Some Algebraic Properties of Lecture Hall Polytopes

Petter Brändén ${ }^{* 1}$ and Liam Solus ${ }^{\dagger 1}$
${ }^{1}$ Institutionen för Matematik, KTH Royal Institute of Technology, Stockholm, Sweden

Abstract

In this note, we investigate some of the fundamental algebraic and geometric properties of s-lecture hall simplices and their generalizations. We show that all s-lecture hall order polytopes, which simultaneously generalize s-lecture hall simplices and order polytopes, satisfy a property which implies the integer decomposition property. This answers one conjecture of Hibi, Olsen and Tsuchiya. By relating s-lecture hall polytopes to alcoved polytopes, we then use this property to show that families of s-lecture hall simplices admit a quadratic Gröbner basis with a square-free initial ideal. Consequently, we find that all s-lecture hall simplices for which the first order difference sequence of s is a 0,1 -sequence have a regular and unimodular triangulation. This answers a second conjecture of Hibi, Olsen and Tsuchiya, and it gives a partial answer to a conjecture of Beck, Braun, Köppe, Savage and Zafeirakopoulos.

Keywords: lecture hall polytope, integer decomposition property, regular unimodular triangulation, Gröbner basis, toric ideal

1 Introduction

Let $s=\left(s_{1}, \ldots, s_{n}\right)$ be a sequence of positive integers. An s-lecture hall partition is a (lattice) point in \mathbb{Z}^{n} living in the s-lecture hall cone

$$
C_{n}^{s}:=\left\{\lambda \in \mathbb{R}^{n}: 0 \leq \frac{\lambda_{1}}{s_{1}} \leq \frac{\lambda_{2}}{s_{2}} \leq \cdots \leq \frac{\lambda_{n}}{s_{n}}\right\} .
$$

The s-lecture hall partitions are generalizations of the lecture hall partitions, which correspond to the special case where $s=(1,2, \ldots, n)$. Lecture hall partitions were first studied by Bousquet-Mélou and Eriksson [4] who proved that

$$
\sum_{\lambda \in C_{n}^{(1,2, \ldots, n)} \cap \mathbb{Z}^{n}} q^{\lambda_{1}+\cdots+\lambda_{n}}=\frac{1}{\prod_{i=1}^{n} 1-q^{2 i-1}}
$$

[^0]In [11], the s-lecture hall simplex is defined to be the lattice polytope

$$
P_{n}^{s}:=\left\{\lambda \in C_{n}^{s}: \lambda_{n} \leq s_{n}\right\} .
$$

A d-dimensional lattice polytope $P \subset \mathbb{R}^{n}$ is the convex hull of finitely many points in \mathbb{Z}^{n} whose affine span has dimension d. For a positive integer k, we define $k P:=\{k p \in$ $\left.\mathbb{R}^{n}: p \in P\right\}$. The generating function

$$
1+\sum_{k>0}\left|k P \cap \mathbb{Z}^{n}\right| x^{k}=\frac{h_{0}^{*}+h_{1}^{*} x+\cdots+h_{d}^{*} x^{d}}{(1-x)^{d+1}}
$$

is called the Ehrhart series of P, and the polynomial $h_{0}^{*}+h_{1}^{*} x+\cdots+h_{d}^{*} x^{d}$ is called the (Ehrhart) h^{*}-polynomial of P. The h^{*}-polynomial has only nonnegative integer coefficients, and for the s-lecture hall simplex P_{n}^{s} it is called the s-Eulerian polynomial. In the case that $s=(1,2, \ldots, n)$, the s-Eulerian polynomial is the classic $n^{\text {th }}$ Eulerian polynomial, which enumerates the permutations of $[n]$ via the descent statistic. One remarkable feature of this generalization is that every s-Eulerian polynomial has only real zeros, and thus they each have a log-concave and unimodal sequence of coefficients [12]. Identifying large families of lattice polytopes with unimodal h^{*}-polynomials is a popular research topic with natural connections to the algebra and geometry of the toric varieties associated to lattice polytopes. Showing that an h^{*}-polynomial is real-rooted is a common approach to proving unimodality results in geometric and algebraic combinatorics $[3,6,12,13]$. However, the applicability of this proof technique to families of h^{*}-polynomials does not obviously relate to the algebraic structure of the associated toric variety for the underlying polytopes. Consequently, research into the algebraic properties of the s-lecture hall simplices and their generalizations that can be used to verify unimodality of the associated h^{*}-polynomials is an ongoing and popular topic $[2,1,5,7,9,10,11,12]$.

In this note, we prove some fundamental algebraic properties of s-lecture hall simplices and their generalizations. We show that all s-lecture hall order polytopes [5], a common generalization of s-lecture hall simplices and order polytopes, have the integer decomposition property. This result positively answers a conjecture of [7]. As an application of this result, we then give an explicit description of a quadratic and square-free Gröbner basis for the affine toric ideal of families of s-lecture hall simplices. To do so, we relate s-lecture hall polytopes to alcoved polytopes [8]. The identified Gröbner basis is purely lexicographic and can be constructed for any toric ideal associated to an s-lecture hall simplex for which the first order difference sequence of s is a 0,1 -sequence. This answers a second conjecture of [7] in a special case that they noted to be of particular interest, and it provides a partial answer to the conjecture of [2].

2 The Integer Decomposition Property for s-Lecture Hall Order Polytopes

2.1 The algebraic structure of a lattice polytope

There are two important algebraic objects associated to a lattice polytope $P \subset \mathbb{R}^{n}$. The first is its toric ideal, the zero locus of which is the affine toric variety of P. The second is the Ehrhart ring of P, which is a graded and semistandard semigroup algebra associated to P. The integer decomposition property is precisely the property that tells us when the coordinate ring of the affine toric variety of P coincides with its Ehrhart ring. Hence, it is desirable to know if a family of lattice polytopes admits this property.

For a lattice polytope $P \subset \mathbb{R}^{n}$, define the cone over P to be the convex cone

$$
\operatorname{cone}(P):=\operatorname{span}_{\mathbb{R}_{\geq 0}}\left\{(p, 1) \in \mathbb{R}^{n} \times \mathbb{R}: p \in P\right\} \subset \mathbb{R}^{n+1}
$$

To any integer point $z=\left(z_{1}, \ldots, z_{n+1}\right) \in \mathbb{Z}^{n+1}$ we associate a Laurent monomial $t^{z}:=$ $t_{1}^{z_{1}} t_{2}^{z_{2}} \cdots t_{n+1}^{z_{n+1}}$. Let $\left\{a_{1}, \ldots, a_{m}\right\}:=\left\{(p, 1) \in \mathbb{R}^{n} \times \mathbb{R}: p \in P \cap \mathbb{Z}^{n}\right\}$, and let $K[\mathbf{x}]:=$ $K\left[x_{1}, \ldots, x_{m}\right]$ denote the polynomial ring over a field K in m indeterminates. The toric ideal of P, denoted \mathcal{I}_{P}, is the kernel of the semigroup algebra homomorphism

$$
\Phi: K[\mathbf{x}] \longrightarrow K\left[t_{1}, t_{2}, \ldots, t_{n+1}, t_{1}^{-1}, t_{2}^{-1}, \ldots, t_{n+1}^{-1}\right] \quad \text { where } \quad \Phi: x_{i} \mapsto t^{a_{i}} .
$$

For $k \in \mathbb{Z}_{>0}$ we let $k P:=\{k p: p \in P\}$ denote the $k^{\text {th }}$ dilate of P, and we let $A(P)_{k}$ denote the vector space (over K) spanned by the monomials $t_{1}^{z_{1}} t_{2}^{z_{2}} \cdots t_{n}^{z_{n}} t_{n+1}^{k}$ for $z \in k P \cap \mathbb{Z}^{n}$. Since P is convex we have that $A(P)_{k} A(P)_{r} \subset A(P)_{k+r}$ for all $k, r \in \mathbb{Z}_{>0}$. It follows that the graded algebra

$$
A(P):=\bigoplus_{k=0}^{\infty} A(P)_{k}
$$

is finitely generated over $A(P)_{0}:=K$, and we call it the Ehrhart Ring of P. Equivalently, $A(P)$ is the semigroup algebra $K\left[t^{z}: z \in \operatorname{cone}(P) \cap \mathbb{Z}^{n+1}\right]$ with the grading $\operatorname{deg}\left(t_{1}^{z_{1}} \cdots t_{n+1}^{z_{n+1}}\right)=z_{n+1}$. A polytope $P \subset \mathbb{R}^{n}$ has the integer decomposition property, or is IDP (or is integrally closed), if for every positive integer k and every $z \in k P \cap \mathbb{Z}^{n}$, there exist k points $z^{(1)}, z^{(2)}, \ldots, z^{(k)} \in P \cap \mathbb{Z}^{n}$ such that $z=\sum_{i} z^{(i)}$. Since the coordinate ring of the toric ideal \mathcal{I}_{P} is $K[\mathbf{x}] / \mathcal{I}_{P} \cong K\left[t^{a_{1}}, \ldots, t^{a_{m}}\right]$, the polytope P is IDP if and only if this quotient ring is isomorphic to $A(P)$. In this case, the toric algebra of \mathcal{I}_{P} can be used to recover the Ehrhart theoretical data encoded in $A(P)$. Therefore, it is desirable to understand when combinatorially interesting polytopes are IDP.

$2.2 s$-Lecture hall order polytopes

A labeled poset is a partially ordered set \mathcal{P} on $[n]:=\{1,2, \ldots, n\}$ for some positive integer n; that is, $\mathcal{P}=([n], \preceq)$ where \preceq denotes the partial order imposed on the ground set $[n]$. In the following, we let \leq denote the usual total order on the integers. We say that \mathcal{P} is naturally labeled if it is a labeled poset for which $i \leq j$ whenever $i \preceq j$. Let $s=\left(s_{1}, \ldots, s_{n}\right)$ be a sequence of positive integers and let $\mathcal{P}=([n], \preceq)$ be a naturally labeled poset. A (\mathcal{P}, s)-partition is a map $\lambda:[n] \longrightarrow \mathbb{R}$ such that

$$
\frac{\lambda_{i}}{s_{i}} \leq \frac{\lambda_{j}}{s_{j}} \quad \text { whenever } \quad i \prec j,
$$

where we let λ_{i} denote $\lambda(i)$ for all $i \in[n]$. The s-lecture hall order polytope associated to (\mathcal{P}, s) is the convex polytope

$$
O(\mathcal{P}, s):=\left\{\lambda \in \mathbb{R}^{n}: \lambda \text { is a }(\mathcal{P}, s) \text {-partition and } 0 \leq \lambda_{i} \leq s_{i} \text { for all } i \in[n]\right\} .
$$

The s-lecture hall order polytopes were introduced in [5] as a common generalization of the well-known order polytopes and the s-lecture hall simplices. When $s=(1,1, \ldots, 1)$, then $O(\mathcal{P}, s)$ is the order polytope associated to \mathcal{P}, and when \mathcal{P} is the n-chain $O(\mathcal{P}, s)=$ P_{n}^{s}. In [7], it is conjectured that all s-lecture hall simplices are IDP. We now prove a more general (and stronger) statement.

A poset $\mathcal{P}=\left([n], \preceq_{\mathcal{P}}\right)$ is called a lattice if every pair of elements $a, b \in[n]$ has both a least upper bound and a greatest lower bound in \mathcal{P}. An element $c \in[n]$ is a least upper bound of a and b in \mathcal{P} if $a \preceq_{\mathcal{P}} c, b \preceq_{\mathcal{P}} c$ and whenever $d \in[n]$ satisfies $a \preceq_{\mathcal{P}} d$ and $b \preceq_{\mathcal{P}} d$ then $c \preceq_{\mathcal{P}} d$. Analogously, $c \in[n]$ is a greatest lower bound of a and b in \mathcal{P} if $a \succeq_{\mathcal{P}} c$, $b \succeq_{\mathcal{P}} c$ and whenever $d \in[n]$ satisfies $a \succeq_{\mathcal{P}} d$ and $b \succeq_{\mathcal{P}} d$ then $c \succeq_{\mathcal{P}} d$. Whenever a least upper bound or greatest lower bound exists, it is unique. So we let $a \vee b$ denote the least upper bound of a and b in \mathcal{P} and $a \wedge b$ denote their greatest lower bound. A lattice \mathcal{P} is called distributive if for all triples of elements a, b, c in \mathcal{P} we have that

$$
a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)
$$

Let $\Lambda(\mathcal{P}, s)$ denote the collection of all maps $\lambda:[n] \longrightarrow \mathbb{Z}$ satisfying

$$
\frac{\lambda_{i}}{s_{i}} \leq \frac{\lambda_{j}}{s_{j}} \quad \text { whenever } \quad i \preceq j
$$

In general, we will identify a map $p:[n] \longrightarrow \mathbb{R}$ with the point $\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}^{n}$. Conversely, every point $p \in \mathbb{R}^{n}$ corresponds to a map $p:[n] \longrightarrow \mathbb{R}$. Note that $\Lambda(\mathcal{P}, s)$ is a distributive sublattice of \mathbb{Z}^{n}, under the usual product ordering. Moreover, $\Lambda(\mathcal{P}, s)=$ $\Lambda(\mathcal{P}, s)+\mathbb{Z}\left(s_{1}, \ldots, s_{n}\right)$ and $k O(\mathcal{P}, s) \cap \mathbb{Z}^{n}=\Lambda(\mathcal{P}, s) \cap \prod_{i \in[n]}\left[0, k s_{i}\right]$ for all $k \in \mathbb{Z}_{>0}$. Let $\lambda, \gamma \in O(\mathcal{P}, s) \cap \mathbb{Z}^{n}$. We write $\lambda \unlhd \gamma$ provided that

1. $\lambda_{i} \leq \gamma_{i}$ for all $i \in[n]$, and
2. if $\lambda_{i} \neq 0$, then $\gamma_{i}=s_{i}$.

Theorem 2.1. Let $\mathcal{P}=([n], \preceq)$ be a naturally labeled poset and let $s=\left(s_{1}, \ldots, s_{n}\right)$ be a sequence of positive integers. If $\lambda \in k O(\mathcal{P}, s) \cap \mathbb{Z}^{n}$ for $k \in \mathbb{Z}_{>0}$, then there are unique elements $\lambda^{(1)}, \ldots, \lambda^{(k)} \in O(\mathcal{P}, s) \cap \mathbb{Z}^{n}$ such that

$$
\begin{equation*}
\lambda^{(1)} \unlhd \lambda^{(2)} \unlhd \cdots \unlhd \lambda^{(k)} \quad \text { and } \quad \lambda=\lambda^{(1)}+\lambda^{(2)}+\cdots+\lambda^{(k)} \tag{2.1}
\end{equation*}
$$

Moreover, if

$$
\lambda=\gamma^{(1)}+\gamma^{(2)}+\cdots+\gamma^{(m)}
$$

where $m \leq k$ and $\gamma^{(1)}, \ldots, \gamma^{(k)} \in O(\mathcal{P}, s) \cap \mathbb{Z}^{n}$, then $\lambda^{(1)}(x) \leq \gamma^{(i)}(x) \leq \lambda^{(k)}(x)$ for all $x \in[n]$ and $i \in[k]$.

Proof. We first prove the existence of (2.1) by induction over $k \geq 1$. Suppose $\lambda \in$ $k O(\mathcal{P}, s) \cap \mathbb{Z}^{n}$, where $k>1$, and write $\lambda=\lambda \wedge s+(\lambda-s) \vee 0$. Then $\lambda \wedge s \in O(\mathcal{P}, s) \cap \mathbb{Z}^{n}$ and $(\lambda-s) \vee 0 \in(k-1) O(\mathcal{P}, s) \cap \mathbb{Z}^{n}$. Let $\lambda^{(k)}=\lambda \wedge s$. By induction, we may write

$$
(\lambda-s) \vee 0=\lambda^{(1)}+\cdots+\lambda^{(k-1)}
$$

where $\lambda^{(1)}, \ldots, \lambda^{(k-1)}$ satisfies (2.1). Clearly $\lambda^{(i)} \leq \lambda^{(k)}$ for all $1 \leq i \leq k-1$. Moreover, if $\lambda^{(i)}(x) \neq 0$ for some $1 \leq i \leq k-1$, then $((\lambda-s) \vee 0)(x) \neq 0$. Thus, $\lambda^{(k)}(x)=$ $(\lambda \wedge s)(x)=s(x)$ as desired. This establishes (2.1).

Suppose now that the sequence $\lambda^{(1)}, \ldots, \lambda^{(k)}$ satisfies (2.1). Note $\lambda(x)>s(x)$ if and only if $\lambda^{(i)}(x)>0$ for at least two distinct i, and this happens if and only if $\lambda^{(k-1)}(x)>0$ and $\lambda^{(k)}(x)=s(x)$. Hence, $\lambda^{(k)}=\lambda \wedge s$. The uniqueness of $\lambda^{(1)}, \ldots, \lambda^{(k)}$ then follows by induction.

Suppose next that

$$
\lambda=\gamma^{(1)}+\gamma^{(2)}+\cdots+\gamma^{(m)} \in k O(\mathcal{P}, s) \cap \mathbb{Z}^{n}
$$

where $m \leq k$ and $\gamma^{(1)}, \ldots, \gamma^{(m)} \in O(\mathcal{P}, s) \cap \mathbb{Z}^{n}$. Then $\gamma^{(i)}(x) \leq \min \{\lambda(x), s(x)\}=$ $\lambda^{(k)}(x)$. If $\gamma^{(i)}(x)<\lambda^{(1)}(x)$ for some $x \in[n]$ and $1 \leq i \leq m$, then $\lambda^{(i)}(x)=s(x)$ for all $2 \leq i \leq k$ (since $\left.\lambda^{(1)}(x) \neq 0\right)$. Hence, $\lambda^{(1)}(x)=\lambda(x)-(k-1) s(x)>0$ and

$$
\lambda(x)-\gamma^{(i)}(x)=\lambda^{(1)}(x)-\gamma^{(i)}(x)+(k-1) s(x)>(k-1) s(x)
$$

which is a contradiction since $\lambda-\gamma^{(i)} \in(m-1) O(\mathcal{P}, s) \cap \mathbb{Z}^{n}$.
It follows from Theorem 2.1 that all s-lecture hall order polytopes are IDP. In the remainder of this note, we use Theorem 2.1 to identify a regular and unimodular triangulation of some s-lecture hall polytopes by computing a quadratic and square-free Gröbner basis for their associated toric ideals.

3 A Quadratic and Square-Free Gröbner Basis for Some s-Lecture Hall Simplices

Let $P \subset \mathbb{R}^{n}$ be a lattice polytope and let $\mathcal{A}:=\left\{(p, 1) \in \mathbb{R}^{n} \times \mathbb{R}: p \in P \cap \mathbb{Z}^{n}\right\}$. Label \mathcal{A} as $\mathcal{A}=\left\{a_{1}, \ldots, a_{m}\right\}$, and suppose that \succ is a term order on the polynomial ring $K[\mathbf{x}]:=K\left[x_{1}, \ldots, x_{m}\right]$; that is, \succ is a total order on the monomials in $K[\mathbf{x}]$ satisfying

1. $x^{a} \succ x^{b}$ implies that $x^{a} x^{c} \succ x^{b} x^{c}$ for all $c \in \mathbb{Z}_{\geq 0}^{n}$, and
2. $x^{a} \succ x^{0}=1$ for all $a \in \mathbb{Z}_{>0}^{n}$.

Given a polynomial $f=\sum_{a \in \mathbb{Z}_{\geq 0}^{n}} c_{a} x^{a}$ with coefficients $c_{a} \in K$ we call the set

$$
\operatorname{Supp}(f):=\left\{a \in \mathbb{Z}^{n}: c_{a} \neq 0\right\}
$$

the support of f. Fixing a term order \succ on the monomials in $K[\mathbf{x}]$, we define the initial term of f to be the term $c_{a} x^{a}$ for which $x^{a} \succ x^{b}$ for every $b \in \operatorname{Supp}(f) \backslash\{a\}$. We denote the initial term of f with respect to the term order $\succ \operatorname{by~in~}_{\succ}(f)$. Given an ideal $\mathcal{I} \subset K[\mathbf{x}]$, the initial ideal of \mathcal{I} with respect to \succ is

$$
\operatorname{in}_{\succ}(\mathcal{I}):=\left\langle\operatorname{in}_{\succ}(f): f \in \mathcal{I}\right\rangle
$$

A finite set of polynomials $\mathcal{G}_{\succ}(\mathcal{I}):=\left\{g_{1}, \ldots, g_{p}\right\}$ is called a Gröbner basis of \mathcal{I} with respect to $\succ \mathrm{if}_{\succ} \mathrm{in}_{\succ}(\mathcal{I})=\left\langle\mathrm{in}_{\succ}\left(g_{1}\right), \ldots, \mathrm{in}_{\succ}\left(g_{p}\right)\right\rangle$. If $\left\{\operatorname{in}_{\succ}\left(g_{1}\right), \ldots, \mathrm{in}_{\succ}\left(g_{p}\right)\right\}$ is the unique minimal generating set for $\operatorname{in}_{\succ}(\mathcal{I})$, then $\mathcal{G}_{\succ}(\mathcal{I})$ is called minimal. A minimal Gröbner basis $\mathcal{G}_{\succ}(\mathcal{I})$ if further called reduced if no non-inital term of any g_{i} is divisible by some element of $\left\{\operatorname{in}_{\succ}\left(g_{1}\right), \ldots, \operatorname{in}_{\succ}\left(g_{p}\right)\right\}$. The monomials of $K[\mathbf{x}]$ that are not in $\operatorname{in}_{\succ}(\mathcal{I})$ are called the standard monomials of $\operatorname{in}_{\succ}(\mathcal{I})$.

Let $P \subset \mathbb{R}^{n}$ be a lattice polytope and let $\mathcal{A}:=\left\{(p, 1) \in \mathbb{R}^{n} \times \mathbb{R}: p \in P \cap \mathbb{Z}^{n}\right\}$. We denote the sublattice of \mathbb{Z}^{n+1} spanned by the lattice points in \mathcal{A} by $\mathbb{Z} \mathcal{A}$. Any sufficiently generic height function $\omega: \mathcal{A} \longrightarrow \mathbb{R}_{\geq 0}$ on the points in \mathcal{A} induces a term order \succ_{ω} on $K[\mathbf{x}]$ and yields a corresponding Gröbner basis $\mathcal{G}_{\succ_{\omega}}\left(\mathcal{I}_{P}\right)$ for the toric ideal \mathcal{I}_{P} of P. On the other hand, the collection of faces of

$$
\operatorname{conv}\left\{\left(a_{i}, \omega\left(a_{i}\right)\right) \in \mathbb{R}^{n+1}: i \in[m]\right\}
$$

that minimize some linear functional in \mathbb{R}^{n+1} with a negative $(n+1)^{s t}$ coordinate correspond to the faces of a regular triangulation Δ_{ω} of P given by projecting these faces onto P in \mathbb{R}^{n}. The fundamental correspondence between the regular triangulation Δ_{ω} and the Gröbner basis $\mathcal{G}_{\succ_{\omega}}\left(\mathcal{I}_{P}\right)$ states that the square-free standard monomials $x_{i_{1}} x_{i_{2}} \cdots x_{i_{\ell}}$ with respect to $\operatorname{in}_{\succ \omega}\left(\mathcal{I}_{P}\right)$ correspond to the faces $\operatorname{conv}\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{\ell}}\right\}$ of Δ_{ω} [14, Theorem 8.3]. Furthermore, if the $\operatorname{in}_{\succ \omega}\left(\mathcal{I}_{P}\right)$ is square-free (i.e. generated by square-free monomials), then the simplices of Δ_{ω} have smallest possible volume (i.e. are unimodular) with
respect to the lattice $\mathbb{Z} \mathcal{A}$. In this case, the regular triangulation Δ_{ω} is called unimodular. If $\mathrm{in}_{\succ \omega}\left(\mathcal{I}_{P}\right)$ consists only of quadratic monomials, then Δ_{ω} is flag, meaning its minimal non-faces are pairs of points $\left\{a_{i}, a_{j}\right\}$. When an n-dimensional lattice polytope P is IDP, then $\mathbb{Z} \mathcal{A}=\mathbb{Z}^{n+1}$, and a square-free Gröbner basis for \mathcal{I}_{P} identifies a regular unimodular triangulation of P with respect to the lattice \mathbb{Z}^{n}.

Our goal in this section is to identify a quadratic Gröbner basis with a square-free initial ideal for the toric ideals of a subcollection of s-lecture hall simplices that includes the lecture hall simplex $P_{n}^{(1,2, \ldots, n)}$. This is the first explicit description of such a Gröbner basis for the toric ideal of $P_{n}^{(1,2, \ldots, n)}$. In the remainder of this section, we will assume that $s=\left(s_{1}, \ldots, s_{n}\right)$ is a weakly increasing sequence of positive integers satisfying $0 \leq$ $s_{i+1}-s_{i} \leq 1$ for all $i \in[n-1]$; that is, we will assume that the first order difference sequence of s is a 0,1 -sequence.

$3.1 s$-lecture hall simplices and alcoved polytopes

To produce the desired quadratic and square-free Gröbner basis for the toric ideal of P_{n}^{s} we will use the following transformation. For the sequence $s=\left(s_{1}, \ldots, s_{n}\right)$, set $s_{n+1}:=s_{n}+1$. Notice that since s is assumed to be weakly increasing then $x_{i} \leq x_{i+1}$ for all $i \in[n]$ and $x \in P_{n}^{s}$. Now consider the unimodular transformation

$$
\varphi: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} ; \quad \varphi: x_{i} \mapsto x_{i}-x_{i-1}, \quad \text { where } x_{0}:=0
$$

and the homogenizing affine transformation

$$
h: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n+1} ; \quad h: x \mapsto\left(x_{1}, \ldots, x_{n}, s_{n+1}-\sum_{i=1}^{n} x_{i}\right) .
$$

Then the convex lattice polytope $A_{n}^{s}:=(h \circ \varphi)\left(P_{n}^{s}\right)$ is defined by the linear inequalities

$$
\begin{aligned}
0 \leq x_{1}+\cdots+x_{i} & \leq s_{i}, \text { for all } i \in[n] \\
0 \leq\left(s_{i+1}-s_{i}\right)\left(x_{1}+\cdots+x_{i}\right) & \leq s_{i} x_{i+1}, \text { for all } i \in[n-1], \text { and } \\
x_{1}+\cdots+x_{n+1} & =s_{n+1}
\end{aligned}
$$

The following lemma notes that the lattice points within A_{n}^{s} consist of the lattice points in the alcoved polytope [8] defined by the inequalities

$$
\begin{aligned}
0 \leq x_{1}+\cdots+x_{i} & \leq s_{i}, \text { for all } i \in[n], \text { and } \\
x_{1}+\cdots+x_{n+1} & =s_{n+1}
\end{aligned}
$$

that satisfy a useful combinatorial criterion. Conditions (1) and (2) of the lemma specify that a lattice point in A_{n}^{s} must lie in this alcoved polytope, and conditions (3) and (4) constitute the combinatorial criterion we desire.

Lemma 3.1. Suppose that s is a weakly increasing sequence of positive integers for which the first order difference sequence is a 0,1 -sequence. Then a lattice point $\left(z_{1}, \ldots, z_{n+1}\right)$ is in $A_{n}^{s} \cap \mathbb{Z}^{n+1}$ if and only if the following conditions hold:

1. $z_{1}+\cdots+z_{n+1}=s_{n+1}$,
2. $0 \leq z_{1}+\cdots+z_{i} \leq s_{i}$ for all $i \in[n+1]$,
3. whenever $s_{i+1}-s_{i}=0$, then $0 \leq z_{i+1}$, and
4. whenever $s_{i+1}-s_{i} \neq 0$ and $z_{k} \neq 0$ for some $k<i+1$, then $z_{i+1} \neq 0$.

Proof. Suppose first that $\left(z_{1}, \ldots, z_{n+1}\right) \in A_{n}^{s} \cap \mathbb{Z}^{n+1}$. Then certainly conditions (1) and (2) hold. To see that condition (3) holds, suppose that $s_{i+1}-s_{i}=0$. Then by the defining inequalities for A_{n}^{s}, we know that $0 \leq z_{i+1}$. Finally, to see condition (4) holds, suppose that $s_{i+1}-s_{i} \neq 0$ and that $z_{k} \neq 0$ for some $k<i+1$. Then since $s_{i+1}-s_{i} \neq 0$, we know that $s_{i+1}-s_{i}=1$. So the inequality

$$
0 \leq\left(s_{i+1}-s_{i}\right)\left(z_{1}+\cdots+z_{k}+\cdots+z_{i}\right) \leq s_{i} z_{i+1}
$$

reduces to

$$
0 \leq z_{1}+\cdots+z_{k}+\cdots+z_{i} \leq s_{i} z_{i+1}
$$

and since $z_{k} \neq 0$, it follows that $z_{i+1} \neq 0$.
Conversely, suppose that $\left(z_{1}, \ldots, z_{n+1}\right)$ is a lattice point satisfying the conditions (1), (2), (3), and (4). Then by conditions (1) and (2) it suffices to show that (z_{1}, \ldots, z_{n+1}) satisfies the inequalities

$$
0 \leq\left(s_{i+1}-s_{i}\right)\left(z_{1}+\cdots+z_{i}\right) \leq s_{i} z_{i+1}
$$

for all $i \in[n]$. However, since $\left(z_{1}, \ldots, z_{n+1}\right)$ is a lattice point, whenever $z_{i+1} \neq 0$, we know that $z_{i+1} \geq 1$. Thus, the conditions (3) and (4) show that $s_{i+1}-s_{i} \leq z_{i+1}$ for all $i \in[n]$. Therefore, condition (2) implies that the inequalities

$$
0 \leq\left(s_{i+1}-s_{i}\right)\left(z_{1}+\cdots+z_{i}\right) \leq s_{i} z_{i+1}
$$

hold for all $i \in[n]$.
Let $A(s):=\left\{i+1 \in[n+1]: s_{i}<s_{i+1}\right\}$ denote the collection of indices $i+1 \in[n+1]$ for which $s_{i+1}-s_{i} \neq 0$. Notice that a lattice point $z=\left(z_{1}, \ldots, z_{n+1}\right) \in A_{n}^{s} \cap \mathbb{Z}^{n+1}$ indexes the multiset

$$
\left\{1^{z_{1}}, 2^{z_{2}}, \ldots,(n+1)^{z_{n+1}}\right\}
$$

We call any such multiset an s-lecture hall multiset (of order n). The notion of multisets and their corresponding lattice points in \mathbb{Z}^{n} will be used in the coming section. It will be useful to have the following notation.

For $i \in[n]$ and a multiset I of $[n]$ we let $\operatorname{mult}_{I}(i)$ denote the multiplicity of i in I. Given a collection of multisets $\mathcal{I}=\left\{I_{1}, \ldots, I_{k}\right\}$, we let $\Sigma \mathcal{I}$ denote the multiunion $\bigcup_{I \in \mathcal{I}} I$. For each multiset $I_{i} \in \mathcal{I}$ we let $x^{(i)}:=\left(\operatorname{mult}_{I_{i}}(1), \operatorname{mult}_{I_{i}}(2), \ldots, \operatorname{mult}_{I_{i}}(n)\right) \in \mathbb{Z}^{n}$ denote its multiplicity vector. The multiplicity vectors $x^{(1)}, \ldots, x^{(k)}$ can be ordered lexicographically, i.e., for two vectors $x, y \in \mathbb{Z}^{n}$ we say $x \succ_{\text {lex }} y$ if and only if the leftmost nonzero entry in $x-y$ is positive. Given this, we may reindex the collection \mathcal{I} such that $x^{(1)} \succ_{\text {lex }} x^{(2)} \succ_{\text {lex }} \cdots \succ_{\text {lex }} x^{(k)}$. Moreover, the lexicographic ordering on the lattice points in \mathbb{Z}^{n} induces a lexicographic ordering on the multisets of $[n]$. That is, for two multisets I_{1}, I_{2} of [n], we say $I_{1} \succ_{\text {lex }} I_{2}$ if and only if $x^{(1)} \succ_{\text {lex }} x^{(2)}$. Furthermore, given two collections of k multisets $\mathcal{I}=\left\{I_{1}, \ldots, I_{k}\right\}$ and $\mathcal{J}=\left\{J_{1}, \ldots, J_{k}\right\}$ of $[n]$, we write $\mathcal{I} \succ \mathcal{J}$ if and only if the $I_{k} \succ_{\text {lex }} J_{k}$ for the smallest index k for which $I_{k} \neq J_{k}$. A collection $\mathcal{I}=\left\{I_{1}, \ldots, I_{k}\right\}$ of k multisets is said to be minimal if $\mathcal{I}^{\prime} \succ_{\text {lex }} \mathcal{I}$ for any collection \mathcal{I}^{\prime} of k multisets of [n] satisfying $\Sigma \mathcal{I}^{\prime}=\Sigma \mathcal{I}$. Equivalently, the collection of vectors $\left\{x^{(1)}, \ldots, x^{(k)}\right\}$ is called minimal.

3.2 A lexicographic Gröbner basis

We now use the notion of s-lecture hall multisets described in Section 3.1 to describe a quadratic Gröbner basis with a square-free initial ideal for the toric ideal associated to P_{n}^{s}. To get started, we do not yet need to speak directly about s-lecture hall multisets, but instead, we need only their corresponding multiplicity vectors in $A_{n}^{s} \cap \mathbb{Z}^{n}$. If $x \in$ $k A_{n}^{s} \cap \mathbb{Z}^{n+1}$, let

$$
\alpha_{r}(x)=\min \left\{i \in[n+1]: x_{i} \geq r, \text { and } x_{j} \geq r \text { for all } j>i \text { such that } j \in A(s)\right\}
$$

If $x=\left(x_{1}, \ldots, x_{n+1}\right) \neq 0$, let $\ell(x)=\min \left\{i: x_{i} \neq 0\right\}$.
Lemma 3.2. Suppose $x^{(1)} \succeq_{\operatorname{lex}} x^{(2)} \succeq_{\mathrm{lex}} \cdots \succeq_{\mathrm{lex}} x^{(m)}$ are integer points in $A_{n}^{s} \cap \mathbb{Z}^{n+1}$, and let $y=x^{(1)}+x^{(2)}+\cdots+x^{(m)}$. If $x^{(\overline{1)}} \succeq_{\operatorname{lex}} x^{(\overline{2})} \succeq_{\text {lex }} \cdots \succeq_{\text {lex }} x^{(m)}$ are pairwise minimal, then

$$
\ell\left(x^{(i)}\right)=\alpha_{i}(y), \quad \text { for all } 1 \leq i \leq m
$$

Proof. The proof is by induction over i for $1 \leq i \leq m$. Note that $\alpha_{1}(y)$ is the first nonzero coordinate of y. Since the $x^{(i)}$ are ordered lexicographically, we have $\ell\left(x^{(1)}\right)=\alpha_{1}(y)$ as claimed.

Suppose now that the claim is true for all indices less than or equal to $i \geq 1$, but that it is not true for $i+1$. Then $a:=\alpha_{i+1}(y)<\ell\left(x^{(i+1)}\right)=: b$. Let c be the largest integer in $\left\{j: a \leq j<b, y_{j} \geq i+1\right\}$. Note that $x_{j}^{(k)}=0$ for all $k \geq i+1$, since the $x^{(k)}$ are ordered lexicographically. Since $y_{c} \geq i+1$, there is a k satisfying $1 \leq k \leq i$ such that $x_{c}^{(k)} \geq 2$. Let $d>c$ be the smallest index for which $x_{d}^{(k)}>0$ and either $d \notin A(s)$ or $x_{d}^{(k)} \geq 2$. Then the pair $\left\{x^{(k)}+e_{d}-e_{c}, x^{(i)}+e_{c}-e_{d}\right\}$ is smaller than $\left\{x^{(k)}, x^{(i)}\right\}$, which contradicts pairwise minimality.

Theorem 3.3. If $x^{(1)} \succeq_{\operatorname{lex}} x^{(2)} \succeq_{\operatorname{lex}} \cdots \succeq_{\operatorname{lex}} x^{(k)}$ are pairwise minimal, then the collection $\left\{x^{(1)}, \ldots, x^{(k)}\right\}$ is minimal.

Proof. Let $y=x^{(1)}+x^{(2)}+\cdots+x^{(k)}$. We prove that $x^{(1)} \succeq_{\text {lex }} x^{(2)} \succeq_{\text {lex }} \cdots \succeq_{\text {lex }} x^{(k)}$ are uniquely determined given y. The proof is by induction on $k \geq 2$.

Suppose first that $\alpha_{i}(y)>\alpha_{j}(y)$ for some $i<j$. Let m be the last index for which $\alpha_{m}(y)>\alpha_{m+1}(y)$. Let $u=x^{(1)}+\cdots+x^{(m)}$ and $v=x^{(m+1)}+\cdots+x^{(k)}$. We prove that u and v are uniquely determined. We claim that if $j \geq \alpha_{m+1}(y)$ and $j \in A(s)$, then

$$
\begin{equation*}
v_{j}=\min \left(y_{j}-m, s_{j}(k-m)-\sum_{i=1}^{j-1} v_{i}\right), \tag{3.1}
\end{equation*}
$$

and if $j \geq \alpha_{m+1}(y)$ and $j \notin A(s)$, then

$$
\begin{equation*}
v_{j}=\min \left(y_{j}, s_{j}(k-m)-\sum_{i=1}^{j-1} v_{i}\right) \tag{3.2}
\end{equation*}
$$

Assume $j \geq \alpha_{m+1}(y)$ and $j \in A(s)$. Then the j th coordinate of each $x^{(i)}, i \leq m$, is positive, since $j \in A(s)$. Hence, $v_{j}=y_{j}-u_{j} \leq y_{j}-m$. Moreover, $v_{j} \leq s_{j}(k-m)-\sum_{i=1}^{j-1} v_{i}$ by the defining inequalties of A_{n}^{s} and the definition of s-lecture hall partitions. Thus, if (3.1) fails, then $v_{j}<y_{j}-m$ and $\sum_{i=1}^{j} v_{i}<s_{j}(k-m)$. So we conclude there are indices i, ℓ such that $i \leq m$ and $\ell \geq m+1$ such that $x_{j}^{(i)}>1$ and $\sum_{i=1}^{j} x_{i}^{(\ell)}<s_{j}$. Let $p>j$ be the smallest index such that $x_{p}^{(\ell)}>1$ or $x_{p}^{(\ell)}=1$ and $p \notin A(s)$. Then the pair $\left\{x^{(i)}-e_{j}+\right.$ $\left.e_{p}, x^{(\ell)}+e_{j}-e_{p}\right\}$ is smaller than $\left\{x^{(i)}, x^{(\ell)}\right\}$, contradicting pairwise minimality. Thus, (3.1) follows, and the case when $j \geq \alpha_{m+1}(y)$ and $j \notin A(s)$ follows similarly.

If $\alpha_{i}(y)=\alpha_{j}(y)=a$ for all i, j, we claim that the first nonzero coordinate of the $x^{(i)}$ differ by at most one. Indeed if the first nonzero coordinate of $x^{(i)}$ and $x^{(j)}, i<j$, differ by at least two, then let b be the smallest integer greater than a for which the entry in $x^{(i)}$ is either greater than one or equal to one and not in $A(s)$. Then the pair $\left\{x^{(i)}-e_{a}+\right.$ $\left.e_{b}, x^{(j)}+e_{a}-e_{b}\right\}$ is smaller than $\left\{x^{(i)}, x^{(j)}\right\}$, which contradicts pairwise minimality. If the first nonzero entry of all $x^{(i)}$ is equal, we may delete this entry for each $x^{(i)}$ and repeat our argument. Hence, we reduce to the case when either $\alpha_{i}(y)=\alpha_{j}(y)=a$ for all i, j and some first coordinates differ, or $\alpha_{i}(y)>\alpha_{j}(y)$. The latter case is dealt with above. For the former case, let m be the index for which the first coordinates of $x^{(m)}$ and $x^{(m+1)}$ differ. Let $u=x^{(1)}+\cdots+x^{(m)}$ and $v=x^{(m+1)}+\cdots+x^{(k)}$ and argue as above.

Theorem 3.3 allows us to compute the desired Gröbner basis. Let

$$
K[\mathbf{x}]:=K\left[x_{I}: I \text { is a s-lecture hall multiset }\right]
$$

be a polynomial ring over a field K in the indeterminants x_{I}. Given a collection of s lecture hall multisets $\mathcal{I}=\left\{I_{1}, \ldots, I_{r}\right\}$, we denote the monomial $x_{I_{1}} \cdots x_{I_{r}}$ by $x^{\mathcal{I}}$. In the following, we denote the toric ideal $\mathcal{I}_{A_{n}^{s}}$ in $K[\mathbf{x}]$ simply by \mathcal{I}_{n}^{s}. For a collection of $k s$ lecture hall multisets $\left\{I_{1}, \ldots, I_{k}\right\}$, we let $\left\{I_{1}^{-}, \ldots, I_{k}^{-}\right\}$denote the minimal collection of k s-lecture hall multisets satisfying $\Sigma\left\{I_{1}^{-}, \ldots, I_{k}^{-}\right\}=\Sigma\left\{I_{1}, \ldots, I_{k}\right\}$.

Theorem 3.4. There exists a term order \succ on $K[\mathbf{x}]$ such that the marked set of binomials

$$
G:=\left\{\underline{x_{I} x_{J}}-x_{I^{-}} x_{J^{-}}: I \text { and } J \text { are s-lecture hall multisets }\right\}
$$

is a reduced Gröbner basis for \mathcal{I}_{n}^{s} with respect to \succ. The initial ideal $\mathrm{in}_{\succ} \mathcal{I}_{n}^{s}$ is generated by the underlined terms, all of which are square-free.

Proof. For a collection of s-lecture hall multisets $\mathcal{I}=\left\{I_{1}, \ldots, I_{r}\right\}$, the relation $x_{I_{1}} \cdots x_{I_{r}}-$ $x_{I_{1}^{-}} \cdots x_{I_{r}^{-}}$lies in the ideal \mathcal{I}_{n}^{s}. This is because the multiunion over each collection of multisets is the same and $I_{1}^{-}, \ldots, I_{k}^{-}$are all s-lecture hall multisets. The binomials in G define a reduction relation on $k[\mathbf{x}]$ for which the underlined term is treated as the leading term of the binomials. We say a monomial is in normal form with respect to a reduction relation if it is the remainder upon division with respect to the given set of polynomials and their specified leading terms [14, Chapter 3]. It follows from Theorem 3.3 that if \mathcal{I} is not minimal, then there exists some pair $\left\{I_{i}, I_{j}\right\} \subset \mathcal{I}$ for which $\left\{I_{i}, I_{j}\right\}$ is not minimal. So a monomial $x^{\mathcal{I}}$ for $\mathcal{I}=\left\{I_{1}, \ldots, I_{r}\right\}$ is in normal form with respect to the reduction relation defined by G if and only if \mathcal{I} is minimal. Notice also that the reduction modulo G is Noetherian; i.e., every sequence of reductions modulo G terminates. This is because reduction of the monomial $x_{I_{1}} \cdots x_{I_{r}}$ by $x_{I_{i}} x_{I_{j}}-x_{I_{i}^{-}} x_{I_{j}^{-}}$amounts to replacing the multiset $\mathcal{I}=\left\{I_{1}, \ldots, I_{r}\right\}$ with the multiset $\mathcal{I}^{\prime}:=\mathcal{I} \backslash\left\{I_{i}, I_{j}\right\} \cup\left\{I_{i}^{-}, I_{j}^{-}\right\}$. Since \mathcal{I}^{\prime} is lexicographically smaller than \mathcal{I}, reduction modulo G is Noetherian. So by applying [14, Theorem 3.12] we find that G is a coherently marked collection of binomials. Thus, it is a Gröbner basis for \mathcal{I}_{n}^{s} with respect to some term order \succ on $K[\mathbf{x}]$ and its initial ideal is generated by the underlined terms. It follows readily that the monomials in the initial ideal with respect to this term order are precisely the non-minimal monomials. Thus, G is a quadratic and reduced Gröbner basis for \mathcal{I}_{n}^{s} with a square-free initial ideal.

The following corollary extends the results of [2] and [7]. In particular, it provides a partial answer to [7, Conjecture 5.2] in a special case that they noted to be of particular interest; namely, when the first order difference sequence of s is a 0,1 -sequence.

Corollary 3.5. Let s be a weakly increasing sequence of positive integers whose first order difference sequence of s is a 0,1-sequence. There exists a regular, flag, and unimodular triangulation of P_{n}^{s}.

Proof. By Theorem 3.4 we know that the toric ideal of the polytope A_{n}^{s} has a quadratic Gröbner basis for some term order that has a square-free initial ideal. It follows from
[14, Theorem 8.8] and [14, Corollary 8.9] that A_{n}^{s} has a regular, flag, and unimodular triangulation whose minimal non-faces are indexed by the lexicographically non-minimal sets of s-lecture hall multisets. Since A_{n}^{s} is unimodularly equivalent to P_{n}^{s}, we conclude that P_{n}^{s} has a regular, flag, and unimodular triangulation.

References

[1] M. Beck, B. Braun, M. Köppe, C. Savage, and Z. Zafeirakopoulos. "s-lecture hall partitions, self-reciprocal polynomials, and Gorenstein cones". Ramanujan J 36.1-2 (2015), pp. 123-147. Link.
[2] M. Beck, B. Braun, M. Köppe, C. Savage, and Z. Zafeirakopoulos. "Generating functions and triangulations for lecture hall cones". SIAM J. Discrete Math. 30.3 (2016), pp. 1470-1479. Link.
[3] M. Beck, K. Jochemko, and E. McCullough. " h^{*}-polynomials of zonotopes". Trans. Amer. Math. Soc 371.3 (2019), pp. 2021-2042. Link.
[4] M. Bousquet-Melou and K. Eriksson. "Lecture hall partitions". Ramanujan J. 1.1 (1997), pp. 101-111. Link.
[5] P. Brändén and M. Leander. "Lecture hall P-partitions". J. Comb. 11 (2020), pp. 391-412. Link.
[6] N. Gustafsson and L. Solus. "Derangements, Ehrhart theory, and local h-polynomials". Adv. Math. 369 (2020), p. 107169. Link.
[7] T. Hibi, M. Olsen, and A. Tsuchiya. "Gorenstein properties and integer decomposition properties of lecture hall polytopes". Mosc. Math. J. 18.4 (2018). Link.
[8] T. Lam and A. Postnikov. "Alcoved polytopes, I". Discrete and Computational Geometry 38.3 (2007), pp. 453-478. Link.
[9] T. Pensyl and C. Savage. "Lecture hall partitions and the wreath products $\mathbb{Z}_{k} \imath S_{n}$." Integers (2013).
[10] T. Pensyl and C. Savage. "Rational lecture hall polytopes and inflated Eulerian polynomials". Ramanujan J. 31.1-2 (2013), pp. 97-114. Link.
[11] C. Savage and M. Schuster. "Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences". J. Combin. Theory Ser. A 119 (2012), pp. 850-870. Link.
[12] C. Savage and M. Visontai. "The s-Eulerian polynomials have only real roots". Trans. Amer. Math. Soc 367.2 (2015), pp. 1441-1466. Link.
[13] L. Solus. "Simplices for numeral systems". Trans. Amer. Math. Soc 371.3 (2019), pp. 20892107. Link.
[14] B. Sturmfels. "Gröbner bases and convex polytopes". J. Amer. Math. Soc. 8 (1996).

[^0]: *pbranden@kth.se. Partially supported by the Knut and Alice Wallenberg foundation and Vetenskapsrådet
 ${ }^{\dagger}$ solus@kth.se. Partially supported by NSF Mathematical Sciences Postdoctoral Research Fellowship (DMS-1606407), the Wallenberg Autonomous Systems and Software Program and Vetenskapsrådet.

