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Abstract. The minimal excludant of a partition λ, mex(λ), is the smallest positive in-
teger that is not a part of λ. For a positive integer n, σ mex(n) denotes the sum of the
minimal excludants of all partitions of n. Recently, Andrews and Newman obtained a
new combinatorial interpretation for σ mex(n). They showed, using generating func-
tions, that σ mex(n) equals the number of partitions of n into distinct parts using two
colors. We give a purely combinatorial proof of this result and derive its generalization
to the sum of least r-gaps. We introduce several new identities connecting the function
σ mex(n) to the number of partitions with colored parts satisfying certain congruences.
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1 Introduction

The minimal excludant or mex-function of a set S of positive integers is the least positive
integer not in S. The history of this notion goes back to at least the 1930s when it was
applied to combinatorial game theory [9, 8].

Recently, Andrews and Newman [3] considered the mex-function applied to integer
partitions. They defined the minimal excludant of a partition λ, mex(λ), as the smallest
positive integer that is not a part of λ. Then, for each positive integer n, they defined

σ mex(n) := ∑
λ∈P(n)

mex(λ),

where P(n) is the set of all partitions of n. Elsewhere in the literature, the minimal
excludant of a partition λ is referred to as the least gap or smallest gap of λ. An exact
and asymptotic formula for σ mex(n), as well as its generating function, is given in [7].
In [5] we studied a generalization of σ mex(n) and its connection to polygonal numbers.

Let D2(n) be the set of partitions of n into distinct parts using two colors and let
D2(n) = |D2(n)|. We denote the colors of the parts of partitions in D2(n) by 0 and 1. For
example, D2(4) = {40, 41, 30 + 10, 30 + 11, 31 + 10, 31 + 11, 21 + 20, 21 + 11 + 10, 20 + 11 +
10}, and thus D2(4) = 9. In [3], the authors give two proofs of the following theorem.
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Theorem 1.1. Given an integer n > 0, we have σ mex(n) = D2(n).

In Section 2, we provide a bijective proof of Theorem 1.1. We make use of the fact
that

σ mex(n) = ∑
j>0

p(n− j(j + 1)/2), (1.1)

where, as usual, p(n) denotes the number of partitions of n. A combinatorial proof of
(1.1) is given in [5, Theorem 1.1]. The same argument is also described in the second
proof of [3, Theorem 1.1]. In fact, the result proven in [5] is a generalization of (1.1) to
σr mex(n), the sum of r-gaps in all partitions of n. The r-gap of a partition λ is the least
positive integer that does not appear r times as a part of λ. In Section 3, we give two
generalizations of Theorem 1.1 to σr mex(n).

In [1], the authors considered a restricted mex function. They defined Mk(n) to be
the number of partitions λ of n with mex(λ) = k and more parts > k than parts < k.
When k = 1, M1(n) is the number of partitions of n with smallest part greater than 1.
Thus, if n > 0, we have M1(n) = p(n)− p(n− 1), and from (1.1), we obtain

σ mex(n)− σ mex(n− 1)− δ(n) =
∞

∑
j=0

M1
(
n− j(j + 1)/2

)
, (1.2)

where δ is the characteristic function of the set of triangular numbers.
We generalize (1.2) in Section 4 where we give further connections between σ mex(n)

and restricted mex functions or partitions and overpartitions. In Section 5 we present
connections with partitions with colored odd parts.

2 Combinatorial Proof of Theorem 1.1

To prove the theorem, we adapt Sylvester’s bijective proof of Jacobi’s triple product
identity [10]. Given λ ∈ D2(n), let λ(i), i = 0, 1, be the (uncolored) partition whose parts
are the parts of color i in λ. Then, λ(1) and λ(2) are partitions with distinct parts.

Example 2.1. If λ = 41 + 30 + 31 + 20 + 10 ∈ D2(13), then λ(0) = 3 + 2 + 1 and λ(1) =
4 + 3.

Denote by η(j) the staircase partition η(j) = j + (j− 1) + · · ·+ 2 + 1, with η(0) = ∅.
We write `(λ) for the number of parts in partition λ. The conjugate of a Ferrers diagram
ν (not necessarily the diagram of a partition) is obtained by reflecting ν across the main
diagonal. The sum, α + β, of two composition α = (a1, a2, . . .) and β = (b1, b2, . . .), is
the composition whose parts are ai + bi (appropriately using 0 as parts at the end of the
shorter composition).
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Definition 2.2. Given a diagram of left justified rows of boxes (not necessarily the Ferrers
diagram of a partition), the staircase profile of the diagram is a zig-zag line starting in the
upper left corner of the diagram with a right step and continuing in alternating down
and right steps until the end of a row of the diagram is reached.

Example 2.3. Let α be the composition α = (1, 2, 3, 7, 7, 6, 6, 4, 2).

Figure 1: Staircase profile for α and the conjugate of α.

The shifted Ferrers diagram of a partition λ with distinct parts is the Ferrers diagram
(with boxes of unit length) of λ with row i shifted i− 1 units to the right.

We create a map
ϕ :

⋃
j>0

P(n− j(j + 1)/2)→ D2(n)

as follows. Start with λ ∈ P(n− j(j + 1)/2) for some j > 0. Append a diagram with
rows of lengths 1, 2, . . . j (i.e., the diagram of η(j) rotated by 90◦ counterclockwise) at the
top of the diagram of λ. We obtain a diagram with n boxes. Draw the staircase profile
of the new diagram. Let α be the partition whose parts are the length of the columns
to the left of the staircase profile and β be the partition whose parts are the length of
the rows to the right of the staircase profile. Then α and β are partitions with distinct
parts. Moreover, j 6 `(α)− `(β) 6 j + 1. Color the parts of α with color j (mod 2) and
the parts of β with color j + 1 (mod 2). Then ϕ(λ) is defined as the 2-color partition of n
whose parts are the colored parts of α and β.

Conversely, start with µ ∈ D2(n). Let `i(µ), i = 0, 1, be the number of parts of color i
in µ and set r = `0(µ)− `1(µ). Let

ε =

{
0 if r ≥ 0
1 if r < 0,

and j = |r|+ (−1)|r|+ε − 1
2

.

Remove the top j rows (i.e., the rotated diagram of η(j)) from the conjugate of the shifted
diagram of µ(ε) to obtain a composition γ. Define ϕ−1(µ) = γ + µ(s) where s 6= ε. Then,
ϕ−1(µ) ∈ P(n− j(j + 1)/2).
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Example 2.4. Let n = 38, j = 3, and let λ = 7 + 7 + 6 + 6 + 4 + 2 be a partition of
n − j(j + 1)/2 = 32. We add the rotated diagram of η(3) to the top of the diagram
of λ and draw the staircase profile (see Figure 1). Then α = 9 + 8 + 6 + 5 + 3 + 2 and
β = 3 + 2. Since j is odd, we have ϕ(λ) = 91 + 81 + 61 + 51 + 31 + 30 + 21 + 20.

Conversely, suppose µ = 91 + 81 + 61 + 51 + 31 + 30 + 21 + 20 ∈ D(38). Then `0(µ) = 2
and `1(µ) = 6. We have r = `0(µ)− `1(µ) = −4 and j = 3. We remove the first 3 rows
from the conjugate of the shifted diagram of µ(1) (which is precisely the diagram below
the staircase profile in Figure 1) and add the resulting composition γ to µ(0) = (3, 2). We
obtain ϕ−1(µ) = 7 + 7 + 6 + 6 + 4 + 2 ∈ P(32).

3 Generalizations of Theorem 1.1 to r-gaps

Recall that the r-gap of a partition λ is the least positive integer that does not appear r
times as a part of λ. In [5], we proved combinatorially that

σr mex(n) = ∑
j>0

p(n− rj(j + 1)/2). (3.1)

We can employ a transformation similar to that in the combinatorial proof of Theorem 1.1
to prove its generalization to sums of r-gaps.

Let D̃(r)
3 (n) be the number of partitions λ of n into distinct parts using three colors,

0, 1, and 2, such that:

(i) The set of parts of color 2 is either empty or {t(r− 1) | 1 6 t 6 j} for some j > 1.

(ii) `j (mod 2)(λ)− `j+1 (mod 2)(λ) ∈ {j, j + 1}, where j = 0 if λ(2) = ∅.

Theorem 3.1. Let n, r be integers with r > 0 and n > 0. Then σr mex(n) = D̃(r)
3 (n).

Proof. For a sketch of the proof see [6].

In [5] we give the generating function for σr mex(n), namely
∞

∑
n=0

σr mex(n)qn =
(q2r; q2r)∞

(q; q)∞(qr; q2r)∞
, (3.2)

where (a; q)n =
n−1
∏

k=0
(1− aqk) if n > 0, (a; q)n = 1 if n = 0, and (a; q)∞ = lim

n→∞
(a; q)n.

Denote D̃(r)
2 (n) the number of partitions λ of n using two colors, 0 and 1, such that:

(i) λ(0) is a partition into distinct parts divisible by r.

(ii) λ(1) is a partition with parts repeated at most 2r− 1 times.

The following generalization of Theorem 1.1 is immediate from (3.2).

Theorem 3.2. Let n, r be integers with r > 0 and n ≥ 0. Then σr mex(n) = D̃(r)
2 (n).
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4 Identities involving restricted mex-functions

In this section we introduce identities relating σ mex(n) and restricted mex functions for
partitions and overpartitions.

4.1 σ mex(n) and Mk(n)

We have the follwing generalization of (1.2).

Theorem 4.1. Let k, n be integers with k > 1 and n > 0. Then,

(−1)k−1

 k

∑
j=−(k−1)

(−1)jσ mex
(
n− j(3j− 1)/2

)
− δ(n)

 =
∞

∑
j=0

Mk
(
n− j(j + 1)/2

)
.

The following infinite family of linear inequalities involving σ mex is immediate.

Corollary 4.2. Let k be a positive integer. Given an integer n > 0, we have

(−1)k−1

 k

∑
j=−(k−1)

(−1)jσ mex
(
n− j(3j− 1)/2

)
− δ(n)

 > 0,

with strict inequality if n > k(3k + 1)/2.

Analytic proof of Theorem 4.1. In [1], the authors gave the following truncated Euler’s pen-
tagonal number theorem.

(−1)k−1

(q; q)∞

k

∑
n=−(k−1)

(−1)jqn(3n−1)/2 = (−1)k−1 +
∞

∑
n=k

q(
k
2)+(k+1)n

(q; q)n

[
n− 1
k− 1

]
, (4.1)

where [
n
k

]
=


(q; q)n

(q; q)k(q; q)n−k
, if 0 6 k 6 n,

0, otherwise.

Multiplying both sides of (4.1) by

(q2, q2)∞

(q, q2)∞
=

∞

∑
n=0

qn(n+1)/2,

and using (3.2) with r = 1 and the generating function for Mk(n) [1],

∞

∑
n=0

Mk(n)qn =
∞

∑
n=k

q(
k
2)+(k+1)n

(q; q)n

[
n− 1
k− 1

]
,
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we obtain

(−1)k−1

( ∞

∑
n=0

σ mex(n)qn
)( k

∑
n=−(k−1)

(−1)jqn(3n−1)/2
)
−

∞

∑
n=0

qn(n+1)/2


=

(
∞

∑
n=0

qn(n+1)/2

)(
∞

∑
n=0

Mk(n)qn

)
.

The proof follows easily using Cauchy’s multiplication of two power series.

Combinatorial proof of Theorem 4.1. The statement of Theorem 4.1 is equivalent to identity
(1.2) together with

σ mex
(

n− k(3k + 1)
2

)
− σ mex

(
n− k(3k + 5)

2
− 1
)

=
∞

∑
j=0

(
Mk
(
n− j(j + 1)/2

)
+ Mk+1

(
n− j(j + 1)/2

))
. (4.2)

Using (1.1), identity (4.2) becomes

∞

∑
j=0

(
p
(

n− j(j + 1)
2

− k(3k + 1)
2

)
− p

(
n− j(j + 1)

2
− k(3k + 5)

2
− 1
))

=
∞

∑
j=0

(
Mk
(
n− j(j + 1)/2

)
+ Mk+1

(
n− j(j + 1)/2

))
. (4.3)

Identity (4.3) was proved combinatorially in [11]. Together with the combinatorial proof
of (1.1), this gives a combinatorial proof of Theorem 4.1.

Next, we give a combinatorial interpretation for
∞

∑
t=0

Mk
(
n− t(t + 1)/2

)
. For integers

k, n such that k > 1 and n > 0, we denote by D(k)
3 (n) the number of partitions µ of n into

distinct parts using three colors and satisfying the following conditions:

(i) µ has exactly k parts of color 2 and, if k > 1, twice the smallest part of color 2 is
greater than largest part of color 2.

(ii) With r and j as in the combinatorial proof of Theorem 1.1, the largest part of color
j (mod 2) must equal j more that the smallest part of color 2.

Proposition 4.3. For integers k, n such that k > 1 and n > 0, we have

∞

∑
t=0

Mk
(
n− t(t + 1)/2

)
= D(k)

3 (n). (4.4)
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Proof. See [6].

Combining Theorems 1.1 and 4.1, and Proposition 4.3 we obtain the following corol-
lary which, by the discussion above, has both analytic and combinatorial proofs.

Corollary 4.4. For integers k, n such that k > 1 and n > 0, we have

(−1)max(0,k−1)

 k

∑
j=−max(0,k−1)

(−1)jσ mex
(
n− j(3j− 1)/2

)
− δ(n)

 = D(k)
3 (n).

Note that, if k = 0, the statement of the corollary reduces to Theorem 1.1.

4.2 σ mex(n) and overpartitions

Overpartitions are ordinary partitions with the added condition that the first appearance
of any part may be overlined. There are eight overpartitions of 3:

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1.

As usual, we denote by p(n) the number of overpartitions of n. The generating function
for p(n) is

∞

∑
n=0

p(n)qn =
(−q; q)∞

(q; q)∞
.

We have the following identity relating σ mex(n), p(n) and Mk(n).

Theorem 4.5. Let k be a positive integer. Given an integer n > 0, we have

(−1)k−1

 k

∑
j=−(k−1)

(−1)j p
(
n− j(3j− 1)

)
− σ mex(n)

 =
bn/2c

∑
j=0

Mk(j)σ mex(n− 2j).

Proof. By (4.1), with q replaced by q2, we obtain

(−1)k−1

(q2; q2)∞

 k

∑
n=−(k−1)

(−1)jqn(3n−1) − 1

 =
∞

∑
n=k

Mk(n)q2n. (4.5)

Multiplying both sides of (4.5) by the generating function for σ mex(n), we obtain

(−1)k−1

( ∞

∑
n=0

p(n)qn
)( k

∑
n=−(k−1)

(−1)jqn(3n−1)
)
−

∞

∑
n=0

σ mex(n)qn


=

(
∞

∑
n=0

σ mex(n)qn

)(
∞

∑
n=0

Mk(n)q2n

)
.

The proof follows by equating the coefficients of qn in this identity.
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The limiting case k→ ∞ of Theorem 4.5 reads as follows.

Corollary 4.6. For n > 0, σ mex(n) =
∞

∑
j=−∞

(−1)j p
(
n− j(3j− 1)

)
.

Remark 4.7. Since it is known that p(n) is odd if and only if n = 0, it follows that
σ mex(n) is odd if and only if 12n + 1 is a square.

In [2], the authors denoted by Mk(n) the number of overpartitions of n in which the
first part larger than k appears at least k + 1 times. We have the following identity.

Theorem 4.8. For integers k, n > 0, we have

(−1)k

(
σ mex(n) + 2

k

∑
j=1

(−1)jσ mex(n− j2)− δ′(n)

)
=

∞

∑
j=−∞

(−1)jMk
(
n− j(3j− 1)

)
,

where δ′(n) = (−1)m if n = m(3m− 1), m ∈ Z and δ′(n) = 0 otherwise.

Proof. The proof, given in [6], follows from a truncated theta series identity [2].

There is a substantial amount of numerical evidence to conjecture the following in-
equality.

Conjecture 4.9. For k, n > 0,

∞

∑
j=−∞

(−1)jMk
(
n− j(3j− 1)

)
> 0,

with strict inequality if n > (k + 1)2.

A combinatorial interpretation for the sum in this conjecture would be interesting.

4.3 σ mex(n) and partitions into distinct parts

To keep notation uniform, let D1(n) be the number of partitions of n into distinct parts.
Set D1(x) = 0 if x is not a positive integer. For proof of the next theorem see [6].

Theorem 4.10. For any integer n > 0, we have

∞

∑
j=0

(−1)j(j+1)/2σ mex
(
n− j(j + 1)/2

)
=

∞

∑
j=0

D1

(
n− j(j + 1)/2

2

)
. (4.6)

Let D∗2(n) be the number of partitions of n with distinct parts using two colors such
that: (i) parts of color 0 form a gap-free partition (staircase) and (ii) only even parts can
have color 1. Then, we have the following identity of Watson type [4] which gives a
combinatorial interpretation for the right hand side of (4.6). For its proof see [6].
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Proposition 4.11. For n > 0,

∞

∑
j=0

D1

(
n− j(j + 1)/2

2

)
= D∗2(n).

In [2], the authors denoted by MPk(n) the number of partitions of n in which the first
part larger than 2k− 1 is odd and appears exactly k times. All other odd parts appear at
most once. We have the following truncated form of Theorem 4.10.

Theorem 4.12. For integers n, k > 0,

(−1)k−1

(
2k−1

∑
j=0

(−1)j(j+1)/2σ mex
(
n− j(j + 1)/2

)
− D∗2(n)

)
=

n

∑
j=0

MPk(j)D∗2(n− j).

Proof. The proof, given in [6], follows from the truncated theta series identity of [2].

A combinatorial interpretation for
n

∑
j=0

MPk(j)D∗2(n− j) would be very welcome.

The following corollary of Theorem 4.12 is immediate.

Corollary 4.13. For integers n, k > 0,

(−1)k−1

(
2k−1

∑
j=0

(−1)j(j+1)/2σ mex
(
n− j(j + 1)/2

)
− D∗2(n)

)
> 0,

with strict inequality if n > k(2k + 1).

A second corollary involves the function pod(n), the number of partitions of n in
which odd parts are not repeated, i.e.,

Corollary 4.14. For n > 0, σ mex(n) =
n

∑
j=0

pod(j)D∗2(n− j).

5 σ mex(n) and partitions with colored odd parts

In this section we present several identities relating σ mex(n) with the number of parti-
tions of n in which odd parts are colored in with j colors, j = 2, 3, 4. Elsewhere in the
literature, colored partitions are referred to as vector partitions. Due to space restrictions,
we will present the proofs of all theorems in this section in a future article.
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5.1 Three colors for the odd parts

Let C3(n) be the number of partitions of n using 3 colors for the odd parts and let C′3(n)
be the number of partitions of n into parts not congruent to 2 mod 4 using 3 colors for
the odd parts. The generating functions for C3(n) and C′3(n) are respectively

∞

∑
n=0

C3(n)qn =
1

(q2; q2)∞(q; q2)3
∞

and
∞

∑
n=0

C′3(n)q
n =

1
(q4; q4)∞(q; q2)3

∞
.

Using the truncated Euler’s pentagonal number theorem [1], we prove the following
identity which relates C3(n) and the function Mk(n) defined in Section 1.

Theorem 5.1. Let k be a positive integer. Given an integer n > 0, we have

(−1)k−1

 k

∑
j=−(k−1)

(−1)jC3
(
n− j(3j− 1)/2

)
− σ mex(n)

 =
n

∑
j=0

σ mex(j)Mk(n− j).

A combinatorial interpretation of
n

∑
j=0

σ mex(j)Mk(n− j) would be appealing.

The limiting case k → ∞ of Theorem 5.1 gives the following decomposition of
σ mex(n).

Corollary 5.2. For n > 0, we have σ mex(n) =
∞

∑
j=−∞

(−1)jC3
(
n− j(3j− 1)/2

)
.

Using the truncated theta series identity of [2], we prove the following identity which
relates C′3(n) and the function MPk(n) of Section 4.3.

Theorem 5.3. Let k be a positive integer. Given an integer n > 0, we have

(−1)k−1

(
2k−1

∑
j=0

(−1)j(j+1)/2C′3
(
n− j(j + 1)/2

)
− σ mex(n)

)
=

n

∑
j=0

σ mex(j)MPk(n− j).

Corollary 5.4. For n > 0, σ mex(n) =
∞

∑
j=0

(−1)j(j+1)/2C′3
(
n− j(j + 1)/2

)
.

5.2 Four colors for the odd parts

Let C4(n) be the number of partitions of n using 4 colors for the odd parts. The generat-
ing function for C4(n) is

∞

∑
n=0

C4(n)qn =
1

(q2; q2)∞(q; q2)4
∞

.

Then, C4(n) and the function Mk(n) of Section 4.2 are related by the next theorem and
its corollary.
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Theorem 5.5. Let k be a positive integer. Given an integer n > 0, we have

(−1)k

(
C4(n) + 2

k

∑
j=1

(−1)jC4(n− j2)− σ mex(n)

)
=

n

∑
j=0

C4(j)Mk
(
n− j

)
.

Corollary 5.6. For n > 0, σ mex(n) = C4(n) + 2
∞

∑
j=1

(−1)jC4(n− j2).

Note that the partition functions σ mex(n) and C4(n) have the same parity.

5.3 Two colors for parts 6≡ 0 mod 4

Let C2(n) be the number of partitions of n using two colors for the parts not congruent
to 0 mod 4. The generating function for C2(n) is

∞

∑
n=0

C2(n)qn =
(q4; q4)∞

(q; q)2
∞

.

The following identity relating C2(n) and Mk(n) follows from the truncated theta iden-
tity of [2].

Theorem 5.7. Let k be a positive integer. Given an integer n > 0, we have

(−1)k

(
C2(n) + 2

k

∑
j=1

(−1)jC2(n− 2j2)− σ mex(n)

)
=
bn/2c

∑
j=0

Mk
(

j
)
σ mex(n− 2j).

Corollary 5.8. For n > 0, σ mex(n) = C2(n) + 2
∞

∑
j=1

(−1)jC2(n− 2j2).

We see that the partition functions σ mex(n) and C2(n) have the same parity.

5.4 Two colors for the odd parts in partitions into parts 6≡ 4 mod 8

We denote by C∗2 (n) the number of partitions of n into parts not congruent to 4 mod 8
using two colors for the odd parts. The generating function for C∗2 (n) is given by

∞

∑
n=0

C∗2 (n)q
n =

1
(q2, q6, q8; q8)∞(q; q2)2

∞
.

The proof of following theorem relating C∗2 (n) and MPk again uses results from [2].
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Theorem 5.9. Let k be a positive integer. Given an integer n > 0, we have

(−1)k−1

(
2k−1

∑
j=0

(−1)j(j+1)/2C∗2
(
n− j(j + 1)

)
− σ mex(n)

)
=
bn/2c

∑
j=0

MPk(j)σ mex(n− 2j).

Corollary 5.10. For n > 0, σ mex(n) =
∞

∑
j=0

(−1)j(j+1)/2C∗2
(
n− j(j + 1)

)
.
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