(n)$.
Proof. For a sketch of the proof see [6].
In [5] we give the generating function for $\sigma_{r} \operatorname{mex}(n)$, namely

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sigma_{r} \operatorname{mex}(n) q^{n}=\frac{\left(q^{2 r} ; q^{2 r}\right)_{\infty}}{(q ; q)_{\infty}\left(q^{r} ; q^{2 r}\right)_{\infty}}, \tag{3.2}
\end{equation*}
$$

where $(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right)$ if $n>0,(a ; q)_{n}=1$ if $n=0$, and $(a ; q)_{\infty}=\lim _{n \rightarrow \infty}(a ; q)_{n}$.
Denote $\widetilde{D}_{2}^{(r)}(n)$ the number of partitions λ of n using two colors, 0 and 1 , such that:
(i) $\lambda^{(0)}$ is a partition into distinct parts divisible by r.
(ii) $\lambda^{(1)}$ is a partition with parts repeated at most $2 r-1$ times.

The following generalization of Theorem 1.1 is immediate from (3.2).
Theorem 3.2. Let n, r be integers with $r>0$ and $n \geq 0$. Then $\sigma_{r} \operatorname{mex}(n)=\widetilde{D}_{2}^{(r)}(n)$.

4 Identities involving restricted mex-functions

In this section we introduce identities relating $\sigma \operatorname{mex}(n)$ and restricted mex functions for partitions and overpartitions.

$4.1 \quad \sigma \operatorname{mex}(n)$ and $M_{k}(n)$

We have the follwing generalization of (1.2).
Theorem 4.1. Let k, n be integers with $k \geqslant 1$ and $n \geqslant 0$. Then,

$$
(-1)^{k-1}\left(\sum_{j=-(k-1)}^{k}(-1)^{j} \sigma \operatorname{mex}(n-j(3 j-1) / 2)-\delta(n)\right)=\sum_{j=0}^{\infty} M_{k}(n-j(j+1) / 2)
$$

The following infinite family of linear inequalities involving σ mex is immediate.
Corollary 4.2. Let k be a positive integer. Given an integer $n \geqslant 0$, we have

$$
(-1)^{k-1}\left(\sum_{j=-(k-1)}^{k}(-1)^{j} \sigma \operatorname{mex}(n-j(3 j-1) / 2)-\delta(n)\right) \geqslant 0,
$$

with strict inequality if $n \geqslant k(3 k+1) / 2$.
Analytic proof of Theorem 4.1. In [1], the authors gave the following truncated Euler's pentagonal number theorem.

$$
\frac{(-1)^{k-1}}{(q ; q)_{\infty}} \sum_{n=-(k-1)}^{k}(-1)^{j} q^{n(3 n-1) / 2}=(-1)^{k-1}+\sum_{n=k}^{\infty} \frac{q^{\binom{k}{2}+(k+1) n}}{(q ; q)_{n}}\left[\begin{array}{l}
n-1 \tag{4.1}\\
k-1
\end{array}\right]
$$

where

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]= \begin{cases}\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}, & \text { if } 0 \leqslant k \leqslant n \\
0, & \text { otherwise }\end{cases}
$$

Multiplying both sides of (4.1) by

$$
\frac{\left(q^{2}, q^{2}\right)_{\infty}}{\left(q, q^{2}\right)_{\infty}}=\sum_{n=0}^{\infty} q^{n(n+1) / 2}
$$

and using (3.2) with $r=1$ and the generating function for $M_{k}(n)$ [1],

$$
\sum_{n=0}^{\infty} M_{k}(n) q^{n}=\sum_{n=k}^{\infty} \frac{q^{\binom{k}{2}+(k+1) n}}{(q ; q)_{n}}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]
$$

we obtain

$$
\begin{aligned}
& (-1)^{k-1}\left(\left(\sum_{n=0}^{\infty} \sigma \operatorname{mex}(n) q^{n}\right)\left(\sum_{n=-(k-1)}^{k}(-1)^{j} q^{n(3 n-1) / 2}\right)-\sum_{n=0}^{\infty} q^{n(n+1) / 2}\right) \\
& =\left(\sum_{n=0}^{\infty} q^{n(n+1) / 2}\right)\left(\sum_{n=0}^{\infty} M_{k}(n) q^{n}\right) .
\end{aligned}
$$

The proof follows easily using Cauchy's multiplication of two power series.
Combinatorial proof of Theorem 4.1. The statement of Theorem 4.1 is equivalent to identity (1.2) together with

$$
\begin{align*}
\sigma \operatorname{mex}(n & \left.-\frac{k(3 k+1)}{2}\right)-\sigma \operatorname{mex}\left(n-\frac{k(3 k+5)}{2}-1\right) \\
& =\sum_{j=0}^{\infty}\left(M_{k}(n-j(j+1) / 2)+M_{k+1}(n-j(j+1) / 2)\right) . \tag{4.2}
\end{align*}
$$

Using (1.1), identity (4.2) becomes

$$
\begin{gather*}
\sum_{j=0}^{\infty}\left(p\left(n-\frac{j(j+1)}{2}-\frac{k(3 k+1)}{2}\right)-p\left(n-\frac{j(j+1)}{2}-\frac{k(3 k+5)}{2}-1\right)\right) \\
=\sum_{j=0}^{\infty}\left(M_{k}(n-j(j+1) / 2)+M_{k+1}(n-j(j+1) / 2)\right) \tag{4.3}
\end{gather*}
$$

Identity (4.3) was proved combinatorially in [11]. Together with the combinatorial proof of (1.1), this gives a combinatorial proof of Theorem 4.1.

Next, we give a combinatorial interpretation for $\sum_{t=0}^{\infty} M_{k}(n-t(t+1) / 2)$. For integers k, n such that $k \geqslant 1$ and $n \geqslant 0$, we denote by $D_{3}^{(k)}(n)$ the number of partitions μ of n into distinct parts using three colors and satisfying the following conditions:
(i) μ has exactly k parts of color 2 and, if $k>1$, twice the smallest part of color 2 is greater than largest part of color 2.
(ii) With r and j as in the combinatorial proof of Theorem 1.1, the largest part of color $j(\bmod 2)$ must equal j more that the smallest part of color 2.

Proposition 4.3. For integers k, n such that $k \geqslant 1$ and $n \geqslant 0$, we have

$$
\begin{equation*}
\sum_{t=0}^{\infty} M_{k}(n-t(t+1) / 2)=D_{3}^{(k)}(n) \tag{4.4}
\end{equation*}
$$

Proof. See [6].
Combining Theorems 1.1 and 4.1, and Proposition 4.3 we obtain the following corollary which, by the discussion above, has both analytic and combinatorial proofs.
Corollary 4.4. For integers k, n such that $k \geqslant 1$ and $n \geqslant 0$, we have

$$
(-1)^{\max (0, k-1)}\left(\sum_{j=-\max (0, k-1)}^{k}(-1)^{j} \sigma \operatorname{mex}(n-j(3 j-1) / 2)-\delta(n)\right)=D_{3}^{(k)}(n)
$$

Note that, if $k=0$, the statement of the corollary reduces to Theorem 1.1.

$4.2 \sigma \operatorname{mex}(n)$ and overpartitions

Overpartitions are ordinary partitions with the added condition that the first appearance of any part may be overlined. There are eight overpartitions of 3:

$$
3, \overline{3}, 2+1, \overline{2}+1,2+\overline{1}, \overline{2}+\overline{1}, 1+1+1, \overline{1}+1+1
$$

As usual, we denote by $\bar{p}(n)$ the number of overpartitions of n. The generating function for $\bar{p}(n)$ is

$$
\sum_{n=0}^{\infty} \bar{p}(n) q^{n}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}
$$

We have the following identity relating $\sigma \operatorname{mex}(n), \bar{p}(n)$ and $M_{k}(n)$.
Theorem 4.5. Let k be a positive integer. Given an integer $n \geqslant 0$, we have

$$
(-1)^{k-1}\left(\sum_{j=-(k-1)}^{k}(-1)^{j} \bar{p}(n-j(3 j-1))-\sigma \operatorname{mex}(n)\right)=\sum_{j=0}^{\lfloor n / 2\rfloor} M_{k}(j) \sigma \operatorname{mex}(n-2 j)
$$

Proof. By (4.1), with q replaced by q^{2}, we obtain

$$
\begin{equation*}
\frac{(-1)^{k-1}}{\left(q^{2} ; q^{2}\right)_{\infty}}\left(\sum_{n=-(k-1)}^{k}(-1)^{j} q^{n(3 n-1)}-1\right)=\sum_{n=k}^{\infty} M_{k}(n) q^{2 n} \tag{4.5}
\end{equation*}
$$

Multiplying both sides of (4.5) by the generating function for $\sigma \operatorname{mex}(n)$, we obtain

$$
\begin{aligned}
& (-1)^{k-1}\left(\left(\sum_{n=0}^{\infty} \bar{p}(n) q^{n}\right)\left(\sum_{n=-(k-1)}^{k}(-1)^{j} q^{n(3 n-1)}\right)-\sum_{n=0}^{\infty} \sigma \operatorname{mex}(n) q^{n}\right) \\
& =\left(\sum_{n=0}^{\infty} \sigma \operatorname{mex}(n) q^{n}\right)\left(\sum_{n=0}^{\infty} M_{k}(n) q^{2 n}\right) .
\end{aligned}
$$

The proof follows by equating the coefficients of q^{n} in this identity.

The limiting case $k \rightarrow \infty$ of Theorem 4.5 reads as follows.
Corollary 4.6. For $n \geqslant 0, \sigma \operatorname{mex}(n)=\sum_{j=-\infty}^{\infty}(-1)^{j} \bar{p}(n-j(3 j-1))$.
Remark 4.7. Since it is known that $\bar{p}(n)$ is odd if and only if $n=0$, it follows that $\sigma \operatorname{mex}(n)$ is odd if and only if $12 n+1$ is a square.

In [2], the authors denoted by $\bar{M}_{k}(n)$ the number of overpartitions of n in which the first part larger than k appears at least $k+1$ times. We have the following identity.

Theorem 4.8. For integers $k, n>0$, we have

$$
(-1)^{k}\left(\sigma \operatorname{mex}(n)+2 \sum_{j=1}^{k}(-1)^{j} \sigma \operatorname{mex}\left(n-j^{2}\right)-\delta^{\prime}(n)\right)=\sum_{j=-\infty}^{\infty}(-1)^{j} \bar{M}_{k}(n-j(3 j-1))
$$

where $\delta^{\prime}(n)=(-1)^{m}$ if $n=m(3 m-1), m \in \mathbb{Z}$ and $\delta^{\prime}(n)=0$ otherwise.
Proof. The proof, given in [6], follows from a truncated theta series identity [2].
There is a substantial amount of numerical evidence to conjecture the following inequality.

Conjecture 4.9. For $k, n>0$,

$$
\sum_{j=-\infty}^{\infty}(-1)^{j} \bar{M}_{k}(n-j(3 j-1)) \geqslant 0
$$

with strict inequality if $n \geqslant(k+1)^{2}$.
A combinatorial interpretation for the sum in this conjecture would be interesting.

$4.3 \quad \sigma \operatorname{mex}(n)$ and partitions into distinct parts

To keep notation uniform, let $D_{1}(n)$ be the number of partitions of n into distinct parts. Set $D_{1}(x)=0$ if x is not a positive integer. For proof of the next theorem see [6].

Theorem 4.10. For any integer $n \geqslant 0$, we have

$$
\begin{equation*}
\sum_{j=0}^{\infty}(-1)^{j(j+1) / 2} \sigma \operatorname{mex}(n-j(j+1) / 2)=\sum_{j=0}^{\infty} D_{1}\left(\frac{n-j(j+1) / 2}{2}\right) \tag{4.6}
\end{equation*}
$$

Let $D_{2}^{*}(n)$ be the number of partitions of n with distinct parts using two colors such that: (i) parts of color 0 form a gap-free partition (staircase) and (ii) only even parts can have color 1. Then, we have the following identity of Watson type [4] which gives a combinatorial interpretation for the right hand side of (4.6). For its proof see [6].

Proposition 4.11. For $n \geqslant 0$,

$$
\sum_{j=0}^{\infty} D_{1}\left(\frac{n-j(j+1) / 2}{2}\right)=D_{2}^{*}(n)
$$

In [2], the authors denoted by $M P_{k}(n)$ the number of partitions of n in which the first part larger than $2 k-1$ is odd and appears exactly k times. All other odd parts appear at most once. We have the following truncated form of Theorem 4.10.

Theorem 4.12. For integers $n, k>0$,

$$
(-1)^{k-1}\left(\sum_{j=0}^{2 k-1}(-1)^{j(j+1) / 2} \sigma \operatorname{mex}(n-j(j+1) / 2)-D_{2}^{*}(n)\right)=\sum_{j=0}^{n} M P_{k}(j) D_{2}^{*}(n-j)
$$

Proof. The proof, given in [6], follows from the truncated theta series identity of [2].
A combinatorial interpretation for $\sum_{j=0}^{n} M P_{k}(j) D_{2}^{*}(n-j)$ would be very welcome.
The following corollary of Theorem 4.12 is immediate.
Corollary 4.13. For integers $n, k>0$,

$$
(-1)^{k-1}\left(\sum_{j=0}^{2 k-1}(-1)^{j(j+1) / 2} \sigma \operatorname{mex}(n-j(j+1) / 2)-D_{2}^{*}(n)\right) \geqslant 0,
$$

with strict inequality if $n \geqslant k(2 k+1)$.
A second corollary involves the function $\operatorname{pod}(n)$, the number of partitions of n in which odd parts are not repeated, i.e.,

Corollary 4.14. For $n \geqslant 0, \sigma \operatorname{mex}(n)=\sum_{j=0}^{n} \operatorname{pod}(j) D_{2}^{*}(n-j)$.

$5 \quad \sigma \operatorname{mex}(n)$ and partitions with colored odd parts

In this section we present several identities relating $\sigma \operatorname{mex}(n)$ with the number of partitions of n in which odd parts are colored in with j colors, $j=2,3,4$. Elsewhere in the literature, colored partitions are referred to as vector partitions. Due to space restrictions, we will present the proofs of all theorems in this section in a future article.

5.1 Three colors for the odd parts

Let $C_{3}(n)$ be the number of partitions of n using 3 colors for the odd parts and let $C_{3}^{\prime}(n)$ be the number of partitions of n into parts not congruent to 2 mod 4 using 3 colors for the odd parts. The generating functions for $C_{3}(n)$ and $C_{3}^{\prime}(n)$ are respectively

$$
\sum_{n=0}^{\infty} C_{3}(n) q^{n}=\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}\left(q ; q^{2}\right)_{\infty}^{3}} \text { and } \sum_{n=0}^{\infty} C_{3}^{\prime}(n) q^{n}=\frac{1}{\left(q^{4} ; q^{4}\right)_{\infty}\left(q ; q^{2}\right)_{\infty}^{3}}
$$

Using the truncated Euler's pentagonal number theorem [1], we prove the following identity which relates $C_{3}(n)$ and the function $M_{k}(n)$ defined in Section 1.
Theorem 5.1. Let k be a positive integer. Given an integer $n \geqslant 0$, we have

$$
(-1)^{k-1}\left(\sum_{j=-(k-1)}^{k}(-1)^{j} C_{3}(n-j(3 j-1) / 2)-\sigma \operatorname{mex}(n)\right)=\sum_{j=0}^{n} \sigma \operatorname{mex}(j) M_{k}(n-j) .
$$

A combinatorial interpretation of $\sum_{j=0}^{n} \sigma \operatorname{mex}(j) M_{k}(n-j)$ would be appealing.
The limiting case $k \rightarrow \infty$ of Theorem 5.1 gives the following decomposition of $\sigma \operatorname{mex}(n)$.
Corollary 5.2. For $n \geqslant 0$, we have $\sigma \operatorname{mex}(n)=\sum_{j=-\infty}^{\infty}(-1)^{j} C_{3}(n-j(3 j-1) / 2)$.
Using the truncated theta series identity of [2], we prove the following identity which relates $C_{3}^{\prime}(n)$ and the function $M P_{k}(n)$ of Section 4.3.
Theorem 5.3. Let k be a positive integer. Given an integer $n \geqslant 0$, we have

$$
(-1)^{k-1}\left(\sum_{j=0}^{2 k-1}(-1)^{j(j+1) / 2} C_{3}^{\prime}(n-j(j+1) / 2)-\sigma \operatorname{mex}(n)\right)=\sum_{j=0}^{n} \sigma \operatorname{mex}(j) M P_{k}(n-j)
$$

Corollary 5.4. For $n \geqslant 0, \sigma \operatorname{mex}(n)=\sum_{j=0}^{\infty}(-1)^{j(j+1) / 2} C_{3}^{\prime}(n-j(j+1) / 2)$.

5.2 Four colors for the odd parts

Let $C_{4}(n)$ be the number of partitions of n using 4 colors for the odd parts. The generating function for $C_{4}(n)$ is

$$
\sum_{n=0}^{\infty} C_{4}(n) q^{n}=\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}\left(q ; q^{2}\right)_{\infty}^{4}}
$$

Then, $C_{4}(n)$ and the function $M_{k}(n)$ of Section 4.2 are related by the next theorem and its corollary.

Theorem 5.5. Let k be a positive integer. Given an integer $n \geqslant 0$, we have

$$
(-1)^{k}\left(C_{4}(n)+2 \sum_{j=1}^{k}(-1)^{j} C_{4}\left(n-j^{2}\right)-\sigma \operatorname{mex}(n)\right)=\sum_{j=0}^{n} C_{4}(j) \bar{M}_{k}(n-j) .
$$

Corollary 5.6. For $n \geqslant 0, \sigma \operatorname{mex}(n)=C_{4}(n)+2 \sum_{j=1}^{\infty}(-1)^{j} C_{4}\left(n-j^{2}\right)$.
Note that the partition functions $\sigma \operatorname{mex}(n)$ and $C_{4}(n)$ have the same parity.

5.3 Two colors for parts $\not \equiv 0 \bmod 4$

Let $C_{2}(n)$ be the number of partitions of n using two colors for the parts not congruent to $0 \bmod 4$. The generating function for $C_{2}(n)$ is

$$
\sum_{n=0}^{\infty} C_{2}(n) q^{n}=\frac{\left(q^{4} ; q^{4}\right)_{\infty}}{(q ; q)_{\infty}^{2}} .
$$

The following identity relating $C_{2}(n)$ and $\bar{M}_{k}(n)$ follows from the truncated theta identity of [2].

Theorem 5.7. Let k be a positive integer. Given an integer $n \geqslant 0$, we have

$$
(-1)^{k}\left(C_{2}(n)+2 \sum_{j=1}^{k}(-1)^{j} C_{2}\left(n-2 j^{2}\right)-\sigma \operatorname{mex}(n)\right)=\sum_{j=0}^{\lfloor n / 2\rfloor} \bar{M}_{k}(j) \sigma \operatorname{mex}(n-2 j) .
$$

Corollary 5.8. For $n \geqslant 0, \sigma \operatorname{mex}(n)=C_{2}(n)+2 \sum_{j=1}^{\infty}(-1)^{j} C_{2}\left(n-2 j^{2}\right)$.
We see that the partition functions $\sigma \operatorname{mex}(n)$ and $C_{2}(n)$ have the same parity.

5.4 Two colors for the odd parts in partitions into parts $\not \equiv 4 \bmod 8$

We denote by $C_{2}^{*}(n)$ the number of partitions of n into parts not congruent to $4 \bmod 8$ using two colors for the odd parts. The generating function for $C_{2}^{*}(n)$ is given by

$$
\sum_{n=0}^{\infty} C_{2}^{*}(n) q^{n}=\frac{1}{\left(q^{2}, q^{6}, q^{8} ; q^{8}\right)_{\infty}\left(q ; q^{2}\right)_{\infty}^{2}}
$$

The proof of following theorem relating $C_{2}^{*}(n)$ and $M P_{k}$ again uses results from [2].

Theorem 5.9. Let k be a positive integer. Given an integer $n \geqslant 0$, we have

$$
(-1)^{k-1}\left(\sum_{j=0}^{2 k-1}(-1)^{j(j+1) / 2} C_{2}^{*}(n-j(j+1))-\sigma \operatorname{mex}(n)\right)=\sum_{j=0}^{\lfloor n / 2\rfloor} M P_{k}(j) \sigma \operatorname{mex}(n-2 j)
$$

Corollary 5.10. For $n \geqslant 0, \sigma \operatorname{mex}(n)=\sum_{j=0}^{\infty}(-1)^{j(j+1) / 2} C_{2}^{*}(n-j(j+1))$.

References

[1] G. Andrews and M. Merca. "The truncated pentagonal number theorem". J. Combin. Theory Ser. A 119.8 (2012), pp. 1639-1643. Link.
[2] G. Andrews and M. Merca. "Truncated theta series and a problem of Guo and Zeng". J. Combin. Theory Ser. A 154 (2018), pp. 610-619. Link.
[3] G. Andrews and D. Newman. "Partitions and the minimal excludant". Ann. Comb. 23.2 (2019), pp. 249-254. Link.
[4] C. Ballantine and M. Merca. "On identities of Watson type". Ars Math. Contemp. 17.1 (2019), pp. 277-290. Link.
[5] C. Ballantine and M. Merca. "Bisected theta series, least r-gaps in partitions, and polygonal numbers". Ramanujan J. 52.2 (2020), pp. 433-444. Link.
[6] C. Ballantine and M. Merca. "Combinatorial Proof of the Minimal Excludant Theorem". 2019. arXiv:1908.06789.
[7] P. Grabner and A. Knopfmacher. "Analysis of some new partition statistics". Ramanujan J. 12.3 (2006), pp. 439-454. Link.
[8] P. Grundy. "Mathematics and games". Eureka 2 (1939), pp. 6-9.
[9] R. Sprague. "Über mathematische Kampfspiele". Tohoku Mathematical Journal, First Series 41 (1935), pp. 438-444.
[10] J. Sylvester and F. Franklin. "A Constructive Theory of Partitions, Arranged in Three Acts, an Interact and an Exodion". Amer. J. Math. 5.1-4 (1882), pp. 251-330. Link.
[11] A. Yee. "A truncated Jacobi triple product theorem". J. Combin. Theory Ser. A 130 (2015), pp. 1-14. Link.

[^0]: *cballant@holycross.edu.
 ${ }^{\dagger}$ mircea.merca@profinfo.edu.ro.

