Séminaire Lotharingien de Combinatoire **84B** (2020) Article #25, 12 pp.

Some Algebraic Properties of Lecture Hall Polytopes

Petter Brändén^{*1} and Liam Solus^{†1}

¹Institutionen för Matematik, KTH Royal Institute of Technology, Stockholm, Sweden

Abstract. In this note, we investigate some of the fundamental algebraic and geometric properties of *s*-lecture hall simplices and their generalizations. We show that all *s*-lecture hall order polytopes, which simultaneously generalize *s*-lecture hall simplices and order polytopes, satisfy a property which implies the integer decomposition property. This answers one conjecture of Hibi, Olsen and Tsuchiya. By relating *s*-lecture hall polytopes to alcoved polytopes, we then use this property to show that families of *s*-lecture hall simplices admit a quadratic Gröbner basis with a square-free initial ideal. Consequently, we find that all *s*-lecture hall simplices for which the first order difference sequence of *s* is a 0, 1-sequence have a regular and unimodular triangulation. This answers a second conjecture of Hibi, Olsen and Tsuchiya, and it gives a partial answer to a conjecture of Beck, Braun, Köppe, Savage and Zafeirakopoulos.

Keywords: lecture hall polytope, integer decomposition property, regular unimodular triangulation, Gröbner basis, toric ideal

1 Introduction

Let $s = (s_1, ..., s_n)$ be a sequence of positive integers. An *s*-lecture hall partition is a (lattice) point in \mathbb{Z}^n living in the *s*-lecture hall cone

$$C_n^s := \left\{ \lambda \in \mathbb{R}^n : 0 \leq \frac{\lambda_1}{s_1} \leq \frac{\lambda_2}{s_2} \leq \cdots \leq \frac{\lambda_n}{s_n} \right\}.$$

The *s*-lecture hall partitions are generalizations of the *lecture hall partitions*, which correspond to the special case where s = (1, 2, ..., n). Lecture hall partitions were first studied by Bousquet-Mélou and Eriksson [4] who proved that

$$\sum_{\lambda \in C_n^{(1,2,\dots,n)} \cap \mathbb{Z}^n} q^{\lambda_1 + \dots + \lambda_n} = \frac{1}{\prod_{i=1}^n 1 - q^{2i-1}}.$$

^{*}pbranden@kth.se. Partially supported by the Knut and Alice Wallenberg foundation and Vetenskapsrådet

[†]solus@kth.se. Partially supported by NSF Mathematical Sciences Postdoctoral Research Fellowship (DMS–1606407), the Wallenberg Autonomous Systems and Software Program and Vetenskapsrådet.

In [11], the *s*-lecture hall simplex is defined to be the lattice polytope

$$P_n^s := \{\lambda \in C_n^s : \lambda_n \le s_n\}$$

A *d*-dimensional lattice polytope $P \subset \mathbb{R}^n$ is the convex hull of finitely many points in \mathbb{Z}^n whose affine span has dimension *d*. For a positive integer *k*, we define $kP := \{kp \in \mathbb{R}^n : p \in P\}$. The generating function

$$1 + \sum_{k>0} |kP \cap \mathbb{Z}^n| x^k = rac{h_0^* + h_1^* x + \dots + h_d^* x^d}{(1-x)^{d+1}},$$

is called the *Ehrhart series* of *P*, and the polynomial $h_0^* + h_1^* x + \cdots + h_d^* x^d$ is called the (Ehrhart) h*-polynomial of P. The h*-polynomial has only nonnegative integer coefficients, and for the s-lecture hall simplex P_n^s it is called the s-Eulerian polynomial. In the case that s = (1, 2, ..., n), the *s*-Eulerian polynomial is the classic n^{th} Eulerian polynomial, which enumerates the permutations of [n] via the descent statistic. One remarkable feature of this generalization is that every *s*-Eulerian polynomial has only real zeros, and thus they each have a log-concave and unimodal sequence of coefficients [12]. Identifying large families of lattice polytopes with unimodal h^* -polynomials is a popular research topic with natural connections to the algebra and geometry of the toric varieties associated to lattice polytopes. Showing that an h^* -polynomial is real-rooted is a common approach to proving unimodality results in geometric and algebraic combinatorics [3, 6, 12, 13]. However, the applicability of this proof technique to families of h^* -polynomials does not obviously relate to the algebraic structure of the associated toric variety for the underlying polytopes. Consequently, research into the algebraic properties of the *s*-lecture hall simplices and their generalizations that can be used to verify unimodality of the associated h^* -polynomials is an ongoing and popular topic [2, 1, 5, 7, 9, 10, 11, 12].

In this note, we prove some fundamental algebraic properties of *s*-lecture hall simplices and their generalizations. We show that all *s*-lecture hall order polytopes [5], a common generalization of *s*-lecture hall simplices and order polytopes, have the integer decomposition property. This result positively answers a conjecture of [7]. As an application of this result, we then give an explicit description of a quadratic and square-free Gröbner basis for the affine toric ideal of families of *s*-lecture hall simplices. To do so, we relate *s*-lecture hall polytopes to *alcoved polytopes* [8]. The identified Gröbner basis is purely lexicographic and can be constructed for any toric ideal associated to an *s*-lecture hall simplex for which the first order difference sequence of *s* is a 0,1-sequence. This answers a second conjecture of [7] in a special case that they noted to be of particular interest, and it provides a partial answer to the conjecture of [2].

2 The Integer Decomposition Property for *s*-Lecture Hall Order Polytopes

2.1 The algebraic structure of a lattice polytope

There are two important algebraic objects associated to a lattice polytope $P \subset \mathbb{R}^n$. The first is its *toric ideal*, the zero locus of which is the *affine toric variety of* P. The second is the *Ehrhart ring of* P, which is a graded and semistandard semigroup algebra associated to P. The integer decomposition property is precisely the property that tells us when the coordinate ring of the affine toric variety of P coincides with its Ehrhart ring. Hence, it is desirable to know if a family of lattice polytopes admits this property.

For a lattice polytope $P \subset \mathbb{R}^n$, define the *cone over P* to be the convex cone

$$\operatorname{cone}(P) := \operatorname{span}_{\mathbb{R}_{\geq 0}} \{ (p, 1) \in \mathbb{R}^n \times \mathbb{R} : p \in P \} \subset \mathbb{R}^{n+1}$$

To any integer point $z = (z_1, ..., z_{n+1}) \in \mathbb{Z}^{n+1}$ we associate a Laurent monomial $t^z := t_1^{z_1} t_2^{z_2} \cdots t_{n+1}^{z_{n+1}}$. Let $\{a_1, ..., a_m\} := \{(p, 1) \in \mathbb{R}^n \times \mathbb{R} : p \in P \cap \mathbb{Z}^n\}$, and let $K[\mathbf{x}] := K[x_1, ..., x_m]$ denote the polynomial ring over a field K in m indeterminates. The *toric ideal* of P, denoted \mathcal{I}_P , is the kernel of the semigroup algebra homomorphism

$$\Phi: K[\mathbf{x}] \longrightarrow K[t_1, t_2, \dots, t_{n+1}, t_1^{-1}, t_2^{-1}, \dots, t_{n+1}^{-1}] \quad \text{where} \quad \Phi: x_i \mapsto t^{a_i}.$$

For $k \in \mathbb{Z}_{>0}$ we let $kP := \{kp : p \in P\}$ denote the k^{th} dilate of P, and we let $A(P)_k$ denote the vector space (over K) spanned by the monomials $t_1^{z_1}t_2^{z_2}\cdots t_n^{z_n}t_{n+1}^k$ for $z \in kP \cap \mathbb{Z}^n$. Since P is convex we have that $A(P)_kA(P)_r \subset A(P)_{k+r}$ for all $k, r \in \mathbb{Z}_{>0}$. It follows that the graded algebra

$$A(P) := \bigoplus_{k=0}^{\infty} A(P)_k$$

is finitely generated over $A(P)_0 := K$, and we call it the *Ehrhart Ring of* P. Equivalently, A(P) is the semigroup algebra $K[t^z : z \in \operatorname{cone}(P) \cap \mathbb{Z}^{n+1}]$ with the grading $\deg(t_1^{z_1} \cdots t_{n+1}^{z_{n+1}}) = z_{n+1}$. A polytope $P \subset \mathbb{R}^n$ has the *integer decomposition property*, or is IDP (or is *integrally closed*), if for every positive integer k and every $z \in kP \cap \mathbb{Z}^n$, there exist k points $z^{(1)}, z^{(2)}, \ldots, z^{(k)} \in P \cap \mathbb{Z}^n$ such that $z = \sum_i z^{(i)}$. Since the coordinate ring of the toric ideal \mathcal{I}_P is $K[\mathbf{x}]/\mathcal{I}_P \cong K[t^{a_1}, \ldots, t^{a_m}]$, the polytope P is IDP if and only if this quotient ring is isomorphic to A(P). In this case, the toric algebra of \mathcal{I}_P can be used to recover the Ehrhart theoretical data encoded in A(P). Therefore, it is desirable to understand when combinatorially interesting polytopes are IDP.

2.2 *s*-Lecture hall order polytopes

A *labeled poset* is a partially ordered set \mathcal{P} on $[n] := \{1, 2, ..., n\}$ for some positive integer n; that is, $\mathcal{P} = ([n], \preceq)$ where \preceq denotes the partial order imposed on the ground set [n]. In the following, we let \leq denote the usual total order on the integers. We say that \mathcal{P} is *naturally labeled* if it is a labeled poset for which $i \leq j$ whenever $i \leq j$. Let $s = (s_1, ..., s_n)$ be a sequence of positive integers and let $\mathcal{P} = ([n], \preceq)$ be a naturally labeled poset. A (\mathcal{P}, s) -partition is a map $\lambda : [n] \longrightarrow \mathbb{R}$ such that

$$rac{\lambda_i}{s_i} \leq rac{\lambda_j}{s_j}$$
 whenever $i \prec j$,

where we let λ_i denote $\lambda(i)$ for all $i \in [n]$. The *s*-lecture hall order polytope associated to (\mathcal{P}, s) is the convex polytope

 $O(\mathcal{P}, s) := \{\lambda \in \mathbb{R}^n : \lambda \text{ is a } (\mathcal{P}, s) \text{-partition and } 0 \le \lambda_i \le s_i \text{ for all } i \in [n] \}.$

The *s*-lecture hall order polytopes were introduced in [5] as a common generalization of the well-known order polytopes and the *s*-lecture hall simplices. When s = (1, 1, ..., 1), then $O(\mathcal{P}, s)$ is the order polytope associated to \mathcal{P} , and when \mathcal{P} is the *n*-chain $O(\mathcal{P}, s) = P_n^s$. In [7], it is conjectured that all *s*-lecture hall simplices are IDP. We now prove a more general (and stronger) statement.

A poset $\mathcal{P} = ([n], \preceq_{\mathcal{P}})$ is called a *lattice* if every pair of elements $a, b \in [n]$ has both a least upper bound and a greatest lower bound in \mathcal{P} . An element $c \in [n]$ is a *least upper bound* of a and b in \mathcal{P} if $a \preceq_{\mathcal{P}} c, b \preceq_{\mathcal{P}} c$ and whenever $d \in [n]$ satisfies $a \preceq_{\mathcal{P}} d$ and $b \preceq_{\mathcal{P}} d$ then $c \preceq_{\mathcal{P}} d$. Analogously, $c \in [n]$ is a *greatest lower bound* of a and b in \mathcal{P} if $a \succeq_{\mathcal{P}} c$, $b \preceq_{\mathcal{P}} d$ and $b \succeq_{\mathcal{P}} d$ then $c \succeq_{\mathcal{P}} d$. Whenever a least upper bound or greatest lower bound exists, it is unique. So we let $a \lor b$ denote the least upper bound of a and b in \mathcal{P} and $a \land b$ denote their greatest lower bound. A lattice \mathcal{P} is called *distributive* if for all triples of elements a, b, c in \mathcal{P} we have that

$$a \lor (b \land c) = (a \lor b) \land (a \lor c).$$

Let $\Lambda(\mathcal{P}, s)$ denote the collection of all maps $\lambda : [n] \longrightarrow \mathbb{Z}$ satisfying

$$\frac{\lambda_i}{s_i} \leq \frac{\lambda_j}{s_j}$$
 whenever $i \leq j$.

In general, we will identify a map $p : [n] \longrightarrow \mathbb{R}$ with the point $(p_1, \ldots, p_n) \in \mathbb{R}^n$. Conversely, every point $p \in \mathbb{R}^n$ corresponds to a map $p : [n] \longrightarrow \mathbb{R}$. Note that $\Lambda(\mathcal{P}, s)$ is a distributive sublattice of \mathbb{Z}^n , under the usual product ordering. Moreover, $\Lambda(\mathcal{P}, s) =$ $\Lambda(\mathcal{P}, s) + \mathbb{Z}(s_1, \ldots, s_n)$ and $kO(\mathcal{P}, s) \cap \mathbb{Z}^n = \Lambda(\mathcal{P}, s) \cap \prod_{i \in [n]} [0, ks_i]$ for all $k \in \mathbb{Z}_{>0}$. Let $\lambda, \gamma \in O(\mathcal{P}, s) \cap \mathbb{Z}^n$. We write $\lambda \leq \gamma$ provided that

- 1. $\lambda_i \leq \gamma_i$ for all $i \in [n]$, and
- 2. if $\lambda_i \neq 0$, then $\gamma_i = s_i$.

Theorem 2.1. Let $\mathcal{P} = ([n], \preceq)$ be a naturally labeled poset and let $s = (s_1, \ldots, s_n)$ be a sequence of positive integers. If $\lambda \in kO(\mathcal{P}, s) \cap \mathbb{Z}^n$ for $k \in \mathbb{Z}_{>0}$, then there are unique elements $\lambda^{(1)}, \ldots, \lambda^{(k)} \in O(\mathcal{P}, s) \cap \mathbb{Z}^n$ such that

$$\lambda^{(1)} \leq \lambda^{(2)} \leq \cdots \leq \lambda^{(k)} \quad and \quad \lambda = \lambda^{(1)} + \lambda^{(2)} + \cdots + \lambda^{(k)}.$$
 (2.1)

Moreover, if

$$\lambda = \gamma^{(1)} + \gamma^{(2)} + \dots + \gamma^{(m)}$$

where $m \leq k$ and $\gamma^{(1)}, \ldots, \gamma^{(k)} \in O(\mathcal{P}, s) \cap \mathbb{Z}^n$, then $\lambda^{(1)}(x) \leq \gamma^{(i)}(x) \leq \lambda^{(k)}(x)$ for all $x \in [n]$ and $i \in [k]$.

Proof. We first prove the existence of (2.1) by induction over $k \ge 1$. Suppose $\lambda \in kO(\mathcal{P}, s) \cap \mathbb{Z}^n$, where k > 1, and write $\lambda = \lambda \wedge s + (\lambda - s) \vee 0$. Then $\lambda \wedge s \in O(\mathcal{P}, s) \cap \mathbb{Z}^n$ and $(\lambda - s) \vee 0 \in (k - 1)O(\mathcal{P}, s) \cap \mathbb{Z}^n$. Let $\lambda^{(k)} = \lambda \wedge s$. By induction, we may write

$$(\lambda - s) \lor 0 = \lambda^{(1)} + \dots + \lambda^{(k-1)}$$

where $\lambda^{(1)}, \ldots, \lambda^{(k-1)}$ satisfies (2.1). Clearly $\lambda^{(i)} \leq \lambda^{(k)}$ for all $1 \leq i \leq k-1$. Moreover, if $\lambda^{(i)}(x) \neq 0$ for some $1 \leq i \leq k-1$, then $((\lambda - s) \vee 0)(x) \neq 0$. Thus, $\lambda^{(k)}(x) = (\lambda \wedge s)(x) = s(x)$ as desired. This establishes (2.1).

Suppose now that the sequence $\lambda^{(1)}, \ldots, \lambda^{(k)}$ satisfies (2.1). Note $\lambda(x) > s(x)$ if and only if $\lambda^{(i)}(x) > 0$ for at least two distinct *i*, and this happens if and only if $\lambda^{(k-1)}(x) > 0$ and $\lambda^{(k)}(x) = s(x)$. Hence, $\lambda^{(k)} = \lambda \wedge s$. The uniqueness of $\lambda^{(1)}, \ldots, \lambda^{(k)}$ then follows by induction.

Suppose next that

$$\lambda = \gamma^{(1)} + \gamma^{(2)} + \dots + \gamma^{(m)} \in kO(\mathcal{P}, s) \cap \mathbb{Z}^n,$$

where $m \leq k$ and $\gamma^{(1)}, \ldots, \gamma^{(m)} \in O(\mathcal{P}, s) \cap \mathbb{Z}^n$. Then $\gamma^{(i)}(x) \leq \min\{\lambda(x), s(x)\} = \lambda^{(k)}(x)$. If $\gamma^{(i)}(x) < \lambda^{(1)}(x)$ for some $x \in [n]$ and $1 \leq i \leq m$, then $\lambda^{(i)}(x) = s(x)$ for all $2 \leq i \leq k$ (since $\lambda^{(1)}(x) \neq 0$). Hence, $\lambda^{(1)}(x) = \lambda(x) - (k-1)s(x) > 0$ and

$$\lambda(x) - \gamma^{(i)}(x) = \lambda^{(1)}(x) - \gamma^{(i)}(x) + (k-1)s(x) > (k-1)s(x),$$

which is a contradiction since $\lambda - \gamma^{(i)} \in (m-1)O(\mathcal{P}, s) \cap \mathbb{Z}^n$.

It follows from Theorem 2.1 that all *s*-lecture hall order polytopes are IDP. In the remainder of this note, we use Theorem 2.1 to identify a regular and unimodular triangulation of some *s*-lecture hall polytopes by computing a quadratic and square-free Gröbner basis for their associated toric ideals.

3 A Quadratic and Square-Free Gröbner Basis for Some *s*-Lecture Hall Simplices

Let $P \subset \mathbb{R}^n$ be a lattice polytope and let $\mathcal{A} := \{(p,1) \in \mathbb{R}^n \times \mathbb{R} : p \in P \cap \mathbb{Z}^n\}$. Label \mathcal{A} as $\mathcal{A} = \{a_1, \ldots, a_m\}$, and suppose that \succ is a *term order* on the polynomial ring $K[\mathbf{x}] := K[x_1, \ldots, x_m]$; that is, \succ is a total order on the monomials in $K[\mathbf{x}]$ satisfying

- 1. $x^a \succ x^b$ implies that $x^a x^c \succ x^b x^c$ for all $c \in \mathbb{Z}_{>0}^n$, and
- 2. $x^a \succ x^0 = 1$ for all $a \in \mathbb{Z}_{>0}^n$.

Given a polynomial $f = \sum_{a \in \mathbb{Z}_{\geq 0}^n} c_a x^a$ with coefficients $c_a \in K$ we call the set

$$\operatorname{Supp}(f) := \{a \in \mathbb{Z}^n : c_a \neq 0\}$$

the *support* of *f*. Fixing a term order \succ on the monomials in $K[\mathbf{x}]$, we define the *initial term* of *f* to be the term $c_a x^a$ for which $x^a \succ x^b$ for every $b \in \text{Supp}(f) \setminus \{a\}$. We denote the initial term of *f* with respect to the term order \succ by in_{\succ}(*f*). Given an ideal $\mathcal{I} \subset K[\mathbf{x}]$, the *initial ideal of* \mathcal{I} *with respect to* \succ is

$$\operatorname{in}_{\succ}(\mathcal{I}) := \langle \operatorname{in}_{\succ}(f) : f \in \mathcal{I} \rangle.$$

A finite set of polynomials $\mathcal{G}_{\succ}(\mathcal{I}) := \{g_1, \ldots, g_p\}$ is called a *Gröbner basis* of \mathcal{I} with respect to \succ if $in_{\succ}(\mathcal{I}) = \langle in_{\succ}(g_1), \ldots, in_{\succ}(g_p) \rangle$. If $\{in_{\succ}(g_1), \ldots, in_{\succ}(g_p)\}$ is the unique minimal generating set for $in_{\succ}(\mathcal{I})$, then $\mathcal{G}_{\succ}(\mathcal{I})$ is called *minimal*. A minimal Gröbner basis $\mathcal{G}_{\succ}(\mathcal{I})$ if further called *reduced* if no non-initial term of any g_i is divisible by some element of $\{in_{\succ}(g_1), \ldots, in_{\succ}(g_p)\}$. The monomials of $K[\mathbf{x}]$ that are not in $in_{\succ}(\mathcal{I})$ are called the *standard monomials* of $in_{\succ}(\mathcal{I})$.

Let $P \subset \mathbb{R}^n$ be a lattice polytope and let $\mathcal{A} := \{(p,1) \in \mathbb{R}^n \times \mathbb{R} : p \in P \cap \mathbb{Z}^n\}$. We denote the sublattice of \mathbb{Z}^{n+1} spanned by the lattice points in \mathcal{A} by $\mathbb{Z}\mathcal{A}$. Any sufficiently generic height function $\omega : \mathcal{A} \longrightarrow \mathbb{R}_{\geq 0}$ on the points in \mathcal{A} induces a term order \succ_{ω} on $K[\mathbf{x}]$ and yields a corresponding Gröbner basis $\mathcal{G}_{\succ_{\omega}}(\mathcal{I}_P)$ for the toric ideal \mathcal{I}_P of P. On the other hand, the collection of faces of

$$\operatorname{conv}\{(a_i, \omega(a_i)) \in \mathbb{R}^{n+1} : i \in [m]\}$$

that minimize some linear functional in \mathbb{R}^{n+1} with a negative $(n+1)^{st}$ coordinate correspond to the faces of a *regular triangulation* Δ_{ω} of P given by projecting these faces onto P in \mathbb{R}^n . The fundamental correspondence between the regular triangulation Δ_{ω} and the Gröbner basis $\mathcal{G}_{\succ_{\omega}}(\mathcal{I}_P)$ states that the square-free standard monomials $x_{i_1}x_{i_2}\cdots x_{i_\ell}$ with respect to $in_{\succ_{\omega}}(\mathcal{I}_P)$ correspond to the faces $conv\{a_{i_1}, a_{i_2}, \ldots, a_{i_\ell}\}$ of Δ_{ω} [14, Theorem 8.3]. Furthermore, if the $in_{\succ_{\omega}}(\mathcal{I}_P)$ is *square-free* (i.e. generated by square-free monomials), then the simplices of Δ_{ω} have smallest possible volume (i.e. are *unimodular*) with respect to the lattice $\mathbb{Z}A$. In this case, the regular triangulation Δ_{ω} is called *unimodular*. If in_{\succ_{ω}}(\mathcal{I}_P) consists only of quadratic monomials, then Δ_{ω} is *flag*, meaning its minimal non-faces are pairs of points $\{a_i, a_j\}$. When an *n*-dimensional lattice polytope *P* is IDP, then $\mathbb{Z}A = \mathbb{Z}^{n+1}$, and a square-free Gröbner basis for \mathcal{I}_P identifies a regular unimodular triangulation of *P* with respect to the lattice \mathbb{Z}^n .

Our goal in this section is to identify a quadratic Gröbner basis with a square-free initial ideal for the toric ideals of a subcollection of *s*-lecture hall simplices that includes the lecture hall simplex $P_n^{(1,2,...,n)}$. This is the first explicit description of such a Gröbner basis for the toric ideal of $P_n^{(1,2,...,n)}$. In the remainder of this section, we will assume that $s = (s_1, ..., s_n)$ is a weakly increasing sequence of positive integers satisfying $0 \le s_{i+1} - s_i \le 1$ for all $i \in [n-1]$; that is, we will assume that the first order difference sequence of *s* is a 0, 1-sequence.

3.1 *s*-lecture hall simplices and alcoved polytopes

To produce the desired quadratic and square-free Gröbner basis for the toric ideal of P_n^s we will use the following transformation. For the sequence $s = (s_1, ..., s_n)$, set $s_{n+1} := s_n + 1$. Notice that since *s* is assumed to be weakly increasing then $x_i \le x_{i+1}$ for all $i \in [n]$ and $x \in P_n^s$. Now consider the unimodular transformation

$$\varphi : \mathbb{R}^n \longrightarrow \mathbb{R}^n$$
; $\varphi : x_i \mapsto x_i - x_{i-1}$, where $x_0 := 0$,

and the homogenizing affine transformation

$$h: \mathbb{R}^n \longrightarrow \mathbb{R}^{n+1}; \qquad h: x \mapsto \left(x_1, \ldots, x_n, s_{n+1} - \sum_{i=1}^n x_i\right).$$

Then the convex lattice polytope $A_n^s := (h \circ \varphi)(P_n^s)$ is defined by the linear inequalities

$$0 \le x_1 + \dots + x_i \le s_i, \text{ for all } i \in [n],$$

$$0 \le (s_{i+1} - s_i)(x_1 + \dots + x_i) \le s_i x_{i+1}, \text{ for all } i \in [n-1], \text{ and}$$

$$x_1 + \dots + x_{n+1} = s_{n+1}.$$

The following lemma notes that the lattice points within A_n^s consist of the lattice points in the *alcoved polytope* [8] defined by the inequalities

$$0 \le x_1 + \dots + x_i \le s_i$$
, for all $i \in [n]$, and $x_1 + \dots + x_{n+1} = s_{n+1}$

that satisfy a useful combinatorial criterion. Conditions (1) and (2) of the lemma specify that a lattice point in A_n^s must lie in this alcoved polytope, and conditions (3) and (4) constitute the combinatorial criterion we desire.

Lemma 3.1. Suppose that *s* is a weakly increasing sequence of positive integers for which the first order difference sequence is a 0,1-sequence. Then a lattice point (z_1, \ldots, z_{n+1}) is in $A_n^s \cap \mathbb{Z}^{n+1}$ if and only if the following conditions hold:

- 1. $z_1 + \cdots + z_{n+1} = s_{n+1}$,
- 2. $0 \le z_1 + \cdots + z_i \le s_i$ for all $i \in [n+1]$,
- *3.* whenever $s_{i+1} s_i = 0$, then $0 \le z_{i+1}$, and
- 4. whenever $s_{i+1} s_i \neq 0$ and $z_k \neq 0$ for some k < i+1, then $z_{i+1} \neq 0$.

Proof. Suppose first that $(z_1, \ldots, z_{n+1}) \in A_n^s \cap \mathbb{Z}^{n+1}$. Then certainly conditions (1) and (2) hold. To see that condition (3) holds, suppose that $s_{i+1} - s_i = 0$. Then by the defining inequalities for A_n^s , we know that $0 \le z_{i+1}$. Finally, to see condition (4) holds, suppose that $s_{i+1} - s_i \ne 0$ and that $z_k \ne 0$ for some k < i+1. Then since $s_{i+1} - s_i \ne 0$, we know that $s_{i+1} - s_i = 1$. So the inequality

$$0 \le (s_{i+1} - s_i)(z_1 + \dots + z_k + \dots + z_i) \le s_i z_{i+1}$$

reduces to

$$0 \leq z_1 + \cdots + z_k + \cdots + z_i \leq s_i z_{i+1},$$

and since $z_k \neq 0$, it follows that $z_{i+1} \neq 0$.

Conversely, suppose that (z_1, \ldots, z_{n+1}) is a lattice point satisfying the conditions (1), (2), (3), and (4). Then by conditions (1) and (2) it suffices to show that (z_1, \ldots, z_{n+1}) satisfies the inequalities

$$0 \le (s_{i+1} - s_i)(z_1 + \dots + z_i) \le s_i z_{i+1}$$

for all $i \in [n]$. However, since (z_1, \ldots, z_{n+1}) is a lattice point, whenever $z_{i+1} \neq 0$, we know that $z_{i+1} \geq 1$. Thus, the conditions (3) and (4) show that $s_{i+1} - s_i \leq z_{i+1}$ for all $i \in [n]$. Therefore, condition (2) implies that the inequalities

$$0 \le (s_{i+1} - s_i)(z_1 + \dots + z_i) \le s_i z_{i+1}$$

hold for all $i \in [n]$.

Let $A(s) := \{i + 1 \in [n + 1] : s_i < s_{i+1}\}$ denote the collection of indices $i + 1 \in [n + 1]$ for which $s_{i+1} - s_i \neq 0$. Notice that a lattice point $z = (z_1, \ldots, z_{n+1}) \in A_n^s \cap \mathbb{Z}^{n+1}$ indexes the multiset

$$\{1^{z_1}, 2^{z_2}, \ldots, (n+1)^{z_{n+1}}\}.$$

We call any such multiset an *s*-lecture hall multiset (of order *n*). The notion of multisets and their corresponding lattice points in \mathbb{Z}^n will be used in the coming section. It will be useful to have the following notation.

For $i \in [n]$ and a multiset I of [n] we let $\operatorname{mult}_{I}(i)$ denote the multiplicity of i in I. Given a collection of multisets $\mathcal{I} = \{I_1, \ldots, I_k\}$, we let $\Sigma \mathcal{I}$ denote the multiunion $\bigcup_{I \in \mathcal{I}} I$. For each multiset $I_i \in \mathcal{I}$ we let $x^{(i)} := (\operatorname{mult}_{I_i}(1), \operatorname{mult}_{I_i}(2), \ldots, \operatorname{mult}_{I_i}(n)) \in \mathbb{Z}^n$ denote its *multiplicity vector*. The multiplicity vectors $x^{(1)}, \ldots, x^{(k)}$ can be ordered *lexicographically*, i.e., for two vectors $x, y \in \mathbb{Z}^n$ we say $x \succ_{\operatorname{lex}} y$ if and only if the leftmost nonzero entry in x - y is positive. Given this, we may reindex the collection \mathcal{I} such

cographically, i.e., for two vectors $x, y \in \mathbb{Z}^n$ we say $x \succ_{\text{lex}} y$ if and only if the leftmost nonzero entry in x - y is positive. Given this, we may reindex the collection \mathcal{I} such that $x^{(1)} \succ_{\text{lex}} x^{(2)} \succ_{\text{lex}} \cdots \succ_{\text{lex}} x^{(k)}$. Moreover, the lexicographic ordering on the lattice points in \mathbb{Z}^n induces a lexicographic ordering on the multisets of [n]. That is, for two multisets I_1, I_2 of [n], we say $I_1 \succ_{\text{lex}} I_2$ if and only if $x^{(1)} \succ_{\text{lex}} x^{(2)}$. Furthermore, given two collections of k multisets $\mathcal{I} = \{I_1, \ldots, I_k\}$ and $\mathcal{J} = \{J_1, \ldots, J_k\}$ of [n], we write $\mathcal{I} \succ \mathcal{J}$ if and only if the $I_k \succ_{\text{lex}} J_k$ for the smallest index k for which $I_k \neq J_k$. A collection $\mathcal{I} = \{I_1, \ldots, I_k\}$ of k multisets is said to be *minimal* if $\mathcal{I}' \succ_{\text{lex}} \mathcal{I}$ for any collection \mathcal{I}' of k multisets of [n] satisfying $\Sigma \mathcal{I}' = \Sigma \mathcal{I}$. Equivalently, the collection of vectors $\{x^{(1)}, \ldots, x^{(k)}\}$ is called minimal.

3.2 A lexicographic Gröbner basis

We now use the notion of *s*-lecture hall multisets described in Section 3.1 to describe a quadratic Gröbner basis with a square-free initial ideal for the toric ideal associated to P_n^s . To get started, we do not yet need to speak directly about *s*-lecture hall multisets, but instead, we need only their corresponding multiplicity vectors in $A_n^s \cap \mathbb{Z}^n$. If $x \in kA_n^s \cap \mathbb{Z}^{n+1}$, let

$$\alpha_r(x) = \min\{i \in [n+1] : x_i \ge r, \text{ and } x_j \ge r \text{ for all } j > i \text{ such that } j \in A(s)\}.$$

If $x = (x_1, \dots, x_{n+1}) \neq 0$, let $\ell(x) = \min\{i : x_i \neq 0\}$.

Lemma 3.2. Suppose $x^{(1)} \succeq_{\text{lex}} x^{(2)} \succeq_{\text{lex}} \cdots \succeq_{\text{lex}} x^{(m)}$ are integer points in $A_n^s \cap \mathbb{Z}^{n+1}$, and let $y = x^{(1)} + x^{(2)} + \cdots + x^{(m)}$. If $x^{(1)} \succeq_{\text{lex}} x^{(2)} \succeq_{\text{lex}} \cdots \succeq_{\text{lex}} x^{(m)}$ are pairwise minimal, then

$$\ell(x^{(i)}) = \alpha_i(y), \quad \text{for all } 1 \le i \le m.$$

Proof. The proof is by induction over *i* for $1 \le i \le m$. Note that $\alpha_1(y)$ is the first nonzero coordinate of *y*. Since the $x^{(i)}$ are ordered lexicographically, we have $\ell(x^{(1)}) = \alpha_1(y)$ as claimed.

Suppose now that the claim is true for all indices less than or equal to $i \ge 1$, but that it is not true for i + 1. Then $a := \alpha_{i+1}(y) < \ell(x^{(i+1)}) =: b$. Let c be the largest integer in $\{j : a \le j < b, y_j \ge i + 1\}$. Note that $x_j^{(k)} = 0$ for all $k \ge i + 1$, since the $x^{(k)}$ are ordered lexicographically. Since $y_c \ge i + 1$, there is a k satisfying $1 \le k \le i$ such that $x_c^{(k)} \ge 2$. Let d > c be the smallest index for which $x_d^{(k)} > 0$ and either $d \notin A(s)$ or $x_d^{(k)} \ge 2$. Then the pair $\{x^{(k)} + e_d - e_c, x^{(i)} + e_c - e_d\}$ is smaller than $\{x^{(k)}, x^{(i)}\}$, which contradicts pairwise minimality.

Theorem 3.3. If $x^{(1)} \succeq_{\text{lex}} x^{(2)} \succeq_{\text{lex}} \cdots \succeq_{\text{lex}} x^{(k)}$ are pairwise minimal, then the collection $\{x^{(1)}, \ldots, x^{(k)}\}$ is minimal.

Proof. Let $y = x^{(1)} + x^{(2)} + \cdots + x^{(k)}$. We prove that $x^{(1)} \succeq_{\text{lex}} x^{(2)} \succeq_{\text{lex}} \cdots \succeq_{\text{lex}} x^{(k)}$ are uniquely determined given y. The proof is by induction on $k \ge 2$.

Suppose first that $\alpha_i(y) > \alpha_j(y)$ for some i < j. Let m be the last index for which $\alpha_m(y) > \alpha_{m+1}(y)$. Let $u = x^{(1)} + \cdots + x^{(m)}$ and $v = x^{(m+1)} + \cdots + x^{(k)}$. We prove that u and v are uniquely determined. We claim that if $j \ge \alpha_{m+1}(y)$ and $j \in A(s)$, then

$$v_j = \min\left(y_j - m, s_j(k - m) - \sum_{i=1}^{j-1} v_i\right),$$
 (3.1)

and if $j \ge \alpha_{m+1}(y)$ and $j \notin A(s)$, then

$$v_j = \min\left(y_j, s_j(k-m) - \sum_{i=1}^{j-1} v_i\right).$$
 (3.2)

Assume $j \ge \alpha_{m+1}(y)$ and $j \in A(s)$. Then the *j*th coordinate of each $x^{(i)}$, $i \le m$, is positive, since $j \in A(s)$. Hence, $v_j = y_j - u_j \le y_j - m$. Moreover, $v_j \le s_j(k-m) - \sum_{i=1}^{j-1} v_i$ by the defining inequalties of A_n^s and the definition of *s*-lecture hall partitions. Thus, if (3.1) fails, then $v_j < y_j - m$ and $\sum_{i=1}^{j} v_i < s_j(k-m)$. So we conclude there are indices i, ℓ such that $i \le m$ and $\ell \ge m+1$ such that $x_j^{(i)} > 1$ and $\sum_{i=1}^{j} x_i^{(\ell)} < s_j$. Let p > j be the smallest index such that $x_p^{(\ell)} > 1$ or $x_p^{(\ell)} = 1$ and $p \notin A(s)$. Then the pair $\{x^{(i)} - e_j + e_p, x^{(\ell)} + e_j - e_p\}$ is smaller than $\{x^{(i)}, x^{(\ell)}\}$, contradicting pairwise minimality. Thus, (3.1) follows, and the case when $j \ge \alpha_{m+1}(y)$ and $j \notin A(s)$ follows similarly.

If $\alpha_i(y) = \alpha_j(y) = a$ for all i, j, we claim that the first nonzero coordinate of the $x^{(i)}$ differ by at most one. Indeed if the first nonzero coordinate of $x^{(i)}$ and $x^{(j)}$, i < j, differ by at least two, then let b be the smallest integer greater than a for which the entry in $x^{(i)}$ is either greater than one or equal to one and not in A(s). Then the pair $\{x^{(i)} - e_a + e_b, x^{(j)} + e_a - e_b\}$ is smaller than $\{x^{(i)}, x^{(j)}\}$, which contradicts pairwise minimality. If the first nonzero entry of all $x^{(i)}$ is equal, we may delete this entry for each $x^{(i)}$ and repeat our argument. Hence, we reduce to the case when either $\alpha_i(y) = \alpha_j(y) = a$ for all i, j and some first coordinates differ, or $\alpha_i(y) > \alpha_j(y)$. The latter case is dealt with above. For the former case, let m be the index for which the first coordinates of $x^{(m)}$ and $x^{(m+1)}$ differ. Let $u = x^{(1)} + \cdots + x^{(m)}$ and $v = x^{(m+1)} + \cdots + x^{(k)}$ and argue as above.

Theorem 3.3 allows us to compute the desired Gröbner basis. Let

$$K[\mathbf{x}] := K[x_I : I \text{ is a } s \text{-lecture hall multiset}]$$

be a polynomial ring over a field *K* in the indeterminants x_I . Given a collection of *s*lecture hall multisets $\mathcal{I} = \{I_1, \ldots, I_r\}$, we denote the monomial $x_{I_1} \cdots x_{I_r}$ by $x^{\mathcal{I}}$. In the following, we denote the toric ideal $\mathcal{I}_{A_n^s}$ in $K[\mathbf{x}]$ simply by \mathcal{I}_n^s . For a collection of *k s*lecture hall multisets $\{I_1, \ldots, I_k\}$, we let $\{I_1^-, \ldots, I_k^-\}$ denote the minimal collection of *k s*-lecture hall multisets satisfying $\Sigma\{I_1^-, \ldots, I_k^-\} = \Sigma\{I_1, \ldots, I_k\}$.

Theorem 3.4. There exists a term order \succ on $K[\mathbf{x}]$ such that the marked set of binomials

$$G := \{x_I x_J - x_{I^-} x_{J^-} : I \text{ and } J \text{ are s-lecture hall multisets}\}$$

is a reduced Gröbner basis for \mathcal{I}_n^s with respect to \succ . The initial ideal in_{\succ} \mathcal{I}_n^s is generated by the underlined terms, all of which are square-free.

Proof. For a collection of *s*-lecture hall multisets $\mathcal{I} = \{I_1, \ldots, I_r\}$, the relation $x_{I_1} \cdots x_{I_r}$ – $x_{I_1^-} \cdots x_{I_r^-}$ lies in the ideal \mathcal{I}_n^s . This is because the multiunion over each collection of multisets is the same and I_1^-, \ldots, I_k^- are all *s*-lecture hall multisets. The binomials in *G* define a reduction relation on $k[\mathbf{x}]$ for which the underlined term is treated as the leading term of the binomials. We say a monomial is in *normal* form with respect to a reduction relation if it is the remainder upon division with respect to the given set of polynomials and their specified leading terms [14, Chapter 3]. It follows from Theorem 3.3 that if \mathcal{I} is not minimal, then there exists some pair $\{I_i, I_j\} \subset \mathcal{I}$ for which $\{I_i, I_j\}$ is not minimal. So a monomial $x^{\mathcal{I}}$ for $\mathcal{I} = \{I_1, \ldots, I_r\}$ is in normal form with respect to the reduction relation defined by G if and only if \mathcal{I} is minimal. Notice also that the reduction modulo G is Noetherian; i.e., every sequence of reductions modulo G terminates. This is because reduction of the monomial $x_{I_1} \cdots x_{I_r}$ by $x_{I_i} x_{I_j} - x_{I_i^-} x_{I_i^-}$ amounts to replacing the multiset $\mathcal{I} = \{I_1, \ldots, I_r\}$ with the multiset $\mathcal{I}' := \mathcal{I} \setminus \{I_i, I_j\} \cup \{I_i^-, I_i^-\}$. Since \mathcal{I}' is lexicographically smaller than \mathcal{I} , reduction modulo G is Noetherian. So by applying [14, Theorem 3.12] we find that *G* is a coherently marked collection of binomials. Thus, it is a Gröbner basis for \mathcal{I}_n^s with respect to some term order \succ on $K[\mathbf{x}]$ and its initial ideal is generated by the underlined terms. It follows readily that the monomials in the initial ideal with respect to this term order are precisely the non-minimal monomials. Thus, G is a quadratic and reduced Gröbner basis for \mathcal{I}_n^s with a square-free initial ideal.

The following corollary extends the results of [2] and [7]. In particular, it provides a partial answer to [7, Conjecture 5.2] in a special case that they noted to be of particular interest; namely, when the first order difference sequence of s is a 0, 1-sequence.

Corollary 3.5. Let *s* be a weakly increasing sequence of positive integers whose first order difference sequence of *s* is a 0,1-sequence. There exists a regular, flag, and unimodular triangulation of P_n^s .

Proof. By Theorem 3.4 we know that the toric ideal of the polytope A_n^s has a quadratic Gröbner basis for some term order that has a square-free initial ideal. It follows from

[14, Theorem 8.8] and [14, Corollary 8.9] that A_n^s has a regular, flag, and unimodular triangulation whose minimal non-faces are indexed by the lexicographically non-minimal sets of *s*-lecture hall multisets. Since A_n^s is unimodularly equivalent to P_n^s , we conclude that P_n^s has a regular, flag, and unimodular triangulation.

References

- M. Beck, B. Braun, M. Köppe, C. Savage, and Z. Zafeirakopoulos. "s-lecture hall partitions, self-reciprocal polynomials, and Gorenstein cones". *Ramanujan J* 36.1-2 (2015), pp. 123–147. Link.
- [2] M. Beck, B. Braun, M. Köppe, C. Savage, and Z. Zafeirakopoulos. "Generating functions and triangulations for lecture hall cones". *SIAM J. Discrete Math.* **30.3** (2016), pp. 1470–1479. Link.
- [3] M. Beck, K. Jochemko, and E. McCullough. "h*-polynomials of zonotopes". Trans. Amer. Math. Soc 371.3 (2019), pp. 2021–2042. Link.
- [4] M. Bousquet-Melou and K. Eriksson. "Lecture hall partitions". *Ramanujan J.* **1.1** (1997), pp. 101–111. Link.
- [5] P. Brändén and M. Leander. "Lecture hall P-partitions". J. Comb. 11 (2020), pp. 391–412. Link.
- [6] N. Gustafsson and L. Solus. "Derangements, Ehrhart theory, and local *h*-polynomials". *Adv. Math.* **369** (2020), p. 107169. Link.
- [7] T. Hibi, M. Olsen, and A. Tsuchiya. "Gorenstein properties and integer decomposition properties of lecture hall polytopes". *Mosc. Math. J.* 18.4 (2018). Link.
- [8] T. Lam and A. Postnikov. "Alcoved polytopes, I". Discrete and Computational Geometry 38.3 (2007), pp. 453–478. Link.
- [9] T. Pensyl and C. Savage. "Lecture hall partitions and the wreath products $\mathbb{Z}_k \wr S_n$." Integers (2013).
- [10] T. Pensyl and C. Savage. "Rational lecture hall polytopes and inflated Eulerian polynomials". *Ramanujan J.* **31.1-2** (2013), pp. 97–114. Link.
- [11] C. Savage and M. Schuster. "Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences". *J. Combin. Theory Ser. A* **119** (2012), pp. 850–870. Link.
- [12] C. Savage and M. Visontai. "The s-Eulerian polynomials have only real roots". *Trans. Amer. Math. Soc* 367.2 (2015), pp. 1441–1466. Link.
- [13] L. Solus. "Simplices for numeral systems". Trans. Amer. Math. Soc 371.3 (2019), pp. 2089– 2107. Link.
- [14] B. Sturmfels. "Gröbner bases and convex polytopes". J. Amer. Math. Soc. 8 (1996).