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Abstract. In this note, we investigate some of the fundamental algebraic and geo-
metric properties of s-lecture hall simplices and their generalizations. We show that all
s-lecture hall order polytopes, which simultaneously generalize s-lecture hall simplices
and order polytopes, satisfy a property which implies the integer decomposition prop-
erty. This answers one conjecture of Hibi, Olsen and Tsuchiya. By relating s-lecture
hall polytopes to alcoved polytopes, we then use this property to show that families of
s-lecture hall simplices admit a quadratic Gröbner basis with a square-free initial ideal.
Consequently, we find that all s-lecture hall simplices for which the first order differ-
ence sequence of s is a 0, 1-sequence have a regular and unimodular triangulation. This
answers a second conjecture of Hibi, Olsen and Tsuchiya, and it gives a partial answer
to a conjecture of Beck, Braun, Köppe, Savage and Zafeirakopoulos.

Keywords: lecture hall polytope, integer decomposition property, regular unimodular
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1 Introduction

Let s = (s1, . . . , sn) be a sequence of positive integers. An s-lecture hall partition is a
(lattice) point in Zn living in the s-lecture hall cone

Cs
n :=

{
λ ∈ Rn : 0 ≤ λ1

s1
≤ λ2

s2
≤ · · · ≤ λn

sn

}
.

The s-lecture hall partitions are generalizations of the lecture hall partitions, which cor-
respond to the special case where s = (1, 2, . . . , n). Lecture hall partitions were first
studied by Bousquet-Mélou and Eriksson [4] who proved that

∑
λ∈C(1,2,...,n)

n ∩Zn

qλ1+···+λn =
1

∏n
i=1 1− q2i−1 .
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In [11], the s-lecture hall simplex is defined to be the lattice polytope

Ps
n := {λ ∈ Cs

n : λn ≤ sn}.

A d-dimensional lattice polytope P ⊂ Rn is the convex hull of finitely many points in
Zn whose affine span has dimension d. For a positive integer k, we define kP := {kp ∈
Rn : p ∈ P}. The generating function

1 + ∑
k>0
|kP ∩Zn|xk =

h∗0 + h∗1x + · · ·+ h∗dxd

(1− x)d+1 ,

is called the Ehrhart series of P, and the polynomial h∗0 + h∗1x + · · · + h∗dxd is called the
(Ehrhart) h∗-polynomial of P. The h∗-polynomial has only nonnegative integer coefficients,
and for the s-lecture hall simplex Ps

n it is called the s-Eulerian polynomial. In the case that
s = (1, 2, . . . , n), the s-Eulerian polynomial is the classic nth Eulerian polynomial, which
enumerates the permutations of [n] via the descent statistic. One remarkable feature of
this generalization is that every s-Eulerian polynomial has only real zeros, and thus they
each have a log-concave and unimodal sequence of coefficients [12]. Identifying large
families of lattice polytopes with unimodal h∗-polynomials is a popular research topic
with natural connections to the algebra and geometry of the toric varieties associated to
lattice polytopes. Showing that an h∗-polynomial is real-rooted is a common approach
to proving unimodality results in geometric and algebraic combinatorics [3, 6, 12, 13].
However, the applicability of this proof technique to families of h∗-polynomials does
not obviously relate to the algebraic structure of the associated toric variety for the un-
derlying polytopes. Consequently, research into the algebraic properties of the s-lecture
hall simplices and their generalizations that can be used to verify unimodality of the
associated h∗-polynomials is an ongoing and popular topic [2, 1, 5, 7, 9, 10, 11, 12].

In this note, we prove some fundamental algebraic properties of s-lecture hall sim-
plices and their generalizations. We show that all s-lecture hall order polytopes [5], a com-
mon generalization of s-lecture hall simplices and order polytopes, have the integer
decomposition property. This result positively answers a conjecture of [7]. As an appli-
cation of this result, we then give an explicit description of a quadratic and square-free
Gröbner basis for the affine toric ideal of families of s-lecture hall simplices. To do so,
we relate s-lecture hall polytopes to alcoved polytopes [8]. The identified Gröbner basis is
purely lexicographic and can be constructed for any toric ideal associated to an s-lecture
hall simplex for which the first order difference sequence of s is a 0, 1-sequence. This
answers a second conjecture of [7] in a special case that they noted to be of particular
interest, and it provides a partial answer to the conjecture of [2].
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2 The Integer Decomposition Property for s-Lecture Hall
Order Polytopes

2.1 The algebraic structure of a lattice polytope

There are two important algebraic objects associated to a lattice polytope P ⊂ Rn. The
first is its toric ideal, the zero locus of which is the affine toric variety of P. The second is
the Ehrhart ring of P, which is a graded and semistandard semigroup algebra associated
to P. The integer decomposition property is precisely the property that tells us when the
coordinate ring of the affine toric variety of P coincides with its Ehrhart ring. Hence, it
is desirable to know if a family of lattice polytopes admits this property.

For a lattice polytope P ⊂ Rn, define the cone over P to be the convex cone

cone(P) := spanR≥0
{(p, 1) ∈ Rn ×R : p ∈ P} ⊂ Rn+1.

To any integer point z = (z1, . . . , zn+1) ∈ Zn+1 we associate a Laurent monomial tz :=
tz1
1 tz2

2 · · · t
zn+1
n+1 . Let {a1, . . . , am} := {(p, 1) ∈ Rn × R : p ∈ P ∩ Zn}, and let K[x] :=

K[x1, . . . , xm] denote the polynomial ring over a field K in m indeterminates. The toric
ideal of P, denoted IP, is the kernel of the semigroup algebra homomorphism

Φ : K[x] −→ K[t1, t2, . . . , tn+1, t−1
1 , t−1

2 , . . . , t−1
n+1] where Φ : xi 7→ tai .

For k ∈ Z>0 we let kP := {kp : p ∈ P} denote the kth dilate of P, and we let
A(P)k denote the vector space (over K) spanned by the monomials tz1

1 tz2
2 · · · t

zn
n tk

n+1 for
z ∈ kP ∩Zn. Since P is convex we have that A(P)k A(P)r ⊂ A(P)k+r for all k, r ∈ Z>0. It
follows that the graded algebra

A(P) :=
∞⊕

k=0

A(P)k

is finitely generated over A(P)0 := K, and we call it the Ehrhart Ring of P. Equiv-
alently, A(P) is the semigroup algebra K[tz : z ∈ cone(P) ∩ Zn+1] with the grading
deg(tz1

1 · · · t
zn+1
n+1 ) = zn+1. A polytope P ⊂ Rn has the integer decomposition property, or is

IDP (or is integrally closed), if for every positive integer k and every z ∈ kP ∩Zn, there
exist k points z(1), z(2), . . . , z(k) ∈ P ∩Zn such that z = ∑i z(i). Since the coordinate
ring of the toric ideal IP is K[x]/IP

∼= K[ta1 , . . . , tam ], the polytope P is IDP if and only
if this quotient ring is isomorphic to A(P). In this case, the toric algebra of IP can be
used to recover the Ehrhart theoretical data encoded in A(P). Therefore, it is desirable
to understand when combinatorially interesting polytopes are IDP.



4 Petter Brändén and Liam Solus

2.2 s-Lecture hall order polytopes

A labeled poset is a partially ordered set P on [n] := {1, 2, . . . , n} for some positive integer
n; that is, P = ([n],�) where � denotes the partial order imposed on the ground set [n].
In the following, we let ≤ denote the usual total order on the integers. We say that P is
naturally labeled if it is a labeled poset for which i ≤ j whenever i � j. Let s = (s1, . . . , sn)
be a sequence of positive integers and let P = ([n],�) be a naturally labeled poset. A
(P , s)-partition is a map λ : [n] −→ R such that

λi

si
≤

λj

sj
whenever i ≺ j,

where we let λi denote λ(i) for all i ∈ [n]. The s-lecture hall order polytope associated to
(P , s) is the convex polytope

O(P , s) := {λ ∈ Rn : λ is a (P , s)-partition and 0 ≤ λi ≤ si for all i ∈ [n]} .

The s-lecture hall order polytopes were introduced in [5] as a common generalization of
the well-known order polytopes and the s-lecture hall simplices. When s = (1, 1, . . . , 1),
then O(P , s) is the order polytope associated to P , and when P is the n-chain O(P , s) =
Ps

n. In [7], it is conjectured that all s-lecture hall simplices are IDP. We now prove a more
general (and stronger) statement.

A poset P = ([n],�P ) is called a lattice if every pair of elements a, b ∈ [n] has both a
least upper bound and a greatest lower bound in P . An element c ∈ [n] is a least upper
bound of a and b in P if a �P c, b �P c and whenever d ∈ [n] satisfies a �P d and b �P d
then c �P d. Analogously, c ∈ [n] is a greatest lower bound of a and b in P if a �P c,
b �P c and whenever d ∈ [n] satisfies a �P d and b �P d then c �P d. Whenever a least
upper bound or greatest lower bound exists, it is unique. So we let a∨ b denote the least
upper bound of a and b in P and a ∧ b denote their greatest lower bound. A lattice P is
called distributive if for all triples of elements a, b, c in P we have that

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Let Λ(P , s) denote the collection of all maps λ : [n] −→ Z satisfying

λi

si
≤

λj

sj
whenever i � j.

In general, we will identify a map p : [n] −→ R with the point (p1, . . . , pn) ∈ Rn.
Conversely, every point p ∈ Rn corresponds to a map p : [n] −→ R. Note that Λ(P , s) is
a distributive sublattice of Zn, under the usual product ordering. Moreover, Λ(P , s) =
Λ(P , s) + Z(s1, . . . , sn) and kO(P , s) ∩Zn = Λ(P , s) ∩∏i∈[n][0, ksi] for all k ∈ Z>0. Let
λ, γ ∈ O(P , s) ∩Zn. We write λ E γ provided that
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1. λi ≤ γi for all i ∈ [n], and

2. if λi 6= 0, then γi = si.

Theorem 2.1. Let P = ([n],�) be a naturally labeled poset and let s = (s1, . . . , sn) be a
sequence of positive integers. If λ ∈ kO(P , s) ∩Zn for k ∈ Z>0, then there are unique elements
λ(1), . . . , λ(k) ∈ O(P , s) ∩Zn such that

λ(1) E λ(2) E · · ·E λ(k) and λ = λ(1) + λ(2) + · · ·+ λ(k). (2.1)

Moreover, if
λ = γ(1) + γ(2) + · · ·+ γ(m)

where m ≤ k and γ(1), . . . , γ(k) ∈ O(P , s) ∩Zn, then λ(1)(x) ≤ γ(i)(x) ≤ λ(k)(x) for all
x ∈ [n] and i ∈ [k].

Proof. We first prove the existence of (2.1) by induction over k ≥ 1. Suppose λ ∈
kO(P , s)∩Zn, where k > 1, and write λ = λ∧ s + (λ− s)∨ 0. Then λ∧ s ∈ O(P , s)∩Zn

and (λ− s) ∨ 0 ∈ (k− 1)O(P , s) ∩Zn. Let λ(k) = λ ∧ s. By induction, we may write

(λ− s) ∨ 0 = λ(1) + · · ·+ λ(k−1)

where λ(1), . . . , λ(k−1) satisfies (2.1). Clearly λ(i) ≤ λ(k) for all 1 ≤ i ≤ k− 1. Moreover,
if λ(i)(x) 6= 0 for some 1 ≤ i ≤ k − 1, then ((λ − s) ∨ 0)(x) 6= 0. Thus, λ(k)(x) =
(λ ∧ s)(x) = s(x) as desired. This establishes (2.1).

Suppose now that the sequence λ(1), . . . , λ(k) satisfies (2.1). Note λ(x) > s(x) if and
only if λ(i)(x) > 0 for at least two distinct i, and this happens if and only if λ(k−1)(x) > 0
and λ(k)(x) = s(x). Hence, λ(k) = λ ∧ s. The uniqueness of λ(1), . . . , λ(k) then follows by
induction.

Suppose next that

λ = γ(1) + γ(2) + · · ·+ γ(m) ∈ kO(P , s) ∩Zn,

where m ≤ k and γ(1), . . . , γ(m) ∈ O(P , s) ∩ Zn. Then γ(i)(x) ≤ min{λ(x), s(x)} =
λ(k)(x). If γ(i)(x) < λ(1)(x) for some x ∈ [n] and 1 ≤ i ≤ m, then λ(i)(x) = s(x) for all
2 ≤ i ≤ k (since λ(1)(x) 6= 0). Hence, λ(1)(x) = λ(x)− (k− 1)s(x) > 0 and

λ(x)− γ(i)(x) = λ(1)(x)− γ(i)(x) + (k− 1)s(x) > (k− 1)s(x),

which is a contradiction since λ− γ(i) ∈ (m− 1)O(P , s) ∩Zn.

It follows from Theorem 2.1 that all s-lecture hall order polytopes are IDP. In the
remainder of this note, we use Theorem 2.1 to identify a regular and unimodular tri-
angulation of some s-lecture hall polytopes by computing a quadratic and square-free
Gröbner basis for their associated toric ideals.
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3 A Quadratic and Square-Free Gröbner Basis for Some
s-Lecture Hall Simplices

Let P ⊂ Rn be a lattice polytope and let A := {(p, 1) ∈ Rn ×R : p ∈ P ∩Zn}. Label
A as A = {a1, . . . , am}, and suppose that � is a term order on the polynomial ring
K[x] := K[x1, . . . , xm]; that is, � is a total order on the monomials in K[x] satisfying

1. xa � xb implies that xaxc � xbxc for all c ∈ Zn
≥0, and

2. xa � x0 = 1 for all a ∈ Zn
>0.

Given a polynomial f = ∑a∈Zn
≥0

caxa with coefficients ca ∈ K we call the set

Supp( f ) := {a ∈ Zn : ca 6= 0}

the support of f . Fixing a term order � on the monomials in K[x], we define the initial
term of f to be the term caxa for which xa � xb for every b ∈ Supp( f ) \ {a}. We denote
the initial term of f with respect to the term order � by in�( f ). Given an ideal I ⊂ K[x],
the initial ideal of I with respect to � is

in�(I) := 〈in�( f ) : f ∈ I〉.

A finite set of polynomials G�(I) := {g1, . . . , gp} is called a Gröbner basis of I with
respect to � if in�(I) = 〈in�(g1), . . . , in�(gp)〉. If

{
in�(g1), . . . , in�(gp)

}
is the unique

minimal generating set for in�(I), then G�(I) is called minimal. A minimal Gröbner
basis G�(I) if further called reduced if no non-inital term of any gi is divisible by some
element of

{
in�(g1), . . . , in�(gp)

}
. The monomials of K[x] that are not in in�(I) are

called the standard monomials of in�(I).
Let P ⊂ Rn be a lattice polytope and let A := {(p, 1) ∈ Rn ×R : p ∈ P ∩Zn}. We

denote the sublattice of Zn+1 spanned by the lattice points in A by ZA. Any sufficiently
generic height function ω : A −→ R≥0 on the points in A induces a term order �ω on
K[x] and yields a corresponding Gröbner basis G�ω(IP) for the toric ideal IP of P. On
the other hand, the collection of faces of

conv{(ai, ω(ai)) ∈ Rn+1 : i ∈ [m]}

that minimize some linear functional in Rn+1 with a negative (n + 1)st coordinate corre-
spond to the faces of a regular triangulation ∆ω of P given by projecting these faces onto
P in Rn. The fundamental correspondence between the regular triangulation ∆ω and
the Gröbner basis G�ω(IP) states that the square-free standard monomials xi1 xi2 · · · xi`
with respect to in�ω(IP) correspond to the faces conv{ai1 , ai2 , . . . , ai`} of ∆ω [14, Theorem
8.3]. Furthermore, if the in�ω(IP) is square-free (i.e. generated by square-free monomi-
als), then the simplices of ∆ω have smallest possible volume (i.e. are unimodular) with



Properties of Lecture Hall Polytopes 7

respect to the lattice ZA. In this case, the regular triangulation ∆ω is called unimodular.
If in�ω(IP) consists only of quadratic monomials, then ∆ω is flag, meaning its minimal
non-faces are pairs of points {ai, aj}. When an n-dimensional lattice polytope P is IDP,
then ZA = Zn+1, and a square-free Gröbner basis for IP identifies a regular unimodular
triangulation of P with respect to the lattice Zn.

Our goal in this section is to identify a quadratic Gröbner basis with a square-free
initial ideal for the toric ideals of a subcollection of s-lecture hall simplices that includes
the lecture hall simplex P(1,2,...,n)

n . This is the first explicit description of such a Gröbner
basis for the toric ideal of P(1,2,...,n)

n . In the remainder of this section, we will assume
that s = (s1, . . . , sn) is a weakly increasing sequence of positive integers satisfying 0 ≤
si+1 − si ≤ 1 for all i ∈ [n − 1]; that is, we will assume that the first order difference
sequence of s is a 0, 1-sequence.

3.1 s-lecture hall simplices and alcoved polytopes

To produce the desired quadratic and square-free Gröbner basis for the toric ideal of
Ps

n we will use the following transformation. For the sequence s = (s1, . . . , sn), set
sn+1 := sn + 1. Notice that since s is assumed to be weakly increasing then xi ≤ xi+1 for
all i ∈ [n] and x ∈ Ps

n. Now consider the unimodular transformation

ϕ : Rn −→ Rn; ϕ : xi 7→ xi − xi−1, where x0 := 0,

and the homogenizing affine transformation

h : Rn −→ Rn+1; h : x 7→
(

x1, . . . , xn, sn+1 −
n

∑
i=1

xi

)
.

Then the convex lattice polytope As
n := (h ◦ ϕ)(Ps

n) is defined by the linear inequalities

0 ≤ x1 + · · ·+ xi ≤ si, for all i ∈ [n],
0 ≤ (si+1 − si)(x1 + · · ·+ xi) ≤ sixi+1, for all i ∈ [n− 1], and

x1 + · · ·+ xn+1 = sn+1.

The following lemma notes that the lattice points within As
n consist of the lattice points

in the alcoved polytope [8] defined by the inequalities

0 ≤ x1 + · · ·+ xi ≤ si, for all i ∈ [n], and
x1 + · · ·+ xn+1 = sn+1

that satisfy a useful combinatorial criterion. Conditions (1) and (2) of the lemma specify
that a lattice point in As

n must lie in this alcoved polytope, and conditions (3) and (4)
constitute the combinatorial criterion we desire.
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Lemma 3.1. Suppose that s is a weakly increasing sequence of positive integers for which the first
order difference sequence is a 0, 1-sequence. Then a lattice point (z1, . . . , zn+1) is in As

n ∩Zn+1

if and only if the following conditions hold:

1. z1 + · · ·+ zn+1 = sn+1,

2. 0 ≤ z1 + · · ·+ zi ≤ si for all i ∈ [n + 1],

3. whenever si+1 − si = 0, then 0 ≤ zi+1, and

4. whenever si+1 − si 6= 0 and zk 6= 0 for some k < i + 1, then zi+1 6= 0.

Proof. Suppose first that (z1, . . . , zn+1) ∈ As
n ∩Zn+1. Then certainly conditions (1) and

(2) hold. To see that condition (3) holds, suppose that si+1− si = 0. Then by the defining
inequalities for As

n, we know that 0 ≤ zi+1. Finally, to see condition (4) holds, suppose
that si+1 − si 6= 0 and that zk 6= 0 for some k < i + 1. Then since si+1 − si 6= 0, we know
that si+1 − si = 1. So the inequality

0 ≤ (si+1 − si)(z1 + · · ·+ zk + · · ·+ zi) ≤ sizi+1

reduces to
0 ≤ z1 + · · ·+ zk + · · ·+ zi ≤ sizi+1,

and since zk 6= 0, it follows that zi+1 6= 0.
Conversely, suppose that (z1, . . . , zn+1) is a lattice point satisfying the conditions (1),

(2), (3), and (4). Then by conditions (1) and (2) it suffices to show that (z1, . . . , zn+1)
satisfies the inequalities

0 ≤ (si+1 − si)(z1 + · · ·+ zi) ≤ sizi+1

for all i ∈ [n]. However, since (z1, . . . , zn+1) is a lattice point, whenever zi+1 6= 0, we
know that zi+1 ≥ 1. Thus, the conditions (3) and (4) show that si+1 − si ≤ zi+1 for all
i ∈ [n]. Therefore, condition (2) implies that the inequalities

0 ≤ (si+1 − si)(z1 + · · ·+ zi) ≤ sizi+1

hold for all i ∈ [n].

Let A(s) := {i + 1 ∈ [n + 1] : si < si+1} denote the collection of indices i + 1 ∈ [n + 1]
for which si+1− si 6= 0. Notice that a lattice point z = (z1, . . . , zn+1) ∈ As

n ∩Zn+1 indexes
the multiset

{1z1 , 2z2 , . . . , (n + 1)zn+1}.
We call any such multiset an s-lecture hall multiset (of order n). The notion of multisets
and their corresponding lattice points in Zn will be used in the coming section. It will
be useful to have the following notation.
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For i ∈ [n] and a multiset I of [n] we let multI(i) denote the multiplicity of i in
I. Given a collection of multisets I = {I1, . . . , Ik}, we let ΣI denote the multiunion⋃

I∈I I. For each multiset Ii ∈ I we let x(i) := (multIi(1), multIi(2), . . . , multIi(n)) ∈ Zn

denote its multiplicity vector. The multiplicity vectors x(1), . . . , x(k) can be ordered lexi-
cographically, i.e., for two vectors x, y ∈ Zn we say x �lex y if and only if the leftmost
nonzero entry in x − y is positive. Given this, we may reindex the collection I such
that x(1) �lex x(2) �lex · · · �lex x(k). Moreover, the lexicographic ordering on the lat-
tice points in Zn induces a lexicographic ordering on the multisets of [n]. That is, for
two multisets I1, I2 of [n], we say I1 �lex I2 if and only if x(1) �lex x(2). Furthermore,
given two collections of k multisets I = {I1, . . . , Ik} and J = {J1, . . . , Jk} of [n], we
write I � J if and only if the Ik �lex Jk for the smallest index k for which Ik 6= Jk. A
collection I = {I1, . . . , Ik} of k multisets is said to be minimal if I ′ �lex I for any collec-
tion I ′ of k multisets of [n] satisfying ΣI ′ = ΣI . Equivalently, the collection of vectors
{x(1), . . . , x(k)} is called minimal.

3.2 A lexicographic Gröbner basis

We now use the notion of s-lecture hall multisets described in Section 3.1 to describe a
quadratic Gröbner basis with a square-free initial ideal for the toric ideal associated to
Ps

n. To get started, we do not yet need to speak directly about s-lecture hall multisets,
but instead, we need only their corresponding multiplicity vectors in As

n ∩Zn. If x ∈
kAs

n ∩Zn+1, let

αr(x) = min{i ∈ [n + 1] : xi ≥ r, and xj ≥ r for all j > i such that j ∈ A(s)}.

If x = (x1, . . . , xn+1) 6= 0, let `(x) = min{i : xi 6= 0}.

Lemma 3.2. Suppose x(1) �lex x(2) �lex · · · �lex x(m) are integer points in As
n ∩Zn+1, and

let y = x(1) + x(2) + · · ·+ x(m). If x(1) �lex x(2) �lex · · · �lex x(m) are pairwise minimal, then

`(x(i)) = αi(y), for all 1 ≤ i ≤ m.

Proof. The proof is by induction over i for 1 ≤ i ≤ m. Note that α1(y) is the first nonzero
coordinate of y. Since the x(i) are ordered lexicographically, we have `(x(1)) = α1(y) as
claimed.

Suppose now that the claim is true for all indices less than or equal to i ≥ 1, but that
it is not true for i + 1. Then a := αi+1(y) < `(x(i+1)) =: b. Let c be the largest integer in
{j : a ≤ j < b, yj ≥ i + 1}. Note that x(k)j = 0 for all k ≥ i + 1, since the x(k) are ordered

lexicographically. Since yc ≥ i + 1, there is a k satisfying 1 ≤ k ≤ i such that x(k)c ≥ 2. Let
d > c be the smallest index for which x(k)d > 0 and either d /∈ A(s) or x(k)d ≥ 2. Then the
pair {x(k) + ed − ec, x(i) + ec − ed} is smaller than {x(k), x(i)}, which contradicts pairwise
minimality.
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Theorem 3.3. If x(1) �lex x(2) �lex · · · �lex x(k) are pairwise minimal, then the collection
{x(1), . . . , x(k)} is minimal.

Proof. Let y = x(1) + x(2) + · · ·+ x(k). We prove that x(1) �lex x(2) �lex · · · �lex x(k) are
uniquely determined given y. The proof is by induction on k ≥ 2.

Suppose first that αi(y) > αj(y) for some i < j. Let m be the last index for which
αm(y) > αm+1(y). Let u = x(1) + · · ·+ x(m) and v = x(m+1) + · · ·+ x(k). We prove that u
and v are uniquely determined. We claim that if j ≥ αm+1(y) and j ∈ A(s), then

vj = min

(
yj −m, sj(k−m)−

j−1

∑
i=1

vi

)
, (3.1)

and if j ≥ αm+1(y) and j 6∈ A(s), then

vj = min

(
yj, sj(k−m)−

j−1

∑
i=1

vi

)
. (3.2)

Assume j ≥ αm+1(y) and j ∈ A(s). Then the jth coordinate of each x(i), i ≤ m, is positive,
since j ∈ A(s). Hence, vj = yj − uj ≤ yj −m. Moreover, vj ≤ sj(k−m)−∑

j−1
i=1 vi by the

defining inequalties of As
n and the definition of s-lecture hall partitions. Thus, if (3.1)

fails, then vj < yj − m and ∑
j
i=1 vi < sj(k − m). So we conclude there are indices i, `

such that i ≤ m and ` ≥ m + 1 such that x(i)j > 1 and ∑
j
i=1 x(`)i < sj. Let p > j be the

smallest index such that x(`)p > 1 or x(`)p = 1 and p 6∈ A(s). Then the pair {x(i) − ej +

ep, x(`) + ej − ep} is smaller than {x(i), x(`)}, contradicting pairwise minimality. Thus,
(3.1) follows, and the case when j ≥ αm+1(y) and j 6∈ A(s) follows similarly.

If αi(y) = αj(y) = a for all i, j, we claim that the first nonzero coordinate of the x(i)

differ by at most one. Indeed if the first nonzero coordinate of x(i) and x(j), i < j, differ
by at least two, then let b be the smallest integer greater than a for which the entry in
x(i) is either greater than one or equal to one and not in A(s). Then the pair {x(i) − ea +
eb, x(j) + ea− eb} is smaller than {x(i), x(j)}, which contradicts pairwise minimality. If the
first nonzero entry of all x(i) is equal, we may delete this entry for each x(i) and repeat
our argument. Hence, we reduce to the case when either αi(y) = αj(y) = a for all i, j
and some first coordinates differ, or αi(y) > αj(y). The latter case is dealt with above.
For the former case, let m be the index for which the first coordinates of x(m) and x(m+1)

differ. Let u = x(1) + · · ·+ x(m) and v = x(m+1) + · · ·+ x(k) and argue as above.

Theorem 3.3 allows us to compute the desired Gröbner basis. Let

K[x] := K[xI : I is a s-lecture hall multiset]
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be a polynomial ring over a field K in the indeterminants xI . Given a collection of s-
lecture hall multisets I = {I1, . . . , Ir}, we denote the monomial xI1 · · · xIr by xI . In the
following, we denote the toric ideal IAs

n in K[x] simply by I s
n. For a collection of k s-

lecture hall multisets {I1, . . . , Ik}, we let {I−1 , . . . , I−k } denote the minimal collection of k
s-lecture hall multisets satisfying Σ{I−1 , . . . , I−k } = Σ{I1, . . . , Ik}.

Theorem 3.4. There exists a term order � on K[x] such that the marked set of binomials

G := {xI xJ − xI−xJ− : I and J are s-lecture hall multisets}

is a reduced Gröbner basis for I s
n with respect to �. The initial ideal in� I s

n is generated by the
underlined terms, all of which are square-free.

Proof. For a collection of s-lecture hall multisets I = {I1, . . . , Ir}, the relation xI1 · · · xIr −
xI−1
· · · xI−r lies in the ideal I s

n. This is because the multiunion over each collection of

multisets is the same and I−1 , . . . , I−k are all s-lecture hall multisets. The binomials in G
define a reduction relation on k[x] for which the underlined term is treated as the leading
term of the binomials. We say a monomial is in normal form with respect to a reduction
relation if it is the remainder upon division with respect to the given set of polynomials
and their specified leading terms [14, Chapter 3]. It follows from Theorem 3.3 that if I
is not minimal, then there exists some pair {Ii, Ij} ⊂ I for which {Ii, Ij} is not minimal.
So a monomial xI for I = {I1, . . . , Ir} is in normal form with respect to the reduction
relation defined by G if and only if I is minimal. Notice also that the reduction modulo
G is Noetherian; i.e., every sequence of reductions modulo G terminates. This is because
reduction of the monomial xI1 · · · xIr by xIi xIj − xI−i

xI−j
amounts to replacing the multiset

I = {I1, . . . , Ir} with the multiset I ′ := I\{Ii, Ij}∪ {I−i , I−j }. Since I ′ is lexicographically
smaller than I , reduction modulo G is Noetherian. So by applying [14, Theorem 3.12]
we find that G is a coherently marked collection of binomials. Thus, it is a Gröbner basis
for I s

n with respect to some term order � on K[x] and its initial ideal is generated by the
underlined terms. It follows readily that the monomials in the initial ideal with respect
to this term order are precisely the non-minimal monomials. Thus, G is a quadratic and
reduced Gröbner basis for I s

n with a square-free initial ideal.

The following corollary extends the results of [2] and [7]. In particular, it provides a
partial answer to [7, Conjecture 5.2] in a special case that they noted to be of particular
interest; namely, when the first order difference sequence of s is a 0, 1-sequence.

Corollary 3.5. Let s be a weakly increasing sequence of positive integers whose first order differ-
ence sequence of s is a 0, 1-sequence. There exists a regular, flag, and unimodular triangulation
of Ps

n.

Proof. By Theorem 3.4 we know that the toric ideal of the polytope As
n has a quadratic

Gröbner basis for some term order that has a square-free initial ideal. It follows from
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[14, Theorem 8.8] and [14, Corollary 8.9] that As
n has a regular, flag, and unimodular tri-

angulation whose minimal non-faces are indexed by the lexicographically non-minimal
sets of s-lecture hall multisets. Since As

n is unimodularly equivalent to Ps
n, we conclude

that Ps
n has a regular, flag, and unimodular triangulation.
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